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Summary

The polar representation or phasor, which provides a fast
and visual indication on the number of exponentials present
in the intensity decay of the fluorescence lifetime images
is increasingly used in time domain fluorescence lifetime
imaging microscopy experiments. The calculations of the polar
coordinates in time domain fluorescence lifetime imaging
microscopy experiments involve several experimental
parameters (e.g. instrumental response function, background,
angular frequency, number of temporal channels) whose
role has not been exhaustively investigated. Here, we
study theoretically, computationally and experimentally the
influence of each parameter on the polar calculations
and suggest parameter optimization for minimizing errors.
We identify several sources of mistakes that may occur
in the calculations of the polar coordinates and propose
adapted corrections to compensate for them. For instance, we
demonstrate that the numerical integration method employed
for integrals calculations may induce errors when the number
of temporal channels is low. We report theoretical generalized
expressions to compensate for these deviations and conserve
the semicircle integrity, facilitating the comparison between
fluorescence lifetime imaging microscopy images acquired
with distinct channels number. These theoretical generalized
expressions were finally corroborated with both Monte Carlo
simulations and experiments.
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Introduction

The fluorescence lifetime defined as the average time that
a molecule spends in the excited state before emitting
a photon, is an intrinsic fluorophore property sensitive
to its local microenvironment. The measurement of the
fluorescence lifetimes gives thus access to the surroundings
of the fluorescent molecule at the nanometre scale. In
conjunction with optical microscopy, fluorescence lifetime
imaging microscopy (FLIM) allows to image events such as
changes in temperature, pH, ion (e.g. calcium) concentrations
and energy transfer occurring in living cells (Lakowicsz,
1999). Currently, FLIM is mainly applied for quantifying
protein interaction by measuring Forster resonance energy
transfer occurring between two fluorescent probes (a donor
and an acceptor) separated by less than 10 nm.

Acceding to the fluorescence lifetime necessitates dedicated
systems that are nowadays present in numerous laboratories.
These systems are generally subdivided into two main
groups; those based on the frequency domain (Gadella
et al., 1993; Booth & Wilson, 2004; Leray et al., 2009a) and
on the time domain (TD) methods (Cole et al., 2001; Becker
et al., 2004; Waharte et al., 2006). The physical principles
underlying both methods are identical (translating from TD to
frequency domain domain is a simple Fourier transform) but
the excitation and detection schemes are totally different. In
this work, we focus exclusively on the second group.

In TD FLIM, the fluorescent samples are repeatedly excited
by short pulses of light and the resulting fluorescence intensity
decay histograms are recorded for each pixel. From these
experimental decays, the lifetime components are usually
deduced by adjusting each histogram with an exponential
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model (Maus et al., 2001; Becker et al., 2004; Waharte et al.,
2006). Numerous fitting strategies whose principle consists
in minimizing an error function (between the experimental
data and the exponential model) with algorithms have been
developed and have been used successfully for estimating the
lifetime components (Verveer et al., 2000; Barber et al., 2010;
Laurence & Chromy, 2010; Trinel et al., 2011). However, this
mode of analysis is computation time consuming and requires
expertise for obtaining reliable results.

To simplify the analysis and to make it accessible to
the nonexpert user, novel methods based on nonfitting
approaches have been developed recently (Digman et al.,
2008; Padilla-Parra et al., 2008; Leray et al., 2009b). Among
them, the polar representation or phasor is increasingly
employed in biophysics laboratories (Celli et al, 2010;
Stringari et al., 2011). It was initially described for analysing
data collected in the frequency domain (Jameson et al., 1984)
and hasbeen exhaustively studied by different groups (Clayton
et al., 2004; Redford & Clegg, 2005). In brief, it consists in
converting the lifetime image into a new two-dimensional
histogram called polar or phasor. In this polar representation,
each point defined by its [u; v] coordinates (which are equal
to the cosine and sine transforms of the fluorescence intensity
decay) corresponds to one pixel of the TD FLIM image and
vice versa. Consequently, one FLIM image is transformed into
a scatter diagram whose position gives an indication on the
number of exponentials present in the intensity decay. This
approach provides then a fast and visual representation of the
fluorescence lifetimes.

This strategy was also recently applied in TD FLIM (Digman
et al., 2008; Leray et al., 2009b; Fereidouni et al., 2011).
Unlike in frequency domain FLIM where the phase and
modulation values (and thus the [u; v] coordinates) are directly
measured by the acquisition system, the polar coordinates
in TD FLIM have to be estimated by calculating the Fourier
sine and cosine transforms of each temporal histogram.
The performance of this approach (in terms of signal-to-
noise ratio and minimal number of photons) for TD FLIM
experiments has already been studied (Leray et al., 2011).
However, we identify several other experimental issues specific
to the TD method (e.g. angular frequency of the temporal
measurement window, instrumental response function (IRF),
background and numerical integrations) that could influence
the calculations of the polar coordinates and thus falsify
the lifetime estimations. To the best of our knowledge, none
of these issues have been exhaustively investigated in the
literature.

