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Abstract - Dynamical systems like neural networks based on 
lateral inhibition have a large field of applications in image 
processing, robotics and morphogenesis modelling. In this 
paper, we deal with a double approach, image processing and 
neural networks modelling both based on lateral inhibition in 
Markov random field to understand a degenerative disease, the 
retinitis pigmentosa. 
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I. INTRODUCTION 
 
In the vertebrate retina, cones are hyperpolarized when 

illuminated by light, but also receive a depolarizing input 
when receptors some distance away are illuminated. This 
antagonistic center-surround response is mediated by 
amacrine horizontal cells (Fig. 1 and Fig. 3), through a sign-
reversing synapse to cones called feed-back synapse and a 
global mechanism, lateral inhibition [1], involved in edge 
enhancement and image contrasting [6,35], realizing 
concretely the Mach (boundary brightness overshoot) and 
Marr (Laplacian zero-crossing edge enhancement) effects. 

 

Fig. 1 - The retina inside the eye structure 
 
Multiple contrast illusions (Fig. 2) are based on the 

lateral inhibition principle. Here, we will study how 
functions of rods and cones are differentially affected during 
the retinal degeneration of the retinitis pigmentosa and how 
this pathologic process can be modelled. 

II. PHYSIOLOGICAL AND PATHOLOGICAL RETINA 
 
In physiological retina, lateral inhibition causes 

illusions like the perception of artefactual stripes or spots. 
The lateral inhibition causes a reinforcement (or a decline) 
of brightness in a pixel if its neighbours are black (resp. 
white). This illusion is easy to simulate by computer and is 
illustrated in Fig. 2. 

 

Fig. 2 - Contrast illusions: Hermann illusions (top); Mach bands illusion 
(bottom-left) and lateral inhibition with activation at short range (nearest 
neighbours neurons) and lateral inhibition at medium range (bottom-right) 

 
In Fig. 2, the Hermann illusion is provoked by the local 

organization of inhibition and activation between retinal 
cells (bottom-right) and shows bright points at the 
intersection of grey stripes (top-left) and grey squares at the 
intersection of white stripes (top-right). On the bottom-left, 
Mach band illusion gives an enhancement of the vertical 
lines separating the different grey zones. 
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Fig. 3 - Physiological and pathological retina. Top-left: Lateral inhibition 
due to horizontal-cell synapses. Top-right: Confocal microscopy slice of 
mouse retina having retinitis pigmentosa [34]. Bottom-left: Segmentation of 
cones and rods showing an important cell deficit in the Left Superior 
quadrant (LS). Bottom-right: Histogram of the intercept distances showing 
a significant increase of the inter-cell distance in the LS quadrant (dark 
blue). 
 

Fig. 4 - Local organisation of cones and rods in macula (A) and retinal 
periphery (B) [38] 

 
The pathologies of the retina provoke a progressive 

death of the rods (like in retinitis pigmentosa in Fig. 3), 
which leads to cones apoptosis, due to non-secretion (by 
rods) of growth factor favouring the cones survival, causing 
the disappearance of the lateral inhibition, hence of the 
contrasting ability. Fig. 3 (Top-right and Bottom-left) shows 
a confocal slice of a sick retina where we can observe an 
important loss of both rods and cones in the left superior 
quadrant (LS). An analysis of the cells interdistance in the 
three other quadrants shows that the mean interdistance 
between cones in the peripheral retina (about 15 ) is better 
conserved than the interdistance between rods (about 3 ), 
proving the primary rod degeneracy. 

 

III. NEAREST NEIGHBOUR MODELS 
 
A formal deterministic neural network  of size  is 

defined by its state variables … , where  
denotes the state of the neuron  at time  (equal to ‘1’ if the 
neuron fires at this time and ‘0’ otherwise). Then the 
discrete iterative system ruling the change of states in the 
network is given by the following equations: 

 1 1;  if ,  , 0;  otherwise 
 

where V(i) is a neighbourhood of ;  plays the role of 
the somatic electric potential;  denotes an external field; 

 designates the synaptic weight resuming the interactions 
of the neuron  on the neuron ;  is a non-linear effect 
coefficient (due to the presence of a triplet of neighbouring 
neurons firing together); and  is a firing threshold (Fig. 5). 
The updating of the neuronal states can be operated [11]: 
• either sequentially, after having chosen a certain order 

for the neurons, 
• or block-sequentially, by parallel updating of each sub-

network of partition  and then activating these sub-
networks sequentially, 

• or in a massively parallel way.  

Fig. 5 - Translation invariant isotropic 4 4 neural network with boundary 
neurons (violet), external field , synaptic weight , and non-linear 
effect coefficient  
 

The updating rule can be randomized as follows: 
 1 1 , ⁄1 ⁄  

 
We can easily show that this rule is the same as the 
deterministic rule above, when 0. The presence of a 
cone growth factor secreted by neighbouring rods will be 
taken into account by putting a ‘1’ in a square of 100 , 
containing at least one cone (Fig. 6), and a ‘0’ if there is no 
cone. The deterministic or stochastic dynamics of such 
neural networks and their robustness has been extensively 
studied in [2-5] and [7-22]. 

u u 0 0 

u u 1 1 

u u 2 2 
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Fig. 6 - Top: Confocal slices of the retina: blue square indicates the slice of 
Fig. 3 (Top right). Bottom: Segmentation of the rods and cones of this slice 

Fig. 7 - Dependence of the core states on the boundary states ‘1’ and ‘0’ 

The occurrence of the values ‘1’ in a grid made of 
squares, each of 100 , will be supposed to be ruled by a 
nearest neighbour Markov random field [24-32] and [36,37], 
which corresponds exactly to the fixed configuration of the 
random neural networks defined above. There exists a 
classical unbiased maximum likelihood inference procedure 
for estimating all the coefficients , ,  of the neural 
network (in the hypothesis of a translation invariant 
isotropic field with temperature ‘1’), since the 
corresponding statistical structure is exponential [18].  

