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� Abstract
Fluorescence Lifetime Imaging Microscopy (FLIM) is a powerful technique to investi-
gate the local environment of fluorophores in living cells. To correctly estimate all life-
time parameters, time domain FLIM imaging requires a high number of photons and
consequently long laser exposure times. This is an issue because long exposure times
are incompatible with the observation of dynamic molecular events and induce cellular
stress. To minimize exposure time, we have developed an original approach that statisti-
cally inflates the number of collected photons. Our approach, called Adaptive Monte
Carlo Data Inflation (AMDI), combines the well-known bootstrap technique with an
adaptive Parzen kernel. We here demonstrate using both Monte Carlo simulations and
live cells that our robust method accurately estimate fluorescence lifetimes with expo-
sure time reduced up to 50 times for monoexponential decays (corresponding to a min-
imum of 20 photons/pixel), and 10 times for biexponential decays (corresponding to a
minimum of 5,000 photons/pixel), compared to standard fitting method. Thanks to
AMDI, in Förster resonance energy transfer experiments, it is possible to estimate all
fitting parameters accurately without constraining any parameters. By reducing the
commonly used spatial binning factor, our technique also improves the spatial resolu-
tion of FLIM images. ' 2011 International Society for Advancement of Cytometry

� Key terms
Time Correlated Single Photon Counting (TCSPC); Förster Resonance Energy Transfer
(FRET); Least SquareMethod (LSM) curve fitting;Monte Carlo; Parzen kernel; bootstrap;
Fluorescence Lifetime ImagingMicroscopy (FLIM); molecular interactions; live cell

THE characterization of dynamic interactions between biomolecules in living cells

or tissues is a major field of biological and medical research. Fluorescence microscopy

is well-adapted for studying these molecular interactions and their organization in

cells, tissues, and small organisms (1,2). Thanks to fluorescent probes, it has become

possible to track molecules and quantify their dynamics. However, fluorophores

properties may be affected by a number of environmental factors such as the compo-

sition, interactions, and dynamics of molecular species, and therefore bias interpreta-

tions based on fluorescence intensity. To avoid this problem, different microscopy

techniques measuring various photon properties such as the fluorescence lifetime

(3,4) must be used in combination.

Fluorescence Lifetime Imaging Microscopy (FLIM) is particularly adapted to

visualizing and measuring Förster Resonance Energy Transfer (FRET) occurring

between interacting proteins in tissues or cells (5,6). To measure fluorescence life-

time, many methods exist, which may be divided into two main groups: frequency

domain (7,8) and time domain methods (9–11). In this article, we limited our study

to the second group.

In time domain methods, fluorescent samples are repeatedly excited by short

pulses of light, and the time delays between these pulses and the emitted fluorescence

photons are recorded as fluorescence decay histograms I(t). Technically, this can be
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done by using a Time Correlated Single Photon Counting

(TCSPC) system (10), or by measuring the fluorescence signal

either using a time-gated detector (12), or a streak camera

(13). Regardless of the technique applied, the theoretical fluo-

rescence intensity profile I(t) is defined as:

IðtÞ ¼
X
i

ai exp � t

si

� �
with :

X
i

ai ¼ 1 ð1Þ

Where ai is the contribution and si is the lifetime of the species

i. In most cases, these values can be experimentally determined

by successively minimizing the difference between collected

data and theoretical values (fitting method). When several fluo-

rescent species are present in the sample (such as in FRET

experiments), the precise estimation of all fitting parameters

requires large numbers of both photons and temporal channels

(14). In this study, we measured fluorescence lifetime using the

TCSPC technique with 256 temporal channels. As previously

mentioned, the robustness of the curve fitting method is also

strongly dependent on the statistics of the collected data. Large

numbers of photons are indeed necessary to precisely estimate

all fitting parameters. The number of counted photons may be

increased either by increasing laser power or by extending ac-

quisition time. However both options are harmful: a higher

laser power causes photo-damage in live cells (15), and a longer

acquisition time requires a longer laser excitation time thus

inducing cellular stress (16) and precludes the observation of

rapid molecular events.