In this manuscript, we study theoretically, computationally
(based on Monte Carlo simulations) and experimentally the
influence of each of these issues on the polar calculations
and identify possible sources of errors in lifetime calculations.
When a bias is introduced in the lifetime estimations, we
propose adapted corrections to compensate for it. We finally
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demonstrate both computationally and experimentally that
these corrections, which are applicable with all experimental
TD FLIM systems allow retrieving the correct lifetime vales.

Materials and methods

Polar representation

The theory of the standard polar approach for TD FLIM
experiments has been detailed previously (Digman etal., 2008;
Leray et al., 2011). In brief, the response of a fluorescent
sample exhibiting multiple lifetime components to a series
of short laser excitation pulses is simply described by a sum
of n exponentials. However, experimentally, this response is
dependent on the IRF of the acquisition system, the finite width
T of the temporal measurement window and the constant
background noted b underlying the intensity decays. In this
case, the temporal variation of the fluorescence intensity f(t)
is defined by the convolution product

T S arexp (—L)
Jo= [T e e (D)

O0<t<T, (1)

:| ® IRF,

which is normalized so that its integral value over T equals
unity.

The u- and v-coordinates which correspond to the x- and
y-axis of the polar representation are defined by

foT f(t) x cos(wt) dt

(2)
[ fdt

u(w) =

1) x sin(wt) dt
[T 1@ dt

where o is the laser repetition angular frequency. The
knowledge of these coordinates gives an indication on the
number of exponentials present in the intensity decay. For
instance, when the fluorescence emitted by the sample decays
mono-exponentially, the coordinates are equivalent to those
of a semicircle centred at [0.5; O] with a radius of 0.5 (see
Fig. 1A). Short fluorescence lifetimes are close to the
coordinates [1; O], whereas long lifetimes approach the
origin ([0; O]). If multiple lifetime components are present
in the sample, the [u; v] values no longer correspond to the
coordinates of the previously described semicircle (cf. Fig. 1A).

The phase and modulation lifetimes 7, and 7, which are
well-known parameters in the frequency domain (Lakowicsz,
1999) are related to the [u; v] coordinates by

1/v 1{ [ f(t)sin(wt) dt
o= 5<E) T <ﬁ f(t)cos(wt)dt) @
0

v(w)

3)
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Fig. 1. (A) Illustration of the polar representation. In TD FLIM, the [u; v] coordinates which correspond to a unique value of phase ¢ and modulation m
are calculated by integrating the experimental temporal decays. (B) Different numerical integrations methods can be used. We have represented here the
midpoint rectangle rule, the top left corner rectangle rule and the trapezoidal rule.

1 1 1
Tn = 1\ 5 5 —
oV u? + v2
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To help the users to calculate correctly both lifetime values
from these expressions, it is crucial to know precisely the
influence of each experimental parameter (angular frequency
w, background b, IRF...). In the next sections of this
manuscript, we detail the importance of each parameter based
on simulated and experimental data (we limit our study to
mono-exponential intensity decays).

Monte Carlo simulations

To evaluate the role of each parameter on the lifetime
estimations, we have performed Monte Carlo simulations
on a standard computer for generating FLIM images with
controlled parameters (more details on the Monte Carlo
algorithm can be found in (Spriet et al., 2008; Trinel et al.,
2011). To mimic as closely as possible usual experimental
conditions, we consider a laser repetition frequency of 80 MHz
and a total measurement window width of 12.5 ns which
is divided into N, temporal channels. Each simulated FLIM
image was constituted by 64 x 64 pixels and each pixel
corresponds to an intensity histogram composed of a mean
of 900 photons. According to the study performed, we can
also add a mean number N, of photons (which are temporally
uniformly distributed) to each histogram for modifying the
offset b or we can vary the full width half maximum (FWHM)
of the simulated Gaussian IRF.

