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Mariko B, Ghandour Z, Raveaud S, Quentin M, Usson Y, Ver-
detti J, Huber P, Kielty C, Faury G. Microfibrils and fibrillin-1 induce
integrin-mediated signaling, proliferation and migration in human endo-
thelial cells. Am J Physiol Cell Physiol 299: C977-C987, 2010. First
published August 4, 2010; doi:10.1152/ajpcell.00377.2009.—Microfi-
brils are macromolecular complexes associated with elastin to form
elastic fibers that endow extensible tissues, such as arteries, lungs, and
skin, with elasticity property. Fibrillin-1, the main component of
microfibrils, is a 350-kDa glycoprotein for which genetic haploinsuf-
ficiency in humans can lead to Marfan syndrome, a severe polyfea-
tured pathology including aortic aneurysms and dissections. Microfi-
brils and fibrillin-1 fragments mediate adhesion of several cell types,
including endothelial cells, while fibrillin-1 additionally triggers lung
and mesangial cell migration. However, fibrillin-1-induced intracel-
lular signaling is unknown. We have studied the signaling events
induced in human umbilical venous endothelial cells (HUVECS) by
aortic microfibrils as well as recombinant fibrillin-1 Arg-Gly-Asp
(RGD)-containing fragments PF9 and PF14. Aortic microfibrils and
PF14, not PF9, substantially and dose dependently increased HUVEC
cytoplasmic and nuclear calcium levels measured using the fluores-
cent dye Fluo-3. This effect of PF14 was confirmed in bovine aortic
endothelial cells. PF14 action in HUVECs was mediated by av33 and
a5B1 integrins, phospholipase-C, inosital 1,4,5-trisphosphate, and
mobilization of intracellular calcium stores, whereas membrane cal-
cium channels were not or only slightly implicated, as shown in
patch-clamp experiments. Finally, PF14 enhanced endothelial cell
proliferation and migration. Hence, fibrillin-1 sequences may physi-
ologically activate endothelial cells. Genetic fibrillin-1 deficiency
could alter normal endothelial signaling and, since endothelium dys-
function is an important contributor to Marfan syndrome, participate
in the arterial anomalies associated with this developmental disease.

adhesion; calcium signaling; Marfan syndrome

LARGE ARTERIES have an essential mechanical role in the
smoothing of the pulsatile blood flow and pressure during the
cardiac cycle. This function is made possible by extracellular
elastic components of the arterial wall. In many invertebrates,
with an open and low pressure circulatory system, arterial
elasticity is mainly provided by microfibrils, a supramolecular
assembly of more than 17 proteins, including fibulins, emilins,
latent transforming growth factor-3 (TGF-$) binding proteins
(LTBPs), and fibrillins (16, 26, 34). Microfibrils and fibrillins
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were rather conserved during evolution and present clear sim-
ilarities between invertebrate and vertebrates (9, 55, 65). In
vertebrates, arterial elasticity, more adapted to the close and
high-pressure circulatory system, is provided by elastic fibers
made of elastin (90%, only present in vertebrates) and micro-
fibrils (10%) (58). Elastin is the main contributor to the elastic
properties of these fibers, although microfibrils moderately
participate in the elastic fiber mechanics (43). As a conse-
quence, elastin or fibrillin-1 haploinsufficiency induces arterial
mechanics alteration and remodelling (18, 42, 45, 52). During
development of elastic tissues, microfibrils are the first elastic
fiber structure that is formed. Tropoelastin, the precursor of
elastin, is then deposited on the microfibril scaffold before
molecular rearrangement, which leads to the mature/functional
elastic fiber (34, 75).

Besides their mechanical role, microfibrils and microfibrillar
components can also be involved in cell adhesion. In the
developing aorta, microfibrils/fibrillin come in direct contact
with endothelial cells (by passing through the basement mem-
brane) and smooth muscle cells and mediate the anchoring of
these cells to the internal elastic lamina (13, 14). The anchoring
activity of microfibrils seems to be mediated at least in part by
their main component fibrillin-1, since /) fibrillin-1 domains
extend out of microfibrils (38) and 2) besides modulating
extracellular matrix synthesis and deposition, fibrillin-1 frag-
ments mediate adhesion and spreading of several cell types
in vitro, including fibroblasts, smooth muscle cells, and endo-
thelial cells (5, 53, 61, 70).