In a previous study, we optimized acquisition conditions

and demonstrated that the acquisition of a 128 3 128 pixels

FLIM image with an average of 103 photons per pixel required

300 s to avoid photobleaching, phototoxicity, and photodam-

age (11).

Unfortunately, such long acquisition times are incompat-

ible with the observation of most dynamics processes involved

in the regulation of cells and organisms (17).

To address this issue, many recent efforts focused on

reducing acquisition time by developing high-speed FLIM

techniques, using specific detectors and dedicated electronic

cards (18–20). In contrast, the work presented here uses a

standard TCSPC FLIM acquisition system. We propose an ori-

ginal solution, based on a statistical data inflation method we

called Adaptive Monte Carlo Data Inflation (AMDI), to

decrease acquisition time and improve FLIM studies in live

cells.

First, we performed Monte Carlo simulations of TCSPC

histograms with monoexponential and biexponential decays

of known parameters to demonstrate the robustness and effi-

ciency of our approach. Second, we applied this approach to

living samples and showed that accurate lifetime estimation is

possible with exposure time reduced by up to 50 times for

monoexponential decays (corresponding to a minimum of 20

photons/pixel), and 10 times for biexponential decays (corre-

sponding to a minimum of 5,000 photons/pixel), compared to

standard fitting method. The final section of the article dis-

cusses the benefits and limitations of the AMDI approach.

MATERIALS AND METHODS

Two-Photon Fluorescence Lifetime Microscopy

Our TCSPC FLIM system was built on a commercial con-

focal microscope (Leica TCS SP5 X, Leica Microsystems). Flu-

orescent samples were excited at 900 nm using a Ti:Sa pulsed

laser source (Chameleon Ultra2, Coherent). The two-photon

excitation fluorescence was collected between 500 and 530 nm

(with a band pass filter XF3080, Omega Optical), using a high

temporal resolution detector (MCP-PMT model R3809U-52,

Hamamatsu) (11). The temporal fluorescence histograms were

reconstructed with a dedicated photon-counting and timing

electronic card (SPC 830, Becker & Hickl). All measured FLIM

histograms were acquired using the TCSPC technique with

256 channels separated by a temporal resolution of 0.0488 ns,

resulting in a total time window of 12.5 ns.

Monte Carlo Simulation of FLIM Data Sets

To compare the curve fitting estimation with or without

AMDI, a large number of data sets or photon histograms with

controlled and known parameters were generated with a

Monte Carlo approach on a standard computer (21). The

algorithm used to compute the simulated fluorescence decay

histograms was previously described by Spriet et al. (22). The

simulated FLIM histograms were built with the same parame-

ters as those previously described (total time window of

12.5 ns divided between 256 temporal channels). For each

condition, we generated 16,384 simulated decays, which is

a sample size large enough to give good agreement with a

Gaussian sampling distribution.

Curve Fitting Method

The theoretical fluorescence intensity profile I(t) reported

in Eq. (1) does not accurately describe the measured intensity

decays. In real FLIM experiments, we also need to take into

account both the Instrumental Response Function (IRF) of

the acquisition system, and the background level noted b. The

detected intensity profile F(t) is then equal to the convolution

product of the IRF, and the theoretical intensity profile with

an added background b, which can be described as (23):

FðtÞ¼ IRF� b þ IðtÞð Þ¼ IRF� b þ
X
i

ai exp � t

si

� � !
ð2Þ

Where ai is the fraction of species i and si is the fluorescence

lifetime of species i.

To evaluate fluorescence lifetime based on experimental

intensity decays, we performed a least square nonlinear regres-

sion fitting method (24), which consists in minimizing the dif-

ference between experimental points and the theoretical inten-

sity profile described by Eq. (2).

In this study, we used the common Levenberg-Marquardt

algorithm to minimize the error function v(2) between experi-

mental data points (di) and the theoretical values, obtained

from the model (fi). v
(2) is defined as:
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vð2Þ ¼ 1

N � p

XN
i¼1

ðdi � fiÞ2
di

ð3Þ

Where N is the number of data points and p is the number of

fitting parameters.

