

Microscopie photonique

Microscopie photonique Formation de l'image

Microscopie confocale

Microscopie conventionnelle

Microscopie confocale - PSF réelle Microscopie photonique

Imagée avec objectif 63x 1.4NA échantillonnage 100x100x100nm **Bille diamètre 200nm**

Yves Usson 2000

Image 256x256 Fluorescence confocale

Image 256x256 Fluorescence conventionnelle

Mieroscopie photonique

Comparaison Conventionnel/Confocal

sommet commun

Connexité (voisinage) dans un volume numérique

Pile de sections numérisées

Description des données 3D

Microscopie photonique

facette commune

VOXe1

arête commune

Microscopie 3D -Sections orthogonales

Limites des méthodes d'acquisition en microscopie confocale

Modes de microscopie limités

Profondeur d'observation limitée par les propriétés des objectifs

Photodégradation des fluorochromes

Absorption de la lumière par le specimen

Atténuation du signal lumineux par l'optique du microscope

Bruits photonique et électronique

Déformations dues aux différences d'indice de réfraction

38 40

Fluorescence - Nature du bruit photonique Microscopie photonique

Moyennage de 32 trames

Moyennage de 4 trames

Amélioration du rapport signal/bruit

Microscopie photonique

Image 256x256 : 1 trame durée : 0,5 s/trame

5µm

Vue latérale après compensation par une fonction log-logistique (Rigaut et al., 1991)

Axe<mark>optique</mark> (50μm)

Intensité moyenne

Absorption de la lumière par le specimen Microscopie photonique

lumière sont altérées

Temps en min.

Axe optique Les molécules de fluorochrome situées dans le double cône de 100

Intensité de fluorescence

d'une préparation homogène

Photodégradation

Photodégradation de la fluorescence

Microscopie photomique

Microscopie photomique

Restauration de la résolution par déconvolution

Spermatozoïde démembrané de Xenopus laevis incubé dans un extrait d'oeuf Etude de la cinétique de recondensation chromosomique (1h30) Marquage YOYO (de la Barre & Dimitrov)

Sections XY

Données

Reconstruction surfacique - Seuillage objet Microscopie photonique

Reconstruction surfacique - codage de distance Microscopie photonique

Université Joseph Fourier

Carte de distance

Reconstruction surfacique - Tampon Z

Microscopie photonique

avec $k_1 < k_2$ et $k_1 + k_2 = 1.0$

 $\mathbf{I} = \mathbf{I}_0 \left(\mathbf{k}_1 + \mathbf{k}_2 \cos \alpha_i \right)$

k2 constante de lumière réfléchie k₁ constante de lumière diffuse ambiante

Direction d'observation & lumière incidente Reconstruction surfacique - Modèle d'illumination Normale à la facette

Modèle simplifié d'illumination par diffusion et réflexion

Microscopie photonique

et la lumière incidente l0 or angle entre la normale à la surface

Microscopie confocale - Visualisation 3D Microscopie photonique

Reconstruction par suivi de rayons

Microscopie confocale - Visualisation 3D <u>When the state of the second </u>

Reconstruction par suivi de rayons - Transparence

Règle de transparence
$$P_{ij} \begin{cases} I_k = \alpha_k V_k + (1-\alpha_k) I_{k-1} \\ \alpha_k = f(V_k) \end{cases}$$

valeur précédente; α_k est le coefficient de transparence qui dépend de V_k, la valeur du voxel courant I_k est l'intensité collectée sur le chemin du rayon, I_{k-1} la