Fibrillin-1 is a 350-kDa cystein-rich glycoprotein that has
first been characterized in humans, mice, and chickens (60, 75).
Autosomal dominant mutations in the fibrillin-1 gene can be
responsible for the human genetic disorder Marfan Syndrome
(MFS), which features, at the vascular level, aneurysms and
aortic disruptions (32, 46). One of the pleiotropic causes of
MES seems to be endothelial dysfunction, since it has been
observed in these patients: /) reduced flow-mediated vasodi-
lation, suggesting an altered endothelial cell signaling, and
2) elevated plasma levels of homocysteine, which attenuate
endothelial function and limits nitric oxide (NO) bioavailabil-
ity (22, 30, 71). The participation of fibrillin-1 in endothelial
cell anchoring together with the observation of an endothelial
detachment in fibrillin-1 null mice (Fbnl ’~), a mouse model
for MFS (11), suggests that binding of fibrillin-1 to the endo-
thelial cell is important in arterial morphogenesis and physiol-
ogy. Alteration of this interaction may be one of the causes of
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the vascular dysfunctions and remodelling observed in MFS.
To support these hypotheses, it has been found that the Arg-
Gly-Asp (RGD) motif in the fourth TGFB-binding protein-like
domain of human fibrillin-1 is flexible and accessible and
regulates cell adhesion and spreading through binding to inte-
grins (40). The integrins involved are, in particular, o3 or
asf3; in fibroblasts and B-subunit in smooth muscle cells (5,
53, 61) and the subunits o, as, and 3 in endothelial cells (70).
However, the signaling mechanisms directly induced by fibril-
lin-1 in endothelial cells are unknown. Since endothelial inte-
grins and intracellular calcium level play an important role
during embryonic development and angiogenesis (50, 64), we
have investigated here the potential integrin-mediated signal-
ing events and functions triggered by microfibrils and fibril-
lin-1 fragments in human endothelial cells.

MATERIALS AND METHODS

A more detailed materials and methods is also provided as online
supporting information.

Cell Culture

Human umbilical venous endothelial cells (HUVEC) were isolated
using a technique adapted from Jaffe et al. (19, 29). Cells were
harvested from the umbilical vein by a 10-min incubation at 37°C
with collagenase 1A and cultured in 0.25 mg/ml human fibronectin-
coated dishes in medium 199 containing 22% human serum, strepto-
mycin (0.1 mg/ml), penicillin (100 Ul/m), and L-glutamine (2 mmol/
1). Umbilical cords were harvested after birth, with full informed
consent of the mother, according to the French government order no.
2007-1220 from August 10, 2007. Each cell culture was prepared by
pooling the endothelial cells from two to three umbilical cords.
Bovine aortic endothelial cells (BAEC) were prepared by collagenase
treatment of bovine aorta, as described previously (3).

Production of Aortic Microfibrils and Fibrillin-1 Fragments

Microfibrils were isolated from bovine aorta, in native and nonde-
naturing conditions, as previously described (4, 15, 38, 10, 44). A
piece of the aorta from a newborn calf was incubated for 18 h at 4°C
with 0.5 mg/ml purified bacterial collagenase 1A, in the presence of
hyaluronidase (5 U/ml) and freshly prepared protease inhibitors. In
both cases, segments of bovine aortas were collected at the slaugh-
terhouse immediately after the animal’s death. Microfibrils were
collected after passage of the supernatant through a CL-2B sepharose
column and purified by CsCl density gradient centrifugation. In our
experiments, aortic microfibrils (average molecular mass ~ 15,000
kDa) were used at 0.15 pg/ml (=10~ mol/l), 0.5 wg/ml (=~3.3 X
107" mol/l), and 1.5 pg/ml (=10~1° mol/l).

The cloning, expression, and purification of RGD-containing re-
combinant human fibrillin-1 fragments PF9 (residues 1528 -1807) and
PF14 (residues 1362-1688), using the mammalian expression vector
pCEP-pu/AC7 and 293-EBNA cells, has been described (5, 6). The
domains of the fibrillin-1 fragments are presented in the online
supporting information.

RGD-RGA PF14 mutant (PF14-RGA) was produced using a site-
directed mutagenesis of aspartic acid 1541 to alanine, as described (6).
Validation of the purity and folding of all the fragments used were
performed, as described (6).

[Ca?™]; in Adhering HUVEC

Measurements and analyses were performed either by confocal
laser scanning microscopy (Zeiss LSM 410, Carl Zeiss, lena, Ger-
many) or by classical microscopy (CellR system, Olympus, Rungis,
France) using the calcium-sensitive fluorescent dye Fluo-3/AM (ex-
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citation: 488 nm; emission: >510 nm, purchased from Sigma-Aldrich,
St. Quentin-Fallavier, France), according to the previously described
procedures (19). The cells were bathed in a physiological salt solution
composed of (in mmol/l) 125 NaCl; 5.6 KCl, 2.4 CaCl,, 1.2 MgCl,,
11 p-glucose, and 10 HEPES; pH 7.4. In the figures, each tracing
represents Fluo-3 fluorescence in one cell. Bradykinin, a reference
agent elevating intracellular free calcium concentration ([Ca®*];) in
endothelial cells, was used to verify cell functionality. In some
experiments, 10 pg/ml LM609 or JBSS blocking antibodies (Chemi-
con Europe, Southampton, UK) to integrins o33 or asf;, respec-
tively, were applied to HUVECs 30 min before the addition of PF14
and during the experiment.

Other experiments were conducted using the calcium-sensitive dye
Fura-2 (Sigma-Aldrich) in place of Fluo-3, to obtain actual intracel-
lular calcium concentrations. The loading and analysis procedures
were previously described (17).