For the analysis of FLIM images, we used the commer-

cially available SPC Image software (version 3.1.0.0, Becker &

Hickl GmbH), which also uses the Levenberg-Marquardt algo-

rithm. We used the multiexponential decay fitting model for

simulated decays, and the incomplete multiexponential decay

fitting model for experimental FLIM images (with one or two

components), as well as the following parameters: minimal

parameter constraints (min lifetime: 20 ps; max lifetime:

30,000 ps; min ratio: 1), standard algorithmic settings (20

iterations and Dv2 5 0.001) and trapezoid integration.

The Adaptive Monte Carlo Data Inflation Algorithm

Estimating the probability density function of a variable

to extract potentially missing information from a small experi-

mental sample is a common problem in statistics. The original

AMDI approach we developed combines two techniques: the

Parzen kernel and the bootstrap.

The Parzen kernel is a nonparametric estimation of the

probability density function of a random variable. If x1, x2,. . ., xN
are independent and identically distributed random variables

with a probability density function f, the kernel density approxi-

mation of f is defined as (25)

fg ðxÞ ¼ 1

N 3 g

XN
i¼1

k
x � xi

gðxÞ
� �

ð4Þ

Where k is a kernel (which is a symmetric function whose

integral is one) and g is a smoothing function. In this study,

we used a standard Gaussian kernel, with a mean of 0 and a

variance of 1. Note that the smoothing function g indirectly

controls the variance of this Gaussian kernel as

k
x � xi

gðxÞ
� �

¼ 1ffiffiffiffiffi
2p

p exp � x � xið Þ2
2gðxÞ2

 !
ð5Þ

In this study, we used an adaptive smoothing factor over x,

which is based on preexisting knowledge about the properties

of the density function to be estimated. When the total num-

ber of photons N was low (N\ 5,000 photons), we used the

inverse function of the theoretical law of fluorescence photon

emission, which corresponds to a smoothing factor g(x) 5
ln(x). For higher total photon numbers (N[ 5,000 photons),

there were no empty temporal channels, and it was not neces-

sary to spread the information temporally as much as pre-

viously. We thus used a lower smoothing factor: g(x) 5 log(x).

The width of the Parzen kernel increases with the temporal

channel, to maintain a virtually constant signal-to-noise ratio

for each temporal channel, and to compensate for the poor

signal-to-noise ratio occuring with longer emission photon

times, when photon numbers are lower.

The bootstrap technique (26,27) is a statistical inference

method. This resampling method relies on the generation of a

huge number of simulated data samples, based on a small ex-

perimental data set.

We combined both Parzen kernel and boostrap techni-

ques to estimate the parameters of collected fluorescence

decays, by generating artificial data samples that preserve the

properties of the original samples, and guarantee a robust esti-

mation of statistical parameters. The AMDI algorithm (Fig. 1)

we developed to generate amplified fluorescence decay histo-

gram from small data set is as follows:

The fluorescence decay histogram called h(t) was built

from Hm and Hs. Hm represents the measured set of photon

arrival events ei, where Hm5 {e1,e2,. . .,ep}, and p is the number

of events. Hs is the simulated sets where Hs 5 {s1,s2,. . .,sq},
and q is the number of simulated photon events which is at

least an order of magnitude greater than p. We call G(l, r) a
Gaussian random generator with mean l and standard devia-

tion r. We assume that the photon shot noise for any photon

event ei follows a Poisson distribution, and therefore that r is

equal to g.h(ei)
1/2, where g is the previously described smooth-

ing function.

1. Set a loop counter c to 1 and initialize Hs with a size

of q.

2. Generate a value i (comprised between 1 and p) from a

random number generator with a uniform probability

3. Set x to ei
4. Set sc to G(x, g.h(x)1/2)

5. Add sc to Hs

6. Increment c

7. While c\ q repeat steps 2 to 6

8. Build a new fluorescence decay histogram based on the

new Hs set.

This algorithm is applied to all the photons which make-

up the fluorescence intensity decays, but not to those present

in the first temporal channels (background only). For these

ones, the mean number of background photons per pixel is

inflated using the same coefficient factor and spread over the

first temporal channels without smoothing function (g 5 1).

We implemented the AMDI algorithm into a home-made

software named TITAN (IRI, USR 3078 CNRS, BCF).

