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Abstract

Shortwave infrared window (SWIR: 1000–
1700 nm) represents a major improvement

compared to the NIR-I region (700–900 nm)

in terms of temporal and spatial resolu-

tions in depths down to 4 mm. SWIR is a

fast and cheap alternative to more precise

methods such as X-ray and opto-acoustic

imaging. Main obstacles in SWIR imaging

are the noise and scattering from tissues

and skin that reduce the precision of the

method. We demonstrate that the combi-

nation of SWIR in vivo imaging in the

NIR-IIb region (1500–1700 nm) with advanced deep learning image analysis

allows to overcome these obstacles and making a large step forward to high

resolution imaging: it allows to precisely segment vessels from tissues and

noise, provides morphological structure of the vessels network, with learned

pseudo-3D shape, their relative position, dynamic information of blood vascu-

larization in depth in small animals and distinguish the vessels types: artieries

and veins. For demonstration we use neural network IterNet that exploits

structural redundancy of the blood vessels, which provides a useful analysis

tool for raw SWIR images.
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1 | INTRODUCTION

The field of in vivo optical imaging for biomedical appli-
cations is expanding rapidly over the last two decades
leading to more precise diagnostic of early stage diseases
and to advanced image-guided-surgery system already

available for clinical applications.1 One of these break-
throughs is related to the development of innovative
imaging systems in the shortwave infrared (SWIR) spec-
tral window, called also NIR-II, between 900 and
1700 nm. SWIR has demonstrated a major improvement
in terms of spatial and temporal resolution, reaching
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deep in tissue down to 4 to 6 mm compared to the Visible
(400–700 nm) and NIR-I (700–900 nm) regions. The bene-
fit moving forward from NIR-I to SWIR is mainly associated
to the weak auto-fluorescence and reduced scattering from
the living tissues at longer wavelengths.2 For instance, it
was shown recently the striking improvement of detection
with higher signal-to-noise ratio selecting the SWIR sub-
windows NIR-IIb (1500–1700 nm) for in vivo imaging.3–5

The concomitant progress of the sensor technology in the
SWIR range and of the formulation of new bright and bio-
compatible SWIR emitting organic and inorganic contrast
agents6–9 has enabled to use these optical systems for intra-
operative surgery in small animals10, 11 and recently in
human.12 One of the most appealing field of applications
for SWIR imaging concerns the (micro)vascularization, with
success to monitor in real time non-invasively different
pathologies such as vascular disorders, (neo)angegiogenosis
in cancer, wound healing, implants.7, 13–15

Despite these major steps, we are still far to reach the
spatial resolution below one micron at high depth
achieved by X-ray imaging.16 Other recent optical imag-
ing systems based on full field optical coherence17 and
high-resolution opto-acoustic imaging18 lead to spatial
resolution down to 1.7 um but with a quite limit field of
view that requires long time acquisition to image the
whole animal. A promising strategy to overcome this
issue relies on the image analysis using deep neural net-
works. This field shows exponential growth in recent
years due to growth in computational power of modern
parallel computers, and the quality of feature extraction,
detection and segmentation made by deep neural net-
works has made a major step forward.19–21 In particular,
several networks built on a popular fully connected con-
volutional neural network (CNN) U-Net,22 were very suc-
cessfully applied in the context of a classical problem of
the segmentation of retina vessels using as a training set
a series of open annotated databases for retina vessels. As
a result, several developed deep neural networks from
the leaderboard show the performance above 97% preci-
sion tested against ground truth. Thus, a logical extension
of these networks would be the application of these
developments for SWIR images. Although the nature of
the images is different: shadows of the visible light pass-
ing through the tissue versus fluorescent NIR signal
directly from the vessels, the structure of the vessels rep-
resenting continuous interconnected lines with a certain
redundancy enables the generalization of the developed
networks to the case of SWIR images. It allows segment
the vessels from the background, reduce scattering light
originated from the tissues, and detect 3D blood vessels
structures, thus providing essential information for a full
structural analysis via skeletonization of the vessel net-
work and enhanced statistics: number of branching

points, average length of the vessels, the thickness of the
vessels, relative length of vessels of different categories,
etc. Thus, combination of fast and relatively cheap SWIR
method with advanced deep learning image analysis may
contribute to fill the gap in resolutions between SWIR
and X-ray.