Experimental set-up

The TD FLIM images were acquired with the time-correlated
single photon counting technique. Our time-correlated single
photon counting FLIM system is based on a commercial
confocal microscope (Leica TCS SP5 X; Leica Microsystems,

Wetzlar, Germany) coupled with a supercontinuum laser
source selected at 485 nm (with an acousto optic tunable
filter) with a pulse repetition rate of 80 MHz. Imaging a 1
uM fluorescein solution in pH = 8 Tris buffer was performed
with a 63x water immersion objective (NA = 1.2, Leica
Microsystems). The resulting fluorescence on the descanned
path was selected with a 525/25 bandpass filter and detected
with two distinct detectors: a photomultiplier tube (PMT)
model PMC100; Hamamatsu, Hamamatsu City, Japan) with a
FWHM of 400 ps and a multichannel plate (MCP)-PMT (model
R3809U-52; Hamamatsu) with an FWHM of 40 ps Eq. (11).
The fluorescence intensity decay histograms were recorded
with a dedicated electronic card (SPC 830; Becker & Hickl,
Berlin, Germany). The total measurement window which was
limited to 10 ns because of severe excitation after-pulses was
divided into 64 or 4 temporal channels.

Results and discussion

Importance of the angular frequency w

The phase and modulation lifetimes defined by Eqs (4) and (5)
are directly related to the angular frequency w [called laser
repetition angular frequency by Digman et al. (Digman et al.,
2008)]. The expressions (4) and (5) are valid if and only if
the angular frequency is inversely proportional to the width of
the measurement window: w = 27 /T (first harmonic). In TD
FLIM experiments, the first temporal channels are generally
dedicated to the evaluation of the experimental background
offset. Consequently, the angular frequency w used in TD FLIM
experiments is slightly higher than the laser repetition angular
frequency because it corresponds to the angular frequency of
the useful measurement window. In that case, we emphasize
on the fact that the lifetime’s expressions (4) and (5) are not
valid and thus the calculated phase and modulation lifetimes
are erroneous. To illustrate this phenomenon, we have
simulated three FLIM images composed of 64 x 64 mono-
exponential decays with three distinct fluorescence lifetimes
(1.0, 2.5 and 4.0 ns) corresponding to standard values usually
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Table 1. Influence of the angular frequency w on the lifetime estimations. The mean phase and modulation lifetimes (7,, and 7)) calculated with three
distinct frequencies (v = 27/ Tio, @ = 27/ Texp and w = 27/ Tex; ) are reported (see text for details) for three simulated lifetime values (1.0, 2.5 and 4.0 ns).
The corresponding standard deviations of each quantity are indicated. For the Monte Carlo simulations, we have considered the following parameters:
N =900 photons, N, = 64 channels and T,; = 12.5 ns. We have also reported the theoretical standard deviations calculated from Eqgs (9) and (10).

1.0 (ns) 2.5 (ns) 4.0 (ns)
Lifetimes simu th simu th simu th simu th simu th simu th
Tm Aty Ty Aty Tm ATy Ty Aty Tm ATy Ty Aty

Total range
(0 =27/Tiot)

Adapted range 1.00£0.04 0.04 1.00£0.04 0.04 2.504+0.12
(=27 /Texp)

Extended range 1.00£0.04 0.04 1.00£0.04 0.04 2.504+0.12
(w = Zn/Texl)

0.87£0.04 0.04 0.88+0.03 0.04 2.17+0.10

0.11 2.24+0.15 0.16 3.41+0.20 0.23 4.04+0.55 0.49

0.12 2.524+0.20 0.19 4.00+£0.26 0.25 4.09+0.66 0.59

0.11 2.52+£0.18 0.17 4.00£0.25 0.24 4.09+0.61 0.54

encountered in FLIM experiments. We have considered a
total temporal window of 12.5 ns (corresponding to a laser
repetition frequency of 80 MHz) and an initial time Tj,; =
1.4 ns (corresponding to the maximal number of photons).
When we calculate the phase and modulation lifetimes with
an angular frequency corresponding to the total range (v =
27 /Tyo) different of the experimental range Texp = Tiot — Tinit =
11.1 ns, we found wrong lifetime values as ind-
icated in Table 1. By adapting the angular frequency to the
experimental measurement window Tey, with w = 27/ Teyp,
we retrieve the correct phase and modulation lifetime values
(Table 1).

We have also investigated the precision of these lifetime
measurements for a fluorescent sample whose mono-
exponential intensity decay is recorded by an idealized
background-free lifetime acquisition system. In this case, the
fluorescence emission probability density function f(t) given
by Eq. (1) can be simplified as

exp(—t/7)
v (1 —exp ()

and the [u; v] coordinates are then simply given by

f(t) = (6)

_ [ 1(t) x cos(wt) dt B 1
e Tjod 1toer (7)
_ foT f(t) xsin(wt)dt ot
" Jy f()dt T 14 w2t (8)

For this ideal mono-exponential intensity decay, Philip &
Carlsson have demonstrated that the precision of the phase
lifetime is given by (Philip & Carlsson, 2003)

Az, 5 5 1+ 20?12
— =140 1t7)x [ ——mm—. 9
T, ( ) N (1 + 4w?1?) ®)