The AMDI algorithm generates artificial data samples by

inflating original samples with a coefficient factor. We tested

different values to determine the optimal inflation factor

needed to obtain reliable results with the fitting method. We

demonstrated that fluorescence lifetime precision was

unchanged when the number of photons per pixel was greater

than 10,000 for monoexponential decays, and 100,000 for

biexponential decays (data not shown). Therefore, to correctly

estimate the density probability function in subsequent

studies, we adjusted the inflation factor to obtain at least

10,000 photons per pixel for monoexponential decays and

100,000 for biexponential decays.

We emphasize that the AMDI algorithm conserves the

initial photons emission law during inflation, and so prevents
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the artifacts, which may be caused by using a statistical infer-

ence method with an adaptive Parzen kernel width along the

temporal channel. In addition, it is important to notice that

the AMDI algorithm should not degrade the IRF of the experi-

mental system for estimating accurately all fitting parameters.

The IRF was then included in the adaptive Parzen kernel width

calculation, and we checked that it was unaffected by the

AMDI algorithm (data not shown).

Plasmids, Cell Culture, Transfection, and FLIM

Measurements

U2OS and HEK293 cells were grown in Dulbecco’s modi-

fied Eagle’s medium (Invitrogen), supplemented with 10%

fetal calf serum and 1% penicillin-streptomycin (Invitrogen),

and were seeded 12 h before transfection in 6-well dishes con-

taining 32 mm diameter glass coverslips. Transient transfec-

tions were performed according to manufacturer’s recommen-

dations, using FugeneHD (Roche Diagnostic) for plasmids

gpi-eGFP and memb-eGFP-mCherry. The medium was

replaced by L15 (Invitrogen) supplemented with 10% fetal calf

serum prior to observations 24 h after transfection. The eGFP

(N)-terminus was tagged with the mouse Thy-1 glycosylpho-

sphatidylinositol (GPI) anchoring sequence, which directs the

fusion protein to the outer leaflet of the plasma membrane.

The memb-eGFP-mCherry was constructed as previously

described (28). The translated protein is eGFP in tandem with

mCherry with acyl anchors of Lyn at the N-terminus and is

therefore directed to the inner leaflet of the plasma mem-

brane.

FLIM images of both U2OS cells transfected with gpi-

eGFP and HEK293 cells transfected with memb-eGFP-

mCherry were acquired using the previously described TCSPC

technique. Total acquisition time for these 128 3 128 pixels

FLIM images was adapted to collect around 30 photons per

Figure 1. Scheme of the AMDI algorithm. From an initial fluorescence intensity decay constituted with few photons (A), each photon is

allocated to its temporal channel number and put in a virtual urn (B). From this urn, an original photon with temporal channel number tx is
randomly drawn and duplicated to a virtual photon with the same time tx (bootstrap technique). The original photon is then moved back to
the urn. The virtual photon is allocated to a new channel number with an adaptive Parzen kernel, and added to the original decay (C). The

process is repeated until the AMDI factor is reached (100 in this case). Finally, the total photon number is inflated by this factor (D). [Color

figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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pixel (for samples exhibiting monoexponential decays) and

100 photons per pixel (for samples with biexponential

decays).

RESULTS

Lifetime determination accuracy depends on the total

number of photons and channels, as well as the acquisition

time window (14). Because both the total number of channels

and time window were fixed experimentally, we focused our

study on photon numbers. While it is important to minimize

cellular stress caused by long FLIM acquisition times, the cor-

rect estimation of all fitting parameters is still a challenge

when few photons are collected. We thus developed an origi-

nal approach called AMDI, based on a statistical inflation of

FLIM photon numbers, which could correctly estimate fitting

parameters even when small numbers of photons were

detected. To validate our approach, we initially tested it on

simulated data.

Benefits of AMDI on Simulated Histograms

We simulated temporal decays with fluorescence lifetimes

corresponding to eGFP, rhodamine B and rhodamine 6G (2.7,

1.6, and 4 ns, respectively (29)). To determine the reliability of

the fitting method in estimating fluorescence lifetimes, we cal-

culated the accuracy defined as

Acc ¼ 1� sr � sme

sr
ð6Þ

With sr, the real lifetime value and sme, the estimated lifetime

obtained by fit. Based on statistical laws (30), we considered

that an accuracy between 0.9 and 1.1 reflected a robust lifetime

estimation.