Recent study has demonstrated the significant improve-
ment of contrast and spatial resolution of SWIR in mice
using Monte Carlo Restoration which enabled to perform
segmentation analysis of small animal presenting vascular
disorder.23 In this work we explore the advantages of
using deep neural networks specially designed to extract
blood vessels structure trained on large datasets of retina
vessels in order to predict the structure of vessels in SWIR
images. We use one of the best neural networks in predic-
tion of vessels structures IterNet24 on in vivo SWIR NIR-
IIb imaging to demonstrate the high potential of this
method to go one-step further to high-resolution optical
imaging that could be easily transferred in clinics and
hospitals.

2 | DEEP NEURAL NETWORK FOR
SWIR IMAGES

Fully connected convolutional neural network is a popu-
lar neural network U-Net22 using strong data augmenta-
tion to significantly reduce the number of training
images. Its successor, deep neural network IterNet24 is
build on U-Net and combines iteratively N� 1 mini-
networks U-Net after one segmentation with U-Net. It
goes further in precision and uses the structural redun-
dancy or self-similarity of blood vessels that allows the
network to find obscured details of the vessel from
the segmented vessel image itself, rather than from the
raw input image. In fact, IterNet can learn from as few as
10–20 annotated images (ground truth) to provide a good
accuracy.

IterNet is one of the leaders in leaderboard in rat-
ings25 for the performance in segmentation of retina
blood vessels. The performance is tested on open data-
bases of blood retina vessels on three mainstream data
sets, DRIVE,26 CHASE_DB127 and STARE,28 which are
used as a gold standard for the performance benchmark
and comparison between segmentation networks for
blood vessels. It has a high accuracy measured in terms
of the receiver operating characteristic curve (ROC),
which is plotting True Positive Rate (TPR) versus False
Positive Rate (FPR). This measure is implemented in
TensorFlow29 and the corresponding Area Under the
ROC Curve (AUC) gives a numerical measure of the per-
formance of the network training. The provided training
weights24 of IterNet network give AUCs of 0.9816,
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0.9851, and 0.9881 for the classical benchmarks of the
data sets of retina vessels: DRIVE, CHASE_DB1, STARE,
respectively.

To test the performance of the network for in vivo SWIR
images of nude mice, we have performed several setups with
different cameras, lenses and different distances from the
sample. The quality of prediction was then tested on ex vivo
post-mortem sample with removed skin. This allows to eval-
uate the structure of vessels with high magnification camera
in order to confirm the prediction of microvessels.

2.1 | SWIR in vivo images

SWIR imaging was performed using a Princeton camera
640ST (900–1700 nm) coupled with a laser excitation
source at λ = 808 nm (100 mW/cm2). We used a short-pass
excitation filter at 1000 nm (Thorlabs) and a long-pass fil-
ter on the SWIR camera from Thorlabs (LP1500 nm).
25 mm or 50 mm lenses with numerical aperture (n.a)
=1.4 (Navitar) were used to focus on the mice placed at
30 cm working distance. 25 mm and 50 mm lenses provide
a theoretical spatial resolution of 400 microns and
150 microns respectively. NMRI nude mice (Janvier,
France) were anesthetized (air/isofluorane 4% for induc-
tion and 1.5% thereafter) and were injected intravenously
via the tail vein (200 μL of Indocyanine Green [ICG] at
500 μM in PBS). In vivo SWIR imaging was performed
using 25 mm or 50 mm lenses and LP1500 nm at different
exposure times from 100 ms to 1 second.

2.2 | Training of the neural network

We use IterNet24 for prediction of vessels in SWIR images
(i) with the released by the authors universal pre-trained

weights trained across multiple datasets.24 Each database
contains 40 images of retina vessels taken with optical
camera. Human experts manually segmented the vessels
in each image under guidance of trained and experienced
medical doctor (ground truth).26 The criteria for marking
the vessel was 70% confidence that the structure is the
vessel. These images were divided into two equal
datasets: one dataset was using for training of the net-
work and another dataset was used for evaluation of the
performance. The evaluation of the performance of
the training was done using standard method in Ten-
sorflow for binary classifiers based on receiver operating
characteristic (ROC) curve, which is a plot of true posi-
tive vs. false positive rates: higher area under the curve
corresponds to better performance. The original weights
were used without additional fine-tuning; (ii) weights
from specially trained network on manually annotated
SWIR images used as a ground truth for detection, example
is Figure 1. These images were added to the training set of
DRIVE database, which were gray scaled. The manual
annotation of SWIR training examples was not complete
and it was done for the test of robustness of the prediction
of the network. The training was performed with the
following parameters: batch_size = 32,repeat = 10,
minimum_kernel = 32, epochs = 200, iteration = 3,
crop_size = 128, stride_size = 3 and the resulting perfor-
mance is shown in Figure 1C): An example of the original
image, an example of the annotated image and the resulting
ROC curve showing the performance on SWIR images.
Although the annotated images were not as elaborated as
in the vessel databases and despite their small number, the
network predictions have 0.9 AUC score on images and
manually annotations unseen during training. This result
demonstrates that the network reliably predicts the vessels
at least comparable with the human annotation results on
SWIR images.