Electrophysiological Recording

Calcium current recordings (imposed potential: +20 mV) were
performed using the cell-attached patch-clamp technique (single chan-
nel) and materials previously described (19). Cells were immerged in
a Tyrode solution containing (in mmol/l) 125 NaCl, 5.6 KCl, 2.4
CaCl,, 1.2 MgCl,, 10 HEPES, and 11 glucose, pH 7.4. The patch
pipette was filled with a solution containing Ba(CH3COO), (90
mmol/l) and HEPES (10 mmol/l), pH 7.4. Resting potential (Vi)
equals —57 =4 mV (n = 35) for nondividing cells (19). The recorded
transmembrane currents were integrated and analyzed using the soft-
ware Biopatch (Biologic, Claix, France).

SIRNA Knockdown of Integrin Subunits av and a5

siRNA synthesis. Control and a5 integrin small interfering RNAs
(siRNAs) were purchased as four oligonucleotide Smart Pools (Dhar-
macon, Lafayette, CO). siRNAs targeting av integrin were designed
using DSIR algorithm (67) and synthesized by Dharmacon.

siRNA transfection. Confluent HUVECs were cultured at 8 X 10°
cells in 60-mm diameter dishes for 24 h. Cells were then trypsinized
and transfected with siRNAs at 1 nM using AMAXA as previously
described (63). The subsequent decrease in a5 expression was as-
sessed by immunoblotting (—72%, see Fig. 5A). av is a protein
difficult to substantially knock down (23), and one transfection with
av siRNAs only produced a limited extinction (—25%). Therefore,
cells were transfected a second time with av siRNAs 48 h after the
first transfection. This led to a more significant extinction of av
(approximately equal to —71%), which was assessed by flow cytom-
etry (see Fig. 5, C and D) since, despite the use of several commercial
antibodies, av immunoblotting never produced clearly specific bands.
Transfected cells were then cultured in 35-mm diameter, fibronectin-
coated, glass-bottom dishes and used for calcium measurement ex-
periments.

Antibodies. Polyclonal rabbit antibody to integrin a5 and mouse
monoclonal antibody to integrin av were from Santa Cruz Biotech-
nology (Heidelberg, Germany). Monoclonal mouse antibody to anti-
B-tubulin was from Sigma-Aldrich.

Cell lysis and Western blotting. HUVEC monolayer extracts were
electroporated and then centrifuged at 15,000 g for 5 min at 4°C.
Protein concentration of the lysates was then determined with a
Micro-BCA kit (Pierce, Rockford, IL). After polyacrylamide gel
electrophoresis of the protein and electroblotting onto nitrocellulose,
the blots were incubated overnight (4°C) with the primary antibodies,
rabbit anti-integrin 5, or anti-tubulin in blocking buffer. The antigen
was then detected using the ECL kit (Amersham Pharmacia Bio-
tech-GE Healthcare, Saclay, France) with a peroxidase-labeled goat
anti-rabbit antibody.

Flow cytometry. Aliquots of 10° cells were centrifuged and resus-
pended in 1% fetal calf serum containing PBS in the presence of
anti-av-primary antibody and, after washing was completed, the cells

AJP-Cell Physiol » VOL 299 + NOVEMBER 2010 « www.ajpcell.org

/T0Z ‘9 Arenuer uo £'€£°022 0T Aq /610°ABojoisAyd-jj@adle//:dny wol) papeojumoq



http://ajpcell.physiology.org/

FIBRILLIN-1 INDUCES ENDOTHELIAL SIGNALING

were incubated for 30 min with the secondary antibody. Cells were
then pelleted, resuspended in 0.5 ml phosphate-buffered saline con-
taining 1% BSA, and analyzed on a fluorescence-activated cell sorter
analyzer (Becton Dickinson, Franklin Lakes, NJ). A fluorescence
threshold separating the av-negative cells (M 1) from av-positive cells
(M2) was set using autofluorescence of unlabeled/untransfected cells
as negative control. In each experiment, the relative av content in cell
populations was estimated as the product of the percentage of av-
positive cells (M2, see Fig. 5C, table, column head: “% Gated”) by the
mean av content per av-positive cell. The mean av content per
av-positive cell is assumed to be represented by the mean fluores-
cence level per cell (M2, Fig. 5C, table, column head: “Mean”) from
which the mean autofluorescence of unlabeled cells (measured at a
value of 12.9) was deducted. The value obtained for control siRNA-
transfected cells was considered as the reference, normalized to a
value of 100.

HUVEC adhesion assay. 96-Well microplates were coated with
different concentrations of human plasma fibronectin and fibrillin-1
recombinant fragments (PF14 and PF9) and kept at 4°C overnight.
BSA (10 mg/ml) was used as negative control. After the unbound
peptides were removed, the nonspecific binding was blocked by 10
mg/ml BSA for 2 h at room temperature. HUVEC were trypsinized
and seeded at 3 X 10* cells/well in serum-free medium and incubated
for 1 h, 30 min at 37°C, 5%CO,. Nonadherent cells were removed and
adherent cells were fixed with 10% glutaraldehyde in Percoll for 5
min. The wells were washed with phosphate-buffered saline and
stained with crystal violet 0.1% (wt/vol) in water for 30 min. The cells
were washed with water and lysed in 0.2% Triton X-100 in water for
2 h. The absorbance was measured at 460 nm with an ELISA plate
reader.

HUVEC Proliferation

Two different methods used were the following.