Based on their work, we have also calculated the precision
of the modulation lifetime for a mono-exponential intensity
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decay. A straightforward calculation leads to

Aty 5 5 2
=1+ _
Tm ( et ) x N (1 + 4&)21'2)

(10)

From Egs (9) and (10), we first remark as expected that the
precision of the phase and modulation lifetime is improved
when the number of photons N is increased. From these
expressions, we also deduce that the precision of the phase and
modulation lifetimes is improved when the angular frequency
o decreases and consequently when the measurement
window T increases. Of course this measurement window
cannot exceed the laser repetition period. One possibility
for improving the phase and modulation lifetime precision
consists in reducing the number of temporal channels
for estimating the background (corresponding to the first
temporal channels) and consequently increasing the useful
measurement window. In TD FLIM experiment, this implies
that the experimental offset has to be evaluated independently
(for example by measuring the offset in a nonfluorescent area
of the FLIM image). In this case, it becomes possible to slightly
extend the useful measurement window Tey from 11.1 to
11.7 ns and consequently to slightly increase the precision of
the phase and modulation lifetime values for T = 4 ns (see
Table 1). Note finally that there is a good agreement between
theresults extracted from the simulations and those calculated
from Eqs (9) and (10) (¢f. Table 1). In the next sections of this
manuscript, we consider that the angular frequency is adapted
to the experimental measurement window.

Importance of the numerical integration

As previously explained, the polar representation is entirely
based on the calculation of the [u; v] coordinates which
are theoretically defined as the temporal finite integrals of
the product between the fluorescence intensity decay and the
sine and cosine functions [¢f. Eqs (2) and (3)]. In practice, the
integral calculations are numerically approximated because
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Fig. 2. Influence of the numerical integration method on the polar
representations. The polar coordinates of mono-exponential decays with
lifetime 7 varying from O to 30 ns (and Ttot = 12.5 ns) are calculated with
different numerical integration methods (midpoint rectangle rule, top left
corner rectangle rule, corrected and not corrected trapezoidal rule) and
they are shown for three distinct numbers of temporal channels: N, =4
(C), 16 (B) and 64 (A). The semicircle of radius 0.5 and centred at [0.5; O]
is also represented in black.

the intensity decay is constituted with a finite number of
experimental points. A wide range of methods is available for
approximating finite integrals (Davis & Rabinowitz, 1984).
The most largely used methods are based on interpolating
functions, which are easy to integrate (polynomial of degree
zero or one; Davis & Rabinowitz, 1984). Regardless of
the method employed, the correct numerical integration of
discrete values is the key point for estimating precisely the
u- and v-coordinates and thus the phase and modulation
lifetimes. When the number of experimental points is large,
the numerical integration performed with all these different
methods gives comparable accurate results. For alow number
of collected data, this is not true. As detailed in the next
sections, the error generated with the numerical integration
is dependent on the method applied.

Table 2. Influence of the numerical integration method on the [u; v]
coordinates calculations. We have reported the minimal number of
temporal channels required for obtaining the corresponding accuracy
on the polar coordinates with different numerical integration methods
(midpoint rectangle rule, top left corner rectangle rule, corrected and not
corrected trapezoidal rule).

Top left
Midpoint  corner Trapezoidal Trapezoidal

Numerical rectangle rectangle  rule not rule
integration rule rule corrected  corrected
Error, <5% for N¢p >7 >79 >9 >4

<10% for N¢p >5 >39 >6 >3

<20% for Nep >4 >19 >5 >3
Error, <5% for Ncp >9 >52 >13 3

<10% for Ny, >7 >26 >9 >3

<20% for Ny >5 >13 >6 >3
(1)Rectangle rule

The simplest numerical integration method consists in
approximating the computation of the integral with a sum of
rectangles whose width is the temporal resolution and heights
are determined by the experimental photon counts multiplied
by the sine or cosine functions. Depending upon the rectangle
position as a function of the discrete data, different rectangle
approximations are possible. If the discrete data correspond
to the midpoint of each rectangle (cf. Fig. 1B), this numerical
integration method is called the midpoint approximation and
it has already been detailed (Fereidouni et al., 2011). With this
approximation, the calculated polar coordinates (u and v) of a
mono-exponential decay are superior to those obtained with
exact integration when the number of temporal channels N,
becomes low (Fereidouni et al., 2011). Consequently for low
Neh values, the lifetime measurements of fluorescent samples
with single exponential decay are no more localized on the
semicircle (cf. Fig. 2). We have numerically calculated the
errors (noted error, and error,) between the uand v expressions
estimated with the midpoint approximation method and those
deduced from the exact integrations given by Eqgs (7) and
(8). For example, the error, and error, generated during the
measurement (with a total temporal window T = 12.5 ns) of
a sample whose fluorescence lifetime 7 is 2.5 ns are inferior
to 10% when the number of temporal channels is respectively
superior to five and seven (cf. Table 2).