Figure 2. Comparison of lifetime estimations for simulated monoexponential decays with and without AMDI. We represented the fluores-

cence lifetime estimations as a function of the number of photons N with (A2) or without (A1) AMDI implementation. Three different fluo-
rescence lifetimes—represented by continuous lines—were considered: 1.6, 2.7, and 4 ns (corresponding respectively to rhodamine B,

eGFP, and rhodamine 6G). To further demonstrate the superiority of the AMDI approach, we also display the accuracy of lifetime estima-

tion with (B2) and without (B1) AMDI. In all graphs, markers with error bars represent the mean fluorescence lifetime and standard devia-

tions of 16,384 simulated histograms.
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To demonstrate the potential of the AMDI algorithm, we

first studied simulated histograms with monoexponential

decay. As shown on Figure 2, the accuracy of the standard fit-

ting method is poor when few photons are collected (for

instance, Acc\ 0.9 with 600 photons for long lifetime value),

and becomes acceptable (Acc [ 0.95) when the number of

photons is greater than 1,000. We also noted that the correct

estimation of fluorescence lifetime depended on how long

actual lifetimes were. At least 1,000 photons were required to

correctly estimate long lifetimes (4 ns), whereas 600 photons

were enough for intermediate lifetimes (2.7 ns) and 50

photons for short lifetimes (1.6 ns).

Significant differences in the accuracy of lifetime esti-

mation were observed when performing the Adaptive Monte

Carlo Data Inflation algorithm before the standard fitting

method, (Fig. 2). We first noted that, even for photon num-

bers as low as 20, accuracy was always comprised between

0.9 and 1.1, which represents a 30-fold improvement com-

pared to the standard fitting method. Second, we found that

the lowest number of photons needed to correctly estimate

short lifetime values (1.6 ns) with AMDI was 30 photons,

and 20 photons for medium (2.7 ns) and long lifetimes

(4 ns) respectively. In other words, by using the AMDI

algorithm, acquisition times may be divided by 50 for long

lifetimes, 30 for intermediate lifetimes, and 1.5 for short

lifetimes, respectively.

We also tested the efficiency of the AMDI algorithm on

simulated histograms with biexponential decays (with a1 5
0.3, s1 5 1.6 ns, and s2 5 4 ns) and the results are presented

in Figure 3. For total photon numbers below 50,000, and with-

out the AMDI algorithm, the standard fitting method overesti-

mated both fluorescence lifetimes, and the corresponding ac-

curacy factor was greater than 1.2. However, mean lifetime

(sm 5 a1s1 1 (1 2 a1)s2) was estimated correctly, because the

Figure 3. Improvement of lifetime estimations using AMDI for simulated biexponential decays. We performed Monte Carlo simulations to

generate 16,384 biexponential intensity decays with parameters: a1 5 0.3, s1 5 1.6 ns (lifetime of rhodamine B), and s2 5 4 ns (lifetime of

rhodamine 6G), which corresponds to a mean lifetime sm 5 a1s1 1 (1 2 a1)s2 5 3.28 ns. The estimations of both fluorescence lifetimes

(s1 and s2) and mean lifetime (sm) obtained with and without AMDI are represented respectively in (A2) and (A1). The corresponding ac-
curacy is also plotted with and without AMDI in (B2) and (B1). Median fluorescence lifetimes are indicated with markers, and error bars

correspond to the interquartile range.
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a1 coefficient was overestimated (data not shown). In other

words, the standard fitting method can estimate mean fluores-

cence lifetime correctly, but requires at least 50,000 photons to

estimate all fitting parameters.

With the AMDI algorithm, the number of photons

needed for a correct estimation was divided by 10. In fact,

5,000 photons were enough to estimate both fluorescence life-

times (s1 and s2) with an accuracy below 1.2. In summary,

thanks to the AMDI algorithm, the correct estimation of all

fitting parameters is now possible with smaller photon num-

bers, even if multiple fluorescent species are present.