Trypsinization/cell count method. HUVEC were trypsinized and
resuspended in deprivated culture medium containing 5% human
serum to limit spontaneous cell proliferation. Two hours after cell
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seeding, the dishes were incubated with 1 pg/ml (=26 nmol/l) PF14
or PF9, or solvent of these fibrillin-1 fragments. After 48 h, cells were
trypsinized and counted using a Kova cell count unit. Proliferation
rate was (Cell numbersg, — Cell numbery,) X 100/Cell numberoy,.

WST-1 colorimetric method. The measurement is based on the
ability of mitochondrial dehydrogenases of viable cells to cleave
tetrazolium salts (2). Two hours after cell plating, HUVECs were
treated with PF14 (1 pg/ml; ~26 nmol/l) or solvent alone for 48 h.
Cell proliferation reagent 4-[3-[4-iodophenyl]-2—4(4-nitrophenyl)]-
2H-5-tetrazolio-1,3-benzene disulfonate (WST-1, 10 pl/well) (Roche
Diagnostics, Meylan, France) was added. Absorbance of the samples,
proportional to the viable cell number, was then measured after 3 h at
450 nm using a microplate reader, and background absorbance was
deducted. Proliferation rate was (Absorbancess, — Absorbanceon) X
100/Absorbanceon.

Cell Migration/Haptotaxis-Transwell Assay

Cell migration was assayed using a modified Boyden chamber as
previously described (39). The lower side of the transwell inserts (3
pm pore; Falcon, Becton-Dickinson) was previously coated overnight
with PF14 and PF9 fragments at 10 pg/ml.

Confluent monolayer of HUVEC was labeled in serum-free me-
dium 199 with CellTracker CMRA Orange (10 uwM) for 45 min at
37°C. Cells were rinsed and incubated in fresh medium for an
additional 45 min at 37°C to allow leakage of unbound fluorophore.

Fluorophore-labeled HUVECs were trypsinized and suspended at
the final concentration of 2 X 10° cells/ml in medium 199 containing
0.5% human serum. The cell suspension (100 wl) was added to the
upper side of the transwell inserts. The inserts were placed in 24-well
plates (Becton-Dickinson) containing 500 pl medium 199 with 0.5%
human serum (control) and incubated at 37°C. The migration of cells
through the optically opaque insert membrane to the lower chamber
was measured by fluorescence measurement at 0 and 24 h. The
fluorescence level difference between 0 and 24 h was representative of
the number of migrated cells.
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Fig. 1. Effect of aortic microfibrils on human umbilical venous endothelial cells (HUVEC) nuclear and cytoplasmic [Ca®>*]. A-H: dose effect of microfibrils. n =
27-30 cells (control: n = 56). I, J: effect of microfibrils (0.5 pg/ml) after 45 min incubation with cytochalasin-D (I pmol/l) (n = 28 cells). K,
L: microfibril-induced activation of membrane calcium channels recorded in patch-clamp experiments. All experiments were at least triplicated. Representative

experiments are presented.
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HUVEC Wound Healing Assay

This in vitro assay aims at evaluating the cellular proliferation and
migration capabilities when some cells are destroyed in a confluent
monolayer, leading to replacement of the missing cells. Wounds were
produced in vitro by scratching the cell layer using a pipette tip, and
wound closure was monitored over time as previously described (1).
HUVECs were grown in human plasma fibronectin-coated plates until
confluence in complete culture medium and then incubated in de-
prived culture medium (5% human serum instead of 22%) overnight.
Cell cultures were imaged at 0 and 8 h after being wounded and after
the addition of solvent, PF9, and PF14 (1 pg/ml). Wound areas were
measured from the images using Image J software (NIH). Wound
closure rate is (Wound areap, — Wound areag,,) X 100/Wound areaoy,.

Data Analysis

When applicable, groups were compared by using one- or two-way
ANOVAs followed by Fisher’s Least Significant Difference test for
paired comparisons, and presented values were means = SE. P = 0.05
was considered as statistically significant.

RESULTS
Action of Microfibrils on [Ca®™];

Addition of aortic microfibrils produced substantial, dose-
dependent and transient elevations of Fluo-3 fluorescence in
HUVEC cytoplasm and nucleus, indicative of free calcium
level increases. The [Ca®"] elevations, present in most cells,
were in the ranges of 1.3- to 8-fold at 1.5 pg/ml, 1.1- to 4-fold
at 0.5 pg/ml, and 1- to 3-fold at 0.15 pg/ml microfibrils (Fig. 1,
A-H). Regarding the cytoplasmic calcium rise, the effects of
1.5 pg/ml (peak mean value = 3.5 = 0.3-fold) and 0.5 pg/ml
microfibrils (peak mean value = 2.1 = 0.1-fold) were signif-
icantly higher than those produced by 0.15 pg/ml microfibrils
(peak mean value = 1.3 = 0.1-fold) or the solvent alone (mean
value = 1.1 £ 0.0-fold) (two-way ANOVA, P = 0.05). No
significant difference could be detected between the effects of
0.15 pg/ml microfibrils and solvent. Regarding the nuclear
calcium rise, the effects of 1.5 pg/ml, 0.5 and 0.15 pg/ml
microfibrils (peak mean values = 4.9 = 0.4, 2.1 = 0.1, and
1.8 *= 0.2-fold, respectively) were significantly greater than
those produced by the solvent alone (mean value = 1.2 *
0.0-fold) (two-way ANOVA, P = 0.05).