FIGURE 1 A, Original SWIR image used for training of the network and obtained with a 50 mm lens (n.a.=1.4) at 100 ms exposure; B,

Example of the annotation of ground truth, microvessels are not annotated; C, Result of the training in form of the receiver of operating

characteristic (ROC) curve showing the performance of the training on SWIR images. Area under the curve: 0.90; Area under precision-

recall curve: 0.57, Jaccard similarity: 0.89
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SWIR images have 640x512 pixels dimensions and the
vessels are smaller than in the original training database.
In order to achieve a good accuracy, SWIR images
(dimensions of vessels and brightness/contrast) should be
as close as possible to the training set used for the net-
work training. SWIR images contain a large number of
micro-vessels, almost invisible by eye. They were not
annotated in the training set and in order to segment
them the stride size and the crop size should be reduced
to minimum. We use the following parameters that give
the best results for the inference of the vessels with pre-
trained weights: Activation='ReLU', dropout = 0.1,
minimum_kernel = 32, batch_size = 128, epochs = 600,
iteration = 3, stride_size = 1, crop_size = 16. The images
were processed on a desktop computer equipped with
AMD Ryzen 55 600X processor with 64 GB RAM, Nvidia
RTX 3090 graphical card with 24 GB memory, Ubuntu
20.04 and Tensorflow 1.1529 through Nvidia-TensorFlow
Horovod30 compilation to ensure back compatibility with
RTX 3090 graphical card. With this setup, the speed of
processing of a SWIR image with all GPU overheads, pre-
processing, post-processing and writing the resulting files
to the disk is presented in Table 1.

2.3 | Neural network prediction

The performance and the number of vessels predicted by
the network largely depends on the quality of SWIR images,

the distance of the camera from the mouse skin and the
brightness/noise of the vessels. The example of the
predicted vessels is shown in Figure 2. The network can not
only segment vessels from the background, but it can also
detect microvessels, predict their correct connectivity and
relative position, thus, giving the impression of pseudo-3D
vision. The annotation of the original database used for
training26 includes information about spatial location of the
vessels with respect to each other: either there is a junction
or one vessel pass below another. This information is thus
also present in the inferred images and one can distinguish
“junctions” and “overlapping vessels”. However, the confi-
dence is based on the quality of the original annotations
and thus is not evaluated here. There is no stereoscopic
information for spatial location of the vessels, this pseudo-
3D is inferred only from one 2D image and has great poten-
tial for improving when stereoscopic images of different
angles of view are analyzed.

Figures 2A,B shows the vascular network of the ven-
tral side of a whole mouse after the injection of ICG
thanks to the detection of its photoluminescence signal
above 1500 nm. It should be noted the absence of
autofluorescence from the mice before injection in the
NIR-IIb region. Vessels of different sizes are detected dur-
ing the first 4 minutes after the injection due to the rapid
accumulation of ICG in the liver, where it is metabolized
by hepatic pathway. Figures 2C,D show the segmented
vessels from the original SWIR image Figure 2B. The ves-
sel structure is well visible with the reduction of signal
from the skin and the living tissues. We could see
clearlythe anarchic blood network at different depths.

The use a 50 mm lens on the SWIR imaging system
allows to reach higher spatial resolution and gain more
information on the blood vessels morphology. Figure 3
top raw depicts the ventral side of the mouse (with con-
secutive insets) with a high density of blood vessels of
different sizes up to micrometer resolution and showing
a complex vessels topology. Bottom raw demonstrates
the corresponding predicted vessels structure obtained
by neural network and provides extremely detailed

TABLE 1 Approximate processing time of a SWIR image using

Nvidia RTX 3090 graphical card. Optimization of the workflow

would allow to make devices able to perform in near-real time

vessels segmentation and analysis

Image resolution Time of execution

1280� 1024 4 min 40 s

640� 512 1 min 10 s

320� 256 0 min 18 s

FIGURE 2 A, SWIR image of a whole body mouse taken at 30 cm working distance before the injection of the contrast agent without

long pass filter; B, few seconds after the injection of the contrast agent; C, The resulting prediction of vessels from the image of the whole

body mouse in B, and D, zoomed image of the segmented blood vessels structure in C
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information not accessible from the raw image by naked
eye with junctions and overlaps of the vessels as seen in
the insets Figures 3B,C.