 
In the example of Fig. 6, the estimates are significantly 

different between the quadrants LS and RI, showing the 
presence of a pathologic process. If we assume the network 
states determined by this nearest neighbour modelling, we 
have to check if there is an influence of the boundary 
neurons (in violet in Fig. 5). It is possible to systematically 
study this influence by searching phase transition parametric 
conditions, i.e. values of the coefficients , ,  for which 
the states on the core depend on the states on the boundary. 
In the parametric circumstances where: 

 2 0, (cf. Fig. 8 where 3),  
 

we observe a phase transition with the dependency of the 
core on the boundary, which proves that we have to be very 
careful in fixing the states on the frontiers of the retina 
[16,17]. 

 
IV. SPATIAL RENEWAL BINARY PROCESSES 

 
There exist different alternatives to the nearest 

neighbour random neural networks, like the reaction-
diffusion process, in which one can identify the diffusion 
coefficient and also the lateral inhibition parameters of the 
reaction part. There is also a way to escape the spatial 
Markovian character of the previous model, by supposing 
that the occurrence of the state ‘1’ at time 1 in the 
neuron , given by 1 1, is depending on the states 
on the first sphere (for the Manhattan distance ) centered 
at , where we can meet a neuron in state ‘1’. 

 

Fig. 8 - Simulated configuration of the states of a 2-dimensional renewal 
spatial binary random field [23] 
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A spatial random process verifying such a condition is 
called a renewal spatial random field [20,23] (analogous to 
the renewal temporal processes observed, for example, while 
tossing a coin) and we can estimate its parameters in the 
same way as for the spatial Markov random fields, that is by 
considering the associated statistical exponential structure in 
which estimates are of the maximum likelihood, unbiased 
and almost surely convergent. 

 
We can see, in Fig. 8, a simulation of such a renewal 

spatial random field, showing configurations sparser than 
those observed for a spatial Markovian field, correlating 
more to the data in Fig. 6. A test of data adequacy can be 
performed over the spatial Markovian and  renewal fields and 
we can retain the structure which best-fits the data, where the 
first model favours rod-cone interactions and the second 
model favours long-range interactions between cones. 

 
 

V. CONTRAST ENHANCEMENT 
 

Another way to detect an abnormality in the rod and 
cone distribution is to use the observed configuration as 
an artificial retina in order to contrast an input image. The 
latter can be made of pixels of different grey levels as in 
Fig. 9 (top-left). A normal retina treating the image must 
enhance homogeneous zones, by exploiting the fact that a 
square of pixels (or a peak)  having the same medium 
(respectively high) grey level is reinforced (respectively 
undermined) by the presence (respectively absence) of a 
local activation and its boundaries are contrasted because 
of the absence of external inhibition (Fig. 10). If the 
distribution of the weights follows the scheme given in 
Fig. 2 (bottom-right) and if the neurons are dispatched in 
the four quadrants as in Fig. 3 (bottom left), then the 
contrasting is realised only in RI quadrant as in Fig. 9 and 
Fig. 10. 

Fig. 9 - Contrast enhancement. Bottom-left: Lateral inhibition causes the local contrast enhancement of the yellow square (with medium level in false colors) 
into a contrasted bright orange square. Top-right: Evolution in time of the DOG function representing an activation near the central neuron,  (green links) 
and an inhibition (red links) farther away. Bottom: Same processing in grey level with initial image in the middle and contrasted on the right. 
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Fig. 10 - Contrasting and contouring medical images. Top-left: initial NMR image of a brain tumour. Top-middle: contrast enhancement with apparition of a 
central activity (blue arrows). Top-right: boundary of the compressed tissue (external snake-spline). Bottom-left: tumour segmentation. Bottom-right: tumour 
boundary (internal snake spline) 

VI. CONCLUSION 
 
We have shown in this paper that a retinal pathology, 

as in retinitis pigmentosa, could be studied by identifying 
from observed data, either a Markovian or a renewal 
spatial random field, leading to the hypothesis of local 
rod-cone interactions or of a long-range cone-cone 
interactions. In the first case, the interactions fading due 
to disappearing of rods depicts existence of an action by 
rods, like secretion of a specific cone growth factor, 
which is in agreement with the genetic studies. The 
conservation of the contrasting retinal function can be 
tested for the still healthy zones by using, as input, a 
reference image having inside a homogeneous zone to 
enhance. This is being extensively used in image 
processing applications as in Fig. 10. The absence of 
contrasting power could constitue a good test of loss of 
this major functionality related to the integrity of the 
lateral inhibition rod-cone architecture. 
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