Microscope confocal à balayage laser Microscopie photonique

lmage reconstruite point par point par balayage laser

Obtention directe de coupes optiques sans information parasite des plans voisins

Université Joseph Fourier

Schéma de principe du microscope confocal Microscopie photonique

Microscopie photonique Formation de l'image

Université Joseph Fourier Yves Usson 2000

Microscopie confocale - PSF réelle Microscopie photonique

Bille diamètre 200nm Imagée avec objectif 63x 1.4NA échantillonnage 100x100x100nm

Comparaison Conventionnel/Confocal Microscopie photonique

Fluorescence conventionnelle Image 256x256

Fluorescence confocale Image 256x256

Microscopie photonique Description des données 3D

Pile de sections numérisées

Connexité (voisinage) dans un volume numérique

facette commune

Microscopie photoniques Galerie de sections optiques

Microscopie 3D -Sections orthogonales

Microscopie photonique

Limites des méthodes d'acquisition en microscopie confocale

Modes de microscopie limités

Profondeur d'observation limitée par les propriétés des objectifs

Photodégradation des fluorochromes

Absorption de la lumière par le specimen

Atténuation du signal lumineux par l'optique du microscope

Bruits photonique et électronique

Déformations dues aux différences d'indice de réfraction

Université Joseph Fourier Yves Usson 2000

Université Joseph Fourier

PIXELS

temps d'intégration 1 ms

Fluorescence - Nature du bruit photonique Microscopie photonique

Amélioration du rapport signal-bruit

Amélioration du rapport signal/bruit Microscopie photonique

Image 256x256 : 1 trame durée : 0,5 s/trame

Moyennage de 4 trames

Moyennage de 32 trames

Université Joseph Fourier Yves Usson 2000

Yves Usson 2000

Absorption de la lumière par le specimen Microscopie photonique

Photodégradation de la fluorescence Microscopie photomique

Photodégradation d'une préparation homogène

Les molécules de fluorochrome situées dans le double cône de lumière sont altérées

Photodégradation en fonction du temps d'exposition

Université Joseph Fourier

Formation de l'image par une lentille Microscopie photonique

Restauration de la résolution par déconvolution Mieroscopie photomique

Spermatozoïde démembrané de Xenopus laevis incubé dans un extrait d'oeuf Etude de la cinétique de recondensation chromosomique (1h30) Marquage YOYO (de la Barre & Dimitrov)

Université Joseph Fourier Yves Usson 2000

Reconstruction surfacique - Seuillage objet Microscopie photonique

Reconstruction surfacique - codage de distance Microscopie photonique

Université Joseph Fourier

Reconstruction surfacique - Tampon Z Microscopie photonique

Université Joseph Fourier

Reconstruction surfacique - Modèle d'illumination Microscopie photonique

Direction d'observation & lumière incidente

Modèle simplifié d'illumination par diffusion et réflexion

ox angle entre la normale à la surface et la lumière incidente I0

$$I = I_0 (k_1 + k_2 \cos \alpha)$$

k1 constante de lumière diffuse ambiante k2 constante de lumière réfléchie avec k1 < k2 et k1 + k2 = 1.0

Université Joseph Fourier

Universue Joseph Fourier **Z-buffer** Reconstruction surfacique - Modèle d'illumination Microscopie photonique Axe Z direction de visualisation $N = G_{Z} \left(\frac{d_{Z}}{d_{X}} \frac{d_{Z}}{d_{y}} , -1 \right)$ Normale à la surface dans l'espace voxel

Reconstruction surfacique - Modèle d'illumination Microscopie photonique

Todèle d'illumination diffuse

Prise en compte du marquage fluorescent et ajout d'ombrages

Codage en distances et ajout d'ombrages

Université Joseph Fourier

Microscopie confocale - Visualisation 3D Microscopie photonique

Reconstruction par suivi de rayons

Microscopie confocale - Visualisation 3D Microscopie photomique

Reconstruction par suivi de rayons - Transparence

Règle de transparence
$$P_{ij}$$
 $\left\{ \begin{array}{ll} I_k = \alpha_k \ V_k + (1-\alpha_k) \ I_{k-1} \\ \alpha_k = f(V_k) \end{array} \right.$

 I_k est l'intensité collectée sur le chemin du rayon, I_{k-1} la valeur précédente; α_k est le coefficient de transparence qui dépend de V_k , la valeur du voxel courant