Examining the same segmented image Figure 3A in
inverted colors, Figure 4 allows to see a complex mor-
phology of blood vessels structure, their relative position,

FIGURE 4 Predicted vessels structure from SWIR image of the whole body of the mouse, Figure 2 and two fragments in the insets with

the detail of the original inverted SWIR images and the corresponding segmented images

FIGURE 3 A fragment of the original SWIR image showing complex topology of the blood vessel network with corresponding zoomed

insets. It illustrates the predicted blood vessel structure with junctions and cross-sections of the vessels
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intersection and branching, hence leaving an impression
of pseudo-3D shape and depth, as illustrated in the insets
of Figure 4.

2.4 | Validation of the vessels
morphology

Detection of SWIR signal from vessels below 4 mm depth
and keeping a high spatial resolution remains highly
challenging. In fact, upper skin is still a main obstacle for
SWIR signal, where the light can be scattered and
adsorbed. Thus, to confirm microvessels structure
predicted by the neural network and inferred from the
original SWIR images, one of the direct methods would
be the removal of the skin post-mortem and validation of
small vessels with high magnification optical camera on
ex vivo images of the inner skin.

For that purpose, the mice skin flap of 2 to 3 mm thick
were soaked in formaldehyde just after the mice were
sacrificed. High magnification optical images were taken on
the inner side of the flap with an Andor Ikon-M CCD cam-
era at 1 second exposure time with WD 112 mm lens from
Leica (zoom �0.8) under white light illumination.

Figure 5 A corresponds to the optical image of the
inner skin of the mouse made with the Andor camera
under the white light (neon light which has a broad exci-
tation). A selected area in the center of the inner skin flap

(Figure 5B) was used for inference of the blood vessels
with the same IterNet neural network and the same
parameters that were used for SWIR images segmenta-
tion. The result of the predicted vessels is shown in
Figure 5C. This image shows main blood vessels and also
a number of microvessels. To confirm the existence of
these microvessels, three regions of the predicted vessels
were selected to compare with separately taken optical
images with even higher magnification. The results of
this direct comparison are shown in insets with an out-
line of the same color: red region in Figure 5C is com-
pared with an optical image Figure 5D; green region
Figure 5E is compared with optical image Figure 5F and
blue region Figure 5G is compared with Figure 5H. It is
noteworthy, that optical images that were taken for com-
parison, are from different images taken on the inner
skin sample regions with higher magnification from �1.7
(Figure 5B) to �15.4 (Figure 5F), while neural network
was applied on Figure 5B.

This indicates a good confidence to use such neural
network for processing SWIR images for inference of
blood vessels structure and blood vessel mapping.

3 | BLOOD VESSELS ANALYSIS

The detection and segmentation of blood vessels are not
the only possibilities for the neural network analysis. The

FIGURE 5 A, An overview of the removed inner skin region; B, Closer view of the removed inner skin region used for inference (zoom

�1.7 of image A); C, Predicted vessels structure inferred from B); D, Optical view with higher resolution of the red fragment (zoom �5.6 of

image A); E, A green fragment of the predicted vessels; F, The same region in optical image with higher magnification (zoom �15.4 of image

A); G, A blue fragment of the predicted vessels; H) The same region in optical image with higher magnification (zoom �8.8 of image A)
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propagation of the contrast agent across the blood vessels
after the first injection follows non-trivial haemodynamics
that can be visualized with an appropriate setup. To demon-
strate the capabilities of the method, the initial vasculariza-
tion of the contrast agent was recorded on the flank of the
mouse in the first second after i.v. injection. Very quickly
after injection, the constant increase of photoluminescence
signal across the vessels in site with high blood vessel den-
sity has converted in overexposed spot, where single vessel
cannot be visualized. In contrast, the regions, where the
contrast agent still has not arrived, are underexposed and
there is not enough signal to visualize the vessels, upper
raw, Figure 6A.