Since microfibrils interact with integrins (5, 35), which are
membrane receptors linked to actin microfilaments, we inves-
tigated the possibility of an actin-mediated transduction of the
microfibrillar signal. After treatment of HUVEC with the actin-
depolymerizer cytochalasin-D, the cells classically changed
their morphology to a more spread phenotype. When 0.5 pg/ml
microfibrils (an intermediate concentration high enough to
trigger substantial raises in [Ca®"]; and low enough to avoid a
potential plateau effect of the high doses) was applied, cy-
tochalasin-D-treated HUVEC had a response to similar to that
of untreated cells; i.e., a 1.5- to 4-fold increase in both nuclear
and cytoplasmic fluorescence. This indicated that actin micro-
filaments did not mediate the microfibril-induced [Ca®"]; sig-
naling in HUVECs (Fig. 1, B, F, I, and J).

The possibility of an involvement of Ca®>* channels in this
mechanism was then studied by using the patch-clamp tech-
nique. First, addition of microfibril solvent did not lead to
activation of membrane calcium channels showing that: 7) the
solvent is inactive on calcium channels, and 2) HUVECs

FIBRILLIN-1 INDUCES ENDOTHELIAL SIGNALING

present a low basal activity of their membrane calcium chan-
nels, with no spontaneous activation over time (Fig. 1K).
Conversely, addition of aortic microfibrils (0.15 pg/ml) pro-
duced a strong activation of calcium channels (Fig. 1L). Mi-
crofibril concentrations higher than 0.15 pg/ml were not used
since preliminary experiments have shown that such concen-
trations induced too high activity of calcium channels, rapidly
breaking the seal and ending the experiment. Intensity-voltage
experiments were then performed, and unitary currents were
measured at each imposed potential, resulting in a calculated
conductance of the activated calcium channels in the range of
6 pS. Similar low conductance calcium channels (<16 pS)
have previously been observed in endothelial cells and other
cell types and involved in the response to elastin and growth
factors (19, 20, 48, 66).

Action of Fibrillin-1 Fragments on [Ca*™];

To verify whether the major component of microfibrils, i.e.,
fibrillin-1, was responsible for the effects triggered in HUVEC
by aortic microfibrils, two overlapping fibrillin-1 RGD-con-
taining fragments PF9 and PF14 were used. When compared
with the control (Fig. 2A4), PF9 did not modify HUVEC [Ca®™];
at all the concentrations used (Fig. 2, B—FE). On the contrary,
PF14 application triggered a clear dose-dependent elevation of
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Fig. 2. Dose effect of fibrillin-1 fragments PF9 and PF14 on HUVEC
intracellular free Ca®>* concentration ([Ca®>*];). Addition of solvent (A) or
different concentrations of PF9 (B—E) or PF14 (F-I). B, bradykinin (1 wmol/l).
Representative experiments are presented. In each case, n = 30—45 cells from
at least 3 different cell cultures.
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[Ca"]; in these cells. The fluorescence peaks appearing after
addition of PF14 reached a value up to 2- to 5-fold the initial
fluorescence level at the highest concentrations (Fig. 2, F-I).
Also, some cells exhibited a unique fluorescence peak pro-
duced by PF14 (5-10% of the cells at 0.01-0.1 pg/ml PF14 ;
~25% at 1 pg/ml PF14; ~15% at 10 wg/ml PF14), while other
cells responded several times by fluorescence peaks (=~0% at
0.01-0.1 pg/ml PF14; ~15% at 1 pg/ml PF14; ~30% at 10
wg/ml PF14). The average values of calcium peaks were in the
ranges of 2.0 = 0.4- to 2.6 = 1.0-fold at 0.01-0.1 pg/ml PF14
and 4.2 = 04- to 4.9 = 0.2-fold at 1-10 pg/ml PF14. It was
observed, however, that some cells did not respond to PF14
(=90% at 0.01-0.1 pg/ml PF14; ~55-60% at 1-10 pg/ml PF14)
within the time window of the experiment, whereas 1 wmol/l
bradykinin (a reference activator of endothelial [Ca®"];) triggered
a strong increase in [Ca®*]; in most cells, confirming that
HUVEC were functional even when nonresponding to PF14
(Fig. 2). Similar effect of PF9 and PF14 were also obtained in
BAECs, which were responsive for ~30% of them. However,
the calcium peak amplitudes induced by 1 wg/ml PF14 (rang-
ing from 1.2- to 3.4-fold, peak mean value: 2.4 = 0.3-fold)
were of lower amplitude in these cells than in HUVECs (online
supplemental Fig. 1, A—C). Nevertheless, these results suggest
that PF14-induced [Ca®™]; signaling is a general mechanism in
endothelial cells.

C981

To verify whether PF14 acts on [Ca®"]; in a longer term,
HUVEC, free calcium concentrations measured by using the
dye Fura-2 were compared before and 24 h after addition of 1
wg/ml PF14 to the cell culture medium. No calcium peak could
be observed, and [Ca®*]; values were not significantly changed
by the treatment: 109 = 21 nM at time O h and after 24 h,
143 £ 23 nM in the presence of solvent and 138 = 19 nM in
the presence of PF14 (n = 29-32 cells in each group, paired
comparisons performed using one-way ANOVAs, P > (.25 for
the three comparisons). Our results suggest that PF14 does not
durably modify endothelial free calcium concentration.