In this work, we have also calculated the polar coordinates
[for an ideal mono-exponential intensity decay defined by
Eq. (6)] by approximating the computation of the integrals
reported in Eqs (2) and (3) with a sum of rectangles whose top
left corners correspond to the discrete data (¢f. Fig. 1B). In this
case, the coordinates are given by

. Z?:lo exp (—“rl—t) X COS (2\,—’?)

S oxp (- L) (11)
t=i T
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(12)

where N, is the number of temporal channels and dt is the
temporal width of the channel. From the exponential sum
formulas, these expressions can be written as

u =
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which, from the exponential sum formulas, leads to
(1 — exp (—X241)) sinh (4)
2(cos (3= 2x *) — cosh (L))
- exp (—224t) coth (4L) sinh (Redt)
1

As shown in Figure 2, the [u; v] coordinates obtained with
this numerical integration method are largely inferior to those
deduced from the exact integrals even if N, = 64. The
semicircle of radius 0.5 and centred at [0.5; O] is therefore
never conserved for

= 5 (17)
1+ csch(g—i) sin ()
exp ("44) (1 — exp (¢ +))leos () cosh ( Ftt) — cosh (B2 ] 13)
(1 exp (C50)) e (22) — coh (2]
(1 exp ()(1 —exp () s () "
2(1 — exp (20 ) [cos () — cosh (¢)]
—sin (%) sinh (‘\‘hd)t)
cos (£ ) — cosh (4) sin (£ ) tanh (4)
Nean < 64 (cf. Fig. 2). As previously = ol Eilht)SIIlh(V“hdt) o (ﬁ) s ()’ (18)
T Nech

mentioned, we can easily calculate the errors (noted error, and
error,) introduced by thismethod of quadrature, in comparison
with the exact integrations [defined by Eqs (7) and (8)]. If we
consider the previously described example (T = 12.5 ns and
t = 2.5 ns), we found that error, and error, are inferior to
10% when the numbers of temporal channels are respectively
superiorto 39 and 26 (cf. Table 2). Thisexampleillustrates well
that both numerical integration methods based on rectangle
rule are not equivalent. Special care is thus required in the
choice of the method for minimizing the errors.

Finally, regardless of the rectangle rule employed, we should
emphasize on the fact that the fluorescence lifetimes (z,, and
T,,) cannot be analytically expressed as a function of the polar
coordinates (1 and v).

(2) Trapezoidal rule

To reduce this integral computation error, a more
sophisticated interpolating function (a polynomial of degree 1)
hasalsobeen considered here (¢f. Fig. 1B). In brief, the integrals
defined by Egs (2) and (3) are approximated with a sum of
trapezoids whose two edges correspond to the discrete data
(experimental photon counts multiplied by the sine and cosine
functions). In this case, the polar coordinates for a mono-
exponential intensity decay defined by Eq. (6) can be expressed
as

u_%(l-l—exp( Nadtyy 4y hent exp( 4e) cos (3H)
Lo (C50) + 50 o (1)
(15)
et
Lo () 4 e ()
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These [u; v] coordinates calculated with the trapezoidal rule
are reported in Figure 2 for three distinct numbers of temporal
channels. We remark that these polar coordinates become
inferior to those deduced from the exact integrals (which
implies that the semicircle of radius 0.5 and centred at [0.5;
0] is not preserved) when the number of temporal channels is
inferiorto 16. We have analytically expressed the errors (noted
error, and error,) between the uand v expressions given by Eqs
(17) and (18) and those deduced from the exact integrations
[defined by Eqgs (7) and (8)]. For the same previous example
(T =12.5 ns and t = 2.5 ns), the errors (error, and error,)
generated with the trapezoidal rule are inferior to 10% when
the numbers of temporal channels are respectively superior
to six and nine (¢f. Table 2). These errors are thus largely
reduced in comparison with those introduced with the top left
corner rectangle rule and they are almost identical to those
introduced with the midpoint rectangle rule.