AMDI Benefits for FLIM Imaging in Living Cells

To demonstrate that the AMDI algorithm could estimate

in vivo lifetime values correctly, we analyzed FLIM images of

live cells transfected with gpi-eGFP. The gpi protein is present

in the membrane of U2OS cells (as shown on Fig. 4). To mini-

mize cellular stress, acquisition time was kept short (90 s),

compared to the 300 s needed for standard FLIM experiments

(300 s). This meant that the mean number of collected

photons per pixel was below 30. Without the AMDI algo-

rithm, the standard fitting method was unable to correctly

estimate the fluorescence lifetime of the gpi-eGFP, when we

applied a binning (which consists in adding the intensity pro-

files of neighboring pixels included in a square whose surface

is (2n 1 1)2) of factor n 5 0 because the number of photons

was too small (image not shown). As shown on Figure 4C, the

mean lifetime of gpi-eGFP was largely overestimated (around

3.6 ns), compared to smean 5 2.4 ns using standard FLIM

acquisition conditions (300 s and n 5 3).When the AMDI

algorithm was applied, the number of photons per pixel was

statistically inflated, and the accuracy of the mean fluores-

cence lifetime estimation drastically improved (smean 5 2.4 ns

with n 5 0), although the standard deviation r was large

Figure 4. Improvement of fluorescence lifetime measurements using AMDI in vivo. FLIM images of U2OS cells transfected with gpi-eGFP

are presented after applying (B) or not (A) the AMDI algorithm. Three distinct conditions were considered: (1) 90 s acquisition time with a

spatial binning n 5 1, (2) 300 s acquisition time with n 5 0, and (3) 300 s acquisition time with n 5 3. Scale bar: 10lm. Mean fluorescence
lifetimes, standard deviations and mean photon numbers per pixel of each FLIM image are indicated on (C). This experiment demonstrates

that in contrast to the standard fitting method, the AMDI algorithm enables the correct estimation of gpi-eGFP fluorescence lifetime based

on low photon numbers in live cells. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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(r 5 0.9 ns). It is worth noting that the results obtained in

living cell were in excellent agreement with those obtained

from in silico simulated decays.

To improve both the precision and accuracy of lifetime

estimations, photon numbers need to be increased. For this,

either the acquisition time or the spatial binning factor n must

be increased. Figure 4 shows that the standard fitting method

improved but still slightly underestimated the mean fluores-

cence lifetime (smean 5 2.17 ns and r 5 0.29 ns) when we

applied a binning factor n 5 1. The AMDI algorithm allows to

estimate mean fluorescence lifetime better (smean 5 2.38 ns),

with a better standard deviation (r 5 0.24 ns). While this spa-

tial binning improved the estimation and the precision of life-

time (with or without AMDI), it is important to note that the

spatial resolution of the FLIM image was degraded (Figs. 4A1

and 4B1). In fact, with a spatial binning factor of 1, the life-

time value associated with each pixel corresponds to a surface

of 3 3 3 pixels. Consequently, the FLIM image is subjected to

an average filtering and some fluorescence lifetime texture is

lost. This may cause artifacts and misinterpretations, for

example when localizing molecules at the proximity of the

plasma membrane.

To avoid this problem and maintain both the best spatial

and lifetime resolution possible, we increased acquisition time

to 300 s, as is classically used in TCSPC. When using the

standard fitting method (without binning factor), the low

number of photons (mean around 90 photons per pixel) pre-

vented the correct estimation of fluorescence lifetimes. In

agreement with our simulated decay results, the in vivo mean

lifetime was slightly underestimated (smean 5 2.12 ns with

r 5 0.46 ns). In contrast, when using the AMDI algorithm

with n 5 0, the gpi-eGFP fluorescence lifetime was correctly

estimated (smean 5 2.40 ns with r 5 0.41 ns) (Fig. 4C). In

addition, the image spatial resolution was preserved and corre-

sponds to the initial resolution of the FLIM acquisition system

(Fig. 4B2). In other words, the AMDI algorithm correctly esti-

mates fluorescence lifetimes without affecting the spatial reso-

lution of FLIM images, and thus minimizes analysis artifacts

due to spatial average filtering.