Similar to the effects previously observed in elastin-stimu-
lated HUVECs (19), the calcium increases in response to
microfibrils or PF14 were often asynchronous and of various
amplitudes (no response to eightfold, single or multiple peaks)
from cell to cell. This is possibly due the short time window of
the experiment or, alternatively, to the presence of different
endothelial cell subpopulations (our cultures being made of
pooled cells from several individuals) differing from each other
by the phase in the cell cycle or the receptor allele or expres-
sion level, as suggested by the existence of a genotype-
dependent expression of endothelial NO synthase alleles (62).
PF9 or PF14 (1 pg/ml;=26 nM) were used in all further
experiments.
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Origin of Calcium Leading to PF14-Triggered [Ca’™];
Elevation in HUVECs

The question of the origin of the calcium mobilized by PF14
stimulation was then raised. When compared with control,
emptying of the intracellular calcium stores by thapsigargin
prevented PF14 to induce a [Ca®*]; increase, suggesting a
major role of the intracellular calcium stores in PF14 signaling
(Fig. 3, A and B). This result was supported by another series
of experiments aiming at the verification of the role of extra-
cellular calcium influx in the PF14-induced [Ca?*]; elevation.
Placing the cells in a calcium-free medium; i.e., preventing
calcium influx in the cells, had little effect on the general
profile of [Ca®*]; increases induced by PF14, except for a
progressive decrease with time in the calcium peak sizes (Fig.
3C). This decrease is likely a side effect of bathing the cells in
calcium-free medium, which induces a progressive emptying
of the intracellular calcium stores (41) and therefore reduces
the quantity of calcium that can be mobilized from the stores
over time.

Also, blockade of HUVEC calcium channels by nickel
chloride did not substantially inhibit PF14-induced elevation of

FIBRILLIN-1 INDUCES ENDOTHELIAL SIGNALING

[Ca?*]; (Fig. 3D). This feature confirmed that the origin of the
calcium mobilized by PF14 was mainly from the intracellular
calcium stores, while extracellular calcium influx took a mod-
est part, if any, in this mechanism. To further verify the minor
involvement of extracellular calcium influx in the PF14-trig-
gered elevation of [CaZ*];, the effect of PF14 on the activity of
membrane calcium channels was investigated using the patch-
clamp technique in HUVECs. PF14 was not able to induce a
calcium channel activity in 9 of 10 cells studied (Fig. 3, E-H),
confirming the weak involvement of calcium influx.

Receptors and Signaling Pathways Activated by Fibrillin-1
Fragment PF14

To uncover the receptors involved in the PF14-induced
calcium signaling pathway, a mutated form of PF14, PF14-
RGA, in which the RGD sequence was replaced by RGA
(which does not bind to integrins), was applied to the cells. As
opposed to the clear response to PF14 (Fig. 4A), PF14-RGA
did not trigger any response from HUVECs (Fig. 4B), suggest-
ing an implication of integrins in the signal transduction. This
was supported by the results from other experiments using
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blocking antibodies to integrins av3 and a5@1. Both anti-
bodies abolished the response of HUVEC to PF14, suggesting
the implication of the two above cited integrins in the trans-
duction of the PF14 signal and suggesting that both integrins
are needed for PF14 signaling (Fig. 4, C and D). The involve-
ment of av3 and a5B1 in PF14 signaling was further verified
by using siRNA-mediated downregulation of these integrins.
HUVEC transfection by siRNAs targeting either av or oS
induced a substantial drop of the content of these integrin
subunits in the cells (Fig. 5, A, C, and D) and strongly
decreased, if not abolished, in both cases the cell response to
PF14 (Fig. 5, B and E). This confirmed the implication of these

A Cc
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two integrins in the transduction of the PF14 signal, which was
also supported by the fact that classical ligands of av[33
(vitronectin) and a5B1 (fibronectin) produced the same type of
calcium responses than those induced by PF14 in HUVECs
(online supplemental Fig. 2).

The signaling pathway leading to PF14-induced elevation of
[Ca™]; was then studied. When compared with control, depo-
lymerization of actin microfilaments by cytochalasin D did not
significantly modify HUVEC response to PF14 (Fig. 4, E and
F), suggesting that PF14 signaling is not a mechanotransduc-
tion process mediated by integrin-connected actin microfila-
ments. However, since integrins are known to activate the Src
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Fig. 5. Effects of small interfering RNA (siRNA) targeting of integrin subunits av and a5 on [Ca>"]; elevations induced by PF14 in HUVECs. Western blot and
related quantification compared with tubulin of a5 (A) and effects of 1 wg/ml PF14 on [Ca?"]; (B) in HUVECs transfected with control or a5 siRNAs. Flow