However, we should emphasize on the fact that it becomes
possible to analytically express the fluorescence lifetime as a
function of the polar coordinates (v and v) from the expressions
given by Egs (17) and (18) which is not feasible from those
given byEqs(13)and (14). The phase and modulation lifetimes
(tr, and 7,,) obtained with the trapezoidal rule can thus be
easily calculated. In brief, we simply calculate the ratio v/u of
Egs (17) and 18 (which should be equal to the phase tangent
tang with exact integrations) and we express the lifetime as
a function of this ratio. A straightforward calculation leads to
the phase lifetime expression

dt
Ty = arcsinh(sin(Zﬂ/L:‘\‘}h)xu)' (19)
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Fig. 3. Comparison of lifetime estimations for mono-exponential decays with and without correction (see text for details). We represented the phase and
modulation lifetimes as a function of the number of temporal channels (N¢,) with (B) and without (A) correction. Three different fluorescence lifetimes
were considered: 1.0 (black), 2.5 (grey) and 4.0 ns (red) with: N = 900 photons and T, = 12.5 ns. In both graphs, markers with error bars represent the
median fluorescence lifetime calculated with trapezoidal rule and the interquartile ranges of 4096 simulated histograms. The theoretical values which

are in excellent agreement with the experimental ones are also indicated with dotted lines.

We also calculate the squared sum of the [u; v] coordinates
defined by Eqs (17) and (18) and we resolve the system
u? + v = m? for obtaining the modulation lifetime with
trapezoidal rule

dt

Eqs(17)and (18) (indicated withlinesin Fig. 3A) and thatthey
diverge from the expected values when the number of temporal
channels is reduced (inferior to 20). When the lifetimes are

Tn =

(20)

2arcsech | 2

(mz —1)

m2—3+(1+mz)cos(\{%)—\/2(1114—61112-0—1)cos(ﬁ)+w<3+cos<ﬁ>)

We finally calculate the corrected polar coordinates with
the trapezoidal rule (u and v) by inserting Eqs (19) and (20)
into the following expressions

~1/2

u=(1+o’t) cos(arctan(wt,)) (21)

(22)

v=(1+ sz”zl)fl/Z sin(arctan(wt,)).

These corrected [u; v] coordinates are indicated in Figure (2)
for three distinct numbers of temporal channels. We emphasize
on the fact that they are now perfectly superimposable with
the semicircle of radius 0.5 and centred at [0.5; 0] even if
the number of temporal channels is as low as four. These
corrected expressions make it possible to compare directly the
data acquired with distinct number of temporal channels N,
because the polar coordinates are no more shifted according
to Neh.

To verify that these corrections do not modify the lifetimes,
we have computed FLIM images for different number of
temporal channels and distinct lifetime values (1.0, 2.5 and
4.0 ns) and we have compared the results obtained with and
without correction (cf. Fig. 3). We notice that the phase and
modulation lifetimes calculated with trapezoidal rule (dots in
Fig 3A) are in excellent agreement with those deduced from

calculated from the corrected expressions [given by Eqs (19)
and (20)], the accuracies of both lifetimes are preserved even
if the number of temporal channels is as low as four (see
Fig. 3B).

Influence of the IRF

The IRF of a FLIM acquisition system is defined as the temporal
response of this system to an infinitely short pulse. The IRF
is of course extremely dependent on the system. With usual
TD FLIM system, its FWHM can vary between 30 ps with
a multichannel plate detector (Waharte et al., 2006) and
450 ps with a single photon sensitive avalanche photodiode
(Luchowski et al., 2009). The experimental intensity decays,
which are equal to the convolution product of the IRF with the
theoretical exponential decays are also extremely dependant
on the acquisition system. We have then investigated the
influence of the size of the IRF on the phase and modulation
lifetime calculations. To do this, we consider that the IRF can
be approximated with a Gaussian function of mean u, and
standard deviation o, (Grecco et al., 2009). The convolution
product of this Gaussian IRF with a single exponential
intensity decay recorded by an idealised background-free
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Fig. 4. Role of the temporal width of the instrumental response function
(IRF) on the lifetime estimations. The median phase and modulation
lifetimes calculated from mono-exponential decays with lifetime 7 = 1.0
(black), 2.5 (grey) and 4.0 ns (red) and constituted with N = 900 photons
dispatched in a temporal window Tyt = 12.5 ns divided into N, = 64
temporal channels are indicated with markers. The error bars correspond
to the interquartile ranges of 4096 simulated histograms.

lifetime acquisition system is given by

_ 2
exp (—%) exp (_ (tzg;) )

t(l—ep(-1) © ovan

% Ky t
_ o lar +’_)( Ef( +“g_t>>,(23)
2t (1-exp(—1)) /2 V2

where Erfis the error function. We can thus calculate the polar
coordinates (u and v) and the phase and modulation lifetimes
(zn and 7,,) by inserting this expression into Eqs (4) and (5).
However, there are no simple analytical expressions for ,,
and 7.