Having shown that the AMDI algorithm improved fitting

estimations of monoexponential decays in living cells, we eval-

uated its performance in estimating biexponential decays. To

this end, we performed FRET experiments on live HEK293

cells expressing eGFP (donor) linked to mCherry (acceptor),

fused to a plasma membrane protein. Total acquisition time

was 300 s and we initially applied a spatial binning factor of

n 5 5 to obtain a mean photon number of approximately

7,500 per pixel. As anticipated from our previous results, this

number of photons was not sufficient to correctly estimate

each fluorescence lifetime with the standard fitting procedure.

To address this, we measured in a first FLIM experiment the

fluorescence lifetime of the donor alone (2.35 � 0.13 ns),

which corresponds to the s2 of FRET experiments (data not

shown). We subsequently constrained the second lifetime s2 to
2.35 ns, and used the standard fitting method to estimate the

first lifetime value s1 (data not shown). We found a s1 value of
1.16 � 0.1 ns, which was not in agreement with the value

obtained when all parameters are free (s1 5 1.38 � 0.2 ns and

s2 5 2.8 � 0.53 ns). We tried increasing the number of

photons up to a mean of 20,000 photons per pixel by applying

a binning factor of n 5 10, but this was still insufficient to

estimate both lifetime values correctly, when using the stand-

ard fitting method. The measured values of s1 5 1.36 � 0.09

and s2 5 2.87 � 0.2 ns were indeed different from expected

values (see Fig. 5C).

In contrast, using the AMDI algorithm, we were able to

accurately estimate all fitting parameters, without constraining

any parameter, even with mean photon numbers per pixel

around 7,500. As indicated in Figure 5C, both fluorescence

lifetime values (s1 5 1.14 � 0.58 ns and s2 5 2.36 � 0.62 ns)

were in good agreement with expected values, but their inter-

quartile range was wide. We were able to improve the preci-

sion of these measurements by applying a spatial binning fac-

tor of 10. With n 5 10, we obtained: s1 5 1.17 � 0.16 ns and

s2 5 2.37 � 0.16 ns.

Note finally that for these numbers of photons, the mean

fluorescence lifetime sm (sm 5 a1s1 1 (1 2 a1)s2) was always
estimated correctly (with or without the AMDI algorithm),

and this is consistent with previous Monte Carlo simulations.

DISCUSSION

We here describe an original statistical approach for

FLIM combining the well-known statistical technique of boot-

strap with an adaptive Parzen kernel. This robust approach

statistically inflates initial information, thus significantly

reduces the number of photons required to determine all pa-

rameters in time domain FLIM experiments. We indeed

demonstrated both in silico and in living cell that using the

AMDI algorithm enables correct lifetime estimation using

laser exposure time reduced up to 50 times for fluorescent

samples exhibiting monoexponential intensity decays (20

photons per pixel), and 10 times for biexponential decays

(corresponding to a minimum of 5,000 photons per pixel),

compared to standard fitting method. Thanks to the AMDI

algorithm, the precise estimation of all fitting parameters in

FRET experiments is now possible even when all parameters

are free. Finally, we demonstrated that the AMDI algorithm

considerably improves the spatial resolution of FLIM images,

by reducing the commonly used spatial binning factor.

While the total number of photons required for a precise

lifetime determination using the AMDI algorithm is reduced,

the theoretical model developed by Köllner and Wolfrum (14)