cytometry analysis (C) and estimation of relative quantity (D) of av, and

effects of 1 pg/ml PF14 on [Ca?*]; (E) in HUVECs transfected with control or av

siRNAs. In C, the graphs present the number of cells negative (M1) or positive (M2) for av after transfection with control (left) or av (right) siRNAs. Quantitative
analyses are provided in the corresponding tables: Mean = mean fluorescence per cell ; % Gated = cell percentage in the group. When compared with the cells
transfected with control siRNA, av-positive cells were present in a lower percentage and expressed less av after transfection with av siRNA. PF14-induced
[Ca?*]; increases were of lower amplitudes in HUVECs transfected with control siRNA than in untransfected cells (Fig. 2), probably as a consequence of the
cell transfection processes. B, bradykinin (1 wmol/l). The experiments were duplicated.
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kinase, which subsequently activates phospholipase C (PLC)
(31), we have also investigated this signaling pathway. When
PLC was blocked by U73122, the PF14-induced [Ca®™]; ele-
vation was abolished, suggesting an involvement of at least one
of the reaction products of PLC as a signaling molecule (Fig.
4G). Since inositol-1,4,5-trisphosphate (IP3), a major reaction
product of PLC, is classically known to trigger a release of
calcium from the intracellular stores through binding to the IP3
receptor present at the surface of the endoplasmic reticulum
(8), the effects of IPs-receptor blockade with 2-APB were
evaluated. In this condition, PF14 was unable to trigger any
increase in [Ca®*]; in HUVEC, suggesting that IP; was the
second messenger responsible for intracellular calcium store
release (Fig. 4H). Finally, it has to be noted that, using confocal
fluorescence microscopy, PF14 was also found to increase
nuclear free calcium level in HUVECs (Fig. 41).

Effect of PF14 on HUVEC Adhesion, Proliferation, and
Migration

After it was demonstrated that PF14 was able to trigger
calcium signaling in HUVECs, it was found necessary to
investigate the effects of cell-fibrillin-1 fragment interaction on
several cell functions; i.e., adhesion, migration, and prolifera-
tion.

A first set of experiments showed that fibronectin, PF9, and
PF14 promoted a similar substantial dose-dependent adhesion
of HUVECs, except for the highest dose used, for which
fibronectin became slightly more effective than both PF9 and
PF14 (Fig. 6A).

Since [Ca®"]; is known to be involved in the regulation of
cell proliferation and migration (8, 50), we have then verified
whether the PF14-induced [Ca®*]; increase impacts on these
biological activities in HUVECs. The effects of BSA, PF9, and
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Fig. 6. Adhesion and transmigration of HUVEC in response to fibrillin-1
fragments PF9 and PF14. A: dose-dependent attachment of HUVECs to
fibrillin-1 fragments PF9, PF14, and full-length human fibronectin (n = 6 in
each case). B: transmigration of HUVEC when the underside of the Boyden
chamber inserts was precoated with 10 pg/ml BSA, PF9, or PF14 (n = 3 in
each case). *Significantly different from the control (uncoated underside of the
Boyden chamber). Data are means = SE.
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PF14 (10 pg/ml) on HUVEC transwell migration were as-
sessed in Boyden chambers. These experiments showed that
only PF14 was haptotactic and triggered a transmigration of
HUVEG:s significantly different from the controls in the range
of +65% (Fig. 6B). In addition, the effects of PF14 and PF9 on
HUVEC proliferation was assessed by the trypsinization and
direct cell counting method: only PF14 was found active, since
the proliferation rate was +108% 48 h after addition of PF14
(1 pg/ml), while it was only +61% after addition of PF9 (1
ng/ml) and +66% in the presence of solvent alone (one-way
ANOVA, P = 0.05) (Fig. 7A). The enhancement of cell
proliferation by PF14 was then verified by using the WST-1
colorimetric method: HUVEC proliferation rate at 48 h was
significantly higher after addition of PF14 (1 wg/ml) (+125%
after 48 h) than after addition of solvent alone (+100%)
(one-way ANOVA, P = 0.05) (online supplemental Fig. 1D).
This is consistent with the significantly increased cell prolif-
eration rate induced by aortic microfibrils (0.5 pwg/ml) after 48
h, which reached +70% after addition of microfibrils and only
+35% after addition of the solvent alone (one-way ANOVA,
P = 0.05) (Fig. 7A). Finally, the effects of fibrillin-1 fragments
on migration were further investigated in wound healing as-
says. After 8 h, only PF14 (1 wg/ml) induced a significantly
higher wound closure (51%) than in control conditions with
solvent alone (37%) (one-way ANOVA, P < 0.05) (Fig. 7, B

and O).

DISCUSSION

MFS, caused by mutations in the fibrillin-1 gene, raises the
question of knowing whether microfibrillar components are able
to trigger intracellular signaling events that would be missing in
case of genetic anomalies, potentially altering the developmental
process. To support this idea, microfibrils and RGD-containing
fibrillin-1 fragments are already known to enhance adhesion,
spreading, and migration of several cell types (5, 6, 14, 47, 53,
54, 61, 70). Further support to this hypothesis was provided by
1) evidence that mice mutated for other microfibrillar compo-
nents, e.g., fibulin-5 or emilin-1, have severe anomalies of
vascular development and structure (51, 73, 74), and 2) the
facts that mutations in the other main component of elastic
fibers, elastin, cause Williams syndrome, and elastin fragments
and tropoelastin have already been shown to influence Ca*
signaling, proliferation, and other functions in vascular and
other types of cells (17, 19, 27, 28, 33, 49, 68).