We have therefore computed FLIM images with Gaussian
IRF of different FWHM for the same fluorescence lifetimes
(1.0, 2.5 and 4.0 ns). The corresponding calculated phase
and modulation lifetimes reported on Figure 4 indicate that
the influence of the IRF temporal width is negligible for mono-
exponential intensity decays. The phase lifetimes are indeed
identical to the modulation lifetimes and their precisions and
accuracies do not depend on the FWHM of the IRF, within the
limit of standard deviation.

J(0) =

Importance of the background

In absence of background for a sample with a single
exponential intensity decay, the [u; v] coordinates are simply
defined by Egs (7) and (8). By inserting these Eqs (7) and (8)
into Egs (4) and (5) for the fundamental angular frequency
(w = 27/T), a straightforward calculation leads to

Ty =Ty = T. (24)
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In this case, the phase and modulation lifetimes are equal
and they correspond to the fluorophore lifetime. If we consider
now that there is a constant background noted b underlying
the intensity decay, the fluorescence intensity function f(t) is
then defined as

_ B exp(—t/t)
ft)= + (1 b)—(1 - exp(%))’ (25)
and the [u; v] coordinates become
[ f(t) x cos (t)dt — 1—b
u(w) = f() 0 di RS (26)
f[) ) x sin(wt) dt (1 —b)wt
"= f() wa drew 2

An insertion of Eqs (26) and (27) into Eqs (4) and (5)
leads to

T, =T (28)

1 a)zrz—l—Zb—b2 T 2b — b2
l?l 1 . 29
TV a-bp? 1-b T 7T (29

Consequently, the modulation lifetime is not equal to the
fluorophore lifetime when background is present. In other
words, molecular species with single exponential decay are
no more localized on the semicircle centred at [0.5; O] with a
radius of 0.5.

To illustrate this phenomenon, we have computed FLIM
images with different background levels. The calculated phase
and modulation lifetimes are reported with dots in Figure 5(A).
As anticipated from the theory, the phase lifetime corresponds
to the simulated value and it is not affected by the background
level b. On the contrary, the modulation lifetime is extremely
dependent on the background level b and is totally different
from the expected lifetime. Figure 5(A) shows also that the
results deduced from Monte Carlo simulations are in excellent
agreement with those calculated from Egs (28) and (29)
(indicated with lines in Fig. 5A).

For improving the accuracy of the modulation lifetime,
it is necessary that the simulated temporal decays are
background corrected. To do this, we estimate an average
background from a nonfluorescent area that we subtract from
the simulated decays. With this process, the phase lifetime is
not modified and the modulation lifetime becomes correct (see
Fig. 5B). Note also that the background subtraction modifies
only the median value of the lifetimes but it does not affect the
calculation precision.

Experimental application

To validate the previously described simulated results, we
have performed FLIM acquisitions on fluorescein solution with
different experimental conditions (IRF, background, number
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Fig. 5. Plots of the phase and modulation lifetimes for mono-exponential decays as a function of the background to signal ratio (N,/N). The experimental
fluorescence lifetimes (whose median are indicated with markers and error bars correspond to the interquartile ranges of 4096 simulated histograms),
which are comparable to the theoretical values (indicated with dotted lines) are reported with (B) and without (A) background subtraction. In both cases,
the following parameters were considered: T = 1.0 (black), 2.5 (grey) and 4.0 ns (red), N = 900 photons, N, = 64 temporal channels and Ty, = 12.5 ns.
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Fig. 6. Experimental illustration of the importance of distinct parameters on the polar representation. (A): Role of the IRF. We have reported the polar
representations deduced from FLIM images of a fluorescein solution acquired with two detectors with distinct FWHM: MCP (40 ps) and PMT (400 ps).
In both cases, the spot is satisfactorily localized on the semicircle. The resulting phase and modulation lifetimes are also indicated. (B): Influence of the
background. We have plotted the polar representation and indicated the corresponding lifetime values, with and without background subtraction (for
N¢h = 64). (C): Role of the angular frequency w. When the angular frequency is not perfectly adapted to the measurement window, both the polar
representation and the lifetimes are erroneous. (D): Importance of the numerical integration method. The polar representations (and the corresponding
lifetimes) estimated with all numerical integration methods (midpoint rectangle rule, top left corner rectangle rule and not corrected trapezoidal rule) are
aberrant. Only our corrected trapezoidal rule allows retrieving both the correct lifetimes and the expected spot position on the semicircle. In all panels,
the number of temporal channels was set to 64 except in (D) where it was fixed to four. If not specified, the detector used for FLIM imaging was the MCP.
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of temporal channels). For each condition, we have calculated
the [u; v] coordinates and the resulting polar representations
are reported on Figure 6.