for describing lifetime precision as a function of the number

of photons using the Least Square Method (LSM) remains

valid. On the basis of this study, the fluorescence lifetime error

Dt/s of an ideal lifetime determination method ultimately

tends towards intensity error DN/N since

Ds
s

!
ffiffiffiffi
N

p

N
¼ 1ffiffiffiffi

N
p ð7Þ

According to this theoretical limit, for a constant number of

photons N, lifetime precision should improve when fluores-

cence lifetime decreases. This assumption was verified for both

ORIGINAL ARTICLE

Cytometry Part A � 79A: 528�537, 2011 535



our simulated and in vivo results. In addition, Eq. (7) suggests

that mean fluorescence lifetime determination should be pre-

cise even for low photon numbers (N). For example, if 50

photons from a fluorescent sample with a lifetime s 5 4 ns are

detected with a FLIM system, the theoretical mean lifetime

should be 4 � 0.6 ns. Of course, values found experimentally

differ from these theoretical values. For monoexponential

decays, the LSM fitting algorithm does not converge towards

the correct mean lifetime when N\ 50 photons per pixel (this

is probably due to the presence of a local rather than global

minimum). Performing the AMDI algorithm on the same

data computationally inflates the number of photons, and

improves the precision of lifetime value estimation using the

LSM method. Consequently, the AMDI algorithm is most

beneficial to analyze low photon numbers (\100 photons per

pixel for monoexponential decays) FLIM images. It is less use-

ful for high photon number images because standard fitting

strategies can resolve all fitting parameters equally well. In

such cases, the added calculation time required for the AMDI

algorithm (a few minutes on a standard computer for a 128 3
128 pixels FLIM image) becomes superfluous.

To demonstrate the benefits of AMDI in this study, we

considered simulated histograms exhibiting both monoexpo-

nential and biexponential intensity decays. In this last case, the

AMDI algorithm allows reducing the number of photons

required to precisely estimate the fluorescence lifetime of each

molecular species. Similarly, we demonstrated the benefit of

the AMDI algorithm in determining the lifetimes of interact-

ing molecules in FRET experiments. In comparison with

standard FLIM image analysis, the AMDI algorithm makes

FRET quantification possible with reduced photons numbers

(5,000 photons per pixel versus 50,000), and without the need

to fix any parameters. In theory, the AMDI algorithm could

also improve FLIM image analysis for fluorescent samples

emitting more than biexponential intensity decays. In practice,

the number of photons required to estimate all fitting parame-

ters (five parameters for triexponential decays) would be so

large, that the resulting FLIM image acquisition times would

be too long for live cells and tissues.

In addition, we demonstrated the benefit of the AMDI

algorithm by fitting simulated and experimental FLIM data

with a Levenberg Marquardt algorithm which offers a good

compromise between optimization speed and lifetime estima-

tion precision. The benefits of the AMDI algorithm are not

limited to this fitting method and may easily be extended to

all the minimization algorithms classically used in time do-

main FLIM image analysis (such as the Newton trust region

regression method, which is more robust to dispersive ele-

ments). Moreover, it should be noted that since the AMDI

algorithm is an inflation of temporal fluorescence intensity

decays, it is also compatible with all existing time domain

FLIM image analysis strategies (28,31–35).

In this study, we used the AMDI algorithm to reduce the

minimum number of photons required for the accurate deter-

mination of fitting parameters using the TCSPC technique.

This approach may easily be extended to all time domain

Figure 5. Improvement of FRET measurements in vivo using AMDI. FRET experiments were performed on HEK293 living cells expressing
the eGFP-mcherry tandem linked to a membrane protein. The fluorescence lifetime images estimated without or with AMDI algorithm are

presented respectively in (A) and (B). For each condition, three FLIM images are shown: (1) first fluorescence lifetime s1, (2) second fluores-
cence lifetime s2, and (3) mean lifetime sm (sm 5 a1s1 1 (1 2 a1)s2). Scale bar: 10 lm and n 5 5. For each FLIM image, median fluorescence

lifetime values and mean photon per pixel numbers are indicated on (C) and error bars correspond to the interquartile range. We also rep-

resented expected values for the three fluorescence lifetimes with dashed lines: s1 5 1.16 ns, s2 5 2.35 ns, and sm 5 1.75 ns (see text for

detail). In contrast to the standard fitting method, the AMDI algorithm makes it possible to accurately estimate all fitting parameters with-

out constraining any of them. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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FLIM techniques, including multispectral FLIM (or SLIM)

experiments. Indeed, the AMDI algorithm should be especially

useful for SLIM because, the fluorescence spectral dispersion

reduces the number of photons detected compared to stand-

ard FLIM. In conclusion, because of its simplicity, robustness

and versatility, the AMDI algorithm can be of general use in

time domain fluorescence lifetime imaging.
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