Here, we have shown that aortic microfibrils induced a
substantial dose-dependent elevation of cytoplasmic and nu-
clear free calcium levels in endothelial cells. In particular, the
rise in nuclear calcium level is known to modulate the activity
of transcription factors and stimulate gene expression and cell
proliferation (57) and may explain, at least in part, the in-
creased cell proliferation triggered by microfibrils. To know
which component of microfibrils was responsible for this
effect, we studied the action of two RGD-containing overlap-
ping fragments of their main component fibrillin-1, i.e., frag-
ments PF9 and PF14. Although PF14 contains a wider se-
quence than PF9 on the NH,-terminal side of the RGD, both
fragments promote in vitro adhesion of fibroblasts (5, 6) and,
according to the present experiments and previous results (70),
endothelial cells. However, only PF14, not PF9, induced a sub-
stantial dose-dependent [Ca®"]; increase in HUVECsS, although
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lower than the rise induced by aortic microfibrils. The different
responses induced by PF9 and PF14 confirm the importance of
the amino acids on the NH,-terminal side of the RGD sequence
of PF14 for cell recognition and/or function, as suggested
previously (6, 40). At least, the PF14 domains upstream of
RGD are needed to stabilize the binding to 5@ 1 and facilitate
aS5B1 activation. If they are absent, the RGD domain cannot
activate a5B1 (6). Here, PF14 exerted a RGD-dependent action
on calcium signaling through its binding to integrins substan-
tially expressed in endothelial cells: a531 and av33, the latter
being known to also bind to tropoelastin (7, 56, 59). Curiously,
in our experiments, the blockade of each of these integrins
totally inhibited the effect of PF14. This could be explained by
the previously demonstrated cross-talk between ov@3 and
aS5B1 integrin signaling pathways (36) and subsequent inhibi-
tion of angiogenesis by blockade of either of these two inte-
grins (37). Alternatively, the simultaneous activation of both
integrins might be necessary for PF14 signal transduction in
HUVEC:s, as shown for the action of several angiogenic factors
in the induction of endothelial cells migration (25).

The transduction of extracellular matrix signals that activate
integrins is often mediated by the actin-based cytoskeleton
(69). Here, no involvement of actin microfilaments was ob-
served in PF14-induced calcium signaling in HUVECS, similar
to what was shown with aortic microfibrils. However, sequen-
tial mobilization of PLC, IPs, and intracellular calcium stores
were demonstrated to be a major pathway activated by PF14
binding to integrins and leading to [Ca®*]; increase. In addi-
tion, as opposed to the effects of aortic microfibrils, no clear
calcium channel activation could be observed following

Solvent
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Fig. 7. Effect of PF9 and PF14 on HUVEC prolif-
eration and wound healing. A: PF9 (1 pwg/ml), PF14
(1 pg/ml), and aortic microfibrils (0.5 wg/ml) effects
on HUVEC proliferation after 48 h, evaluated by cell
counting (n = 4-8 dishes per group). B, C: effect of
PF9 and PF14 (1 pg/ml) after 8 h on wound healing
assays in HUVEC cultures (n = 6). In A and B,
values are means = SE. One representative experi-
ment is shown in C. *Significantly different from
corresponding solvent (one-way ANOVA, P =
0.05).
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HUVEC stimulation by PF14. This, together with the higher
HUVEC response to aortic microfibrils than to PF14, suggests
that microfibril-induced calcium signaling in these cells also
involves either microfibrilar components other than fibrillin-1
or fibrillin-1 sequences that are not present in PF14.

Integrin activation by extracellular matrix proteins often
leads to [Ca®*']; elevation, which regulates many cellular
events, including adhesion, migration, proliferation, and angio-
genesis (8, 50, 64). The present experiments suggested that
PF14-induced increase in cytoplasmic and nuclear calcium
level enhanced, at least, HUVEC proliferation and migration.
Since microfibrils anchor the aortic endothelial cells to the
subendothelial elastic lamina in the embryo (14), microfibrillar
components, including fibrillin-1, could be responsible for
physiological endothelial calcium signaling at the onset of
vessel formation. Endothelial dysfunction is an important con-
tributor to MFS (12, 71), acting in synergy with vascular
smooth muscle cell (VSMC) dysfunction. Among several po-
tential effects, the calcium signaling induced by fibrillin-1
fragments in endothelial cells likely activates the production of
NO, which is known to regulate different functions of smooth
muscle cells, such as apoptosis and synthesis of matrix metal-
loproteases involved in aortic dissection and aneurysmal pro-
gression (21, 24, 72). Dysregulation of calcium signaling, due
to a decrease in the availability of fibrillin-1 in mutated animals
or patients, may then alter NO production and its signaling
effects, as suggested by the decreased activity of the calcium-
dependent endothelial NO synthase (eNOS) in the aorta of a
Marfan mouse model (12). In MFS, fibrillin-1 impairment may
therefore alter physiological fibrillin-1 signaling in endothelial
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cells, contribute to the endothelial dysfunction leading to the
disease (71), and directly account for the arterial anomalies.
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