The neural network applied to each of the frames
does not pick up the whole structure of the vessels,
because this information is not present in each image,
Figure 6B. However, the SWIR images are the sequence
of the frames taken with 500 ms time difference of the
same region and thus, one can employ a technique, very
roughly resembling “High dynamic range” (HDR) image
processing in photography, when several images with dif-
ferent exposure are superimposed in one image. SWIR
images contain information from different vessels in dif-
ferent time, controlled by the propagation of the contrast
agent. Using a different color for each of the frame infer-
ence with deep neural network, one can reflect in a com-
bined image not only the whole structure of the blood
vessels, but also the colors in the image would reflect the

time of the passage of the contrast agent, Figure 6C.
Thus, combined images allow to follow the kinetics of
the circulation of the contrast agent over time during this
first 30 seconds after injection.

Another important feature that can be extracted by
neural network is related to the differentiation between
arteries and veins. The distinction between veins and
arteries is considered critical in angiogenesis and related
to the analysis of the couple veins/arteries. This informa-
tion can be inferred from the shape and the surrounding
of the vessels, eg the thick veins are accompanied by thin
arteries going parallel to the veins. This information can
be learned by the neural network carefully trained on
well-annotated examples, where the composition of the
vessels is known. This was implemented in the network
SeqNet,31 specially trained to distinguish between veins
and arteries.

For this purpose, we applied SeqNet with provided
pre-trained weights to SWIR images, that were not opti-
mized and were not included in the training set.
Figure 7A shows the original inverted SWIR image of the
ear mice and Figure 7B shows the corresponding seg-
mented image obtained by SeqNet, which segmentation
is essentially the same as IterNet. SeqNet network post-
processing enables to predict artery and veins based on
their size and their distance between each other with
high confidence even for images, which are very different
from the training set. The resulting distinction in

FIGURE 6 A, Consequent frames (one frame per 500 ms) of the original inverted SWIR image, where the contrast agent propagates

through the blood network. B, The corresponding predicted vessels by IterNet network. Vessels in overexposed regions are not detected, thus

allowing to follow the blood propagation. C, consequent sum of predicted vessels from individual frames (“SWIR HDR” effect): red
corresponds to first frame vessels detection, next frames are superimposed images from previous frames, each with its own color
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Figure 7C,E shows a potential to have a much better dif-
ferentiation with specially trained networks.

The ability to obtain an accurate prediction of the
blood vessel network structure by neural networks

facilitates further post-analysis of the blood vessels struc-
ture tortuosity with more confidence than on the same
skeletonization performed on the raw images. This analy-
sis includes extraction of the skeleton of the

FIGURE 7 A, Inverted original SWIR image of a mouse ear after ICG injection and B, predicted vessels structure inferred from A. C,

Fragment of the original image A. D, Overlay of predicted vessel structure and the original fragment image c. Arteries (red) and veins (blue)

predicted by SeqNet31 neural network; E, Segmented arteries and veins. Predicted arteries (red) and veins (blue) by SeqNet neural network

FIGURE 8 Skeletonization of the predicted blood vessels network. A, Predicted blood vessels from Figure 1A; B, Euclidean skeleton of

the vessels, which connects directly the branching points; C, Vessel network overlapped on the original SWIR image
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network and, consequently, deep statistical analysis of
network structure: the position and number of branching
points, measuring the length of skeleton branches, paths
statistics along vessels, density of junctions, vessels, dis-
tances between different kinds of structures, comparison
of skeletons in order to detect new vessels. As an exam-
ple, we use a segmentation result of Figure 1A as an
input for skeleton extraction by open source Python
library Skan.32 The result is shown in Figure 8 and the
corresponding video is available in SI. The resulting sta-
tistical analysis allows to extract the scaling relations
between different types of branches. This, in turn, allows
for detailed comparison between sets, for example, it would
allow to follow the development of the blood vessels in
tumors with comparison against normal tissues.

4 | CONCLUSIONS

We demonstrated the potential of deep learning applied
to the IR optical imaging in general and in the NIR-IIb
(1500–1700 nm) region in particular. This analysis allows
to (a) segment vessels from the tissues and noise due to
scattering and adsorption of light in tissues;
(b) distinguish vessels overlap and junctions; (c) to get a
morphology and depth estimation with a pseudo-3D
shape of blood vessels; (d) distinguish different hierar-
chies of vessels types, such as veins and arteries;
(e) obtain an information about haemodynamics and
kinetics of blood flow; and (f) perform all types of statis-
tics on vessels junctions, connections, branching using
accurate skeletonization of the blood vessel network.
Deep learning methods are a clear step to move forward
making fast in vivo SWIR technique closer to high-
resolution optical imaging systems for future biomedical
applications.
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