As expected from our simulations, the temporal width of
the IRF (whose FWHM are respectively around 40 ps for the
MCP and 400 ps for the PMT) does not modify the phase
and modulation lifetimes deduced from TD FLIM images of
a fluorescein solution. The two spots calculated with both
detectors are well positioned on the semicircle of radius 0.5
and centred at [0.5; O]. By contrast, the calculated phase
and modulation lifetimes values are erroneous if the angular
frequency w is not perfectly adapted to the experimental
measurement window (cf. Fig 6C) or if the background is not
correctly subtracted (cf. Fig. 6B). As anticipated, we notice that
the presence of the background alters only the modulation
lifetime.

The importance of the numerical integration when the
fluorescence lifetime is measured with four temporal channels
is finally shown in Figure 6D. As already mentioned, for
such a low number of temporal channels, all numerical
integration methods propagate errors. The previously
described corrections are thus indispensable to retrieve both
accurate lifetimes and correct spot position on the semicircle
(centred at [0.5; O] with radius 0.5).

Conclusion

We study both theoretically, computationally and exper-
imentally the influence of several experimental parameters on
the polar calculations and thus on the phase and modulation
lifetime estimations. We demonstrate in this way that the IRF
temporal width of the TD FLIM system does not perturb the
lifetime calculations, which is not the case for the background
underlying the fluorescence decays. However, we show that
the errors introduced with this background can be easily
compensated with a simple subtraction. To obtain correct
lifetime values, we also highlight the fact that the angular
frequency w has to be carefully tuned to the experimental
measurement window (and not necessarily to the laser
repetition angular frequency).

We finally demonstrate the importance of the choice of
the numerical integration method employed for integrals
calculations when the number of temporal channels is low
(Nen < 64). We notably reveal that polar semicircle in
not preserved when N., = 4, regardless of the numerical
integration method used here (rectangle and trapezoidal
rules). To compensate for these deviations from the semicircle,
we propose corrected expressions that we validate both with
Monte Carlo simulations and FLIM experiments.

In this work, the numerical integrations were performed
with simple interpolating functions (polynomial of degree
zero and one). Other numerical integration methods exist
based on interpolating functions of higher degree [as the
Simpson'’s rule, . .. (Jeffreys & Jeffreys, 1988)] for reducing
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the integrals computation errors. However, the expressions
of the polar coordinates [u; v] are more complicated in
this case (not shown). Furthermore, the interest of reducing
these computational errors is not obvious insofar as the
corrected expressions reported here compensate efficiently
these computational errors even if the number of temporal
channels is as low as four.

The experimental validation of our corrected expressions
was performed here on TD FLIM images acquired with the
time-correlated single photon counting technique. However,
we emphasize on the fact that our corrected expressions
are not restricted to time-correlated single photon counting
measurements. They can also be easily applied with TD
FLIM images acquired with all existing TD FLIM techniques
including those using a streak camera (Krishnan et al., 2003)
or a time gated detector (Straub & Hell, 1998; Cole et al.,
2001). In this last case, our generalized expressions are
particularly adapted because the number of temporal channels
is usually low [which implies that the computational errors
are substantial if the polar coordinates are not corrected
(Fereidouni et al., 2011)].

Finally, tough the study presented here was performed on
samples exhibiting mono-exponential intensity decays, our
corrected expressions for low channels numbers are general.
In other words, our corrected expressions are still applicable
for samples emitting multiexponential intensity decays like
in Forster resonance energy transfer experiments (see
Fig. S1) and they are even indispensable for obtaining correct
polar representation when the number of temporal channels
is low. Furthermore, the previously described procedures for
subtracting the background and for adapting the angular
frequency which are also valid whatever the number of lifetime
components present in the sample are necessary for true
polar localization. All the practical results presented in this
manuscript should thus be useful to guide users who are eager
to implement the polar representation on their own TD FLIM
experiments.
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Supporting Information

Additional supporting information may be found in the online
version of this paper:

Fig. S1. Comparison of lifetime estimations for bi-exponential
decays with and without correction (set text for details). We
plotted the phase and modulation lifetimes as a function of the
number of temporal channels (N.,) with (B) and without (A)
correction. We considered two simulated FLIM images (with
N = 900 photons and Ty, = 12.5 ns); the first one with the
following parameters: t; = 2.5 ns, 7> 4.0 ns, a; = 0.5 and
the second one with: t; = 1.0 ns, t> = 2.5 ns, a; = 0.5.
In both graphs, the median fluorescence lifetime calculated
with trapezoidal rule is indicated with markers and the error
bars correspond to the interquartile ranges of 4096 simulated
histograms. The corrected phase and modulation lifetimes are
independent on the number of channels except when they
become of the same order as the temporal resolution of the
FILM acquisition system.
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