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a b s t r a c t

We describe in this paper two applications of Eulerian level set methods to fluid-
structure problems arising in biophysics. The first one is concerned with three-
dimensional equilibrium shapes of phospholipidic vesicles. This is a complex problem,
which can be recast as the minimization of the curvature energy of an immersed elastic
membrane, under a constant area constraint. The second dealswith isolated cardiomyocyte
contraction. This problem corresponds to a generic incompressible fluid-structure coupling
between an elastic body and a fluid. By the choice of these two quite different situations, we
aim to bring evidence that Eulerian methods provide efficient and flexible computational
tools in biophysics applications.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Biophysics and biomechanics are two fields where Fluid-Structure interactions play an important role, both from the
modeling and computing points of view. In many 3D applications, flow and solid models coexist with biochemical systems.
For such problems, it is desirable to have at hand computing tools which readily couple models of different nature (typically
Eulerian for fluids, Lagrangian for solids), easily enforce continuity conditions at the interface and enable handling of
reaction-diffusion systems.
In a series of papers [4–6], such models were derived to compute the interaction of 3D incompressible fluids with elastic

membranes or bodies. Thesemodels are based on Eulerian formulations of elasticity, and rely on the use of level set functions,
both to capture the fluid–solid interfaces and tomeasure elastic stresses. Interface conditions are implicitly enforced through
the elastic forces acting on the flow equations [18]. They can be seen as an alternative to more conventional ALE methods,
where Eulerian and Lagrangian formulations of the fluid and the solid are coupled through explicit enforcement of interface
conditions.
The goal of the present paper is to present applications of this method to two types of problems arising in biophysics.

The first problem is the computation of equilibrium shapes of biological vesicles. In this case, the fluid structure model
is a dynamical model for shape optimization, in the spirit of [12], in contrast with more classical geometric approaches
[21,7]. Elastic stresses and immersion of the vesicle in an incompressible fluid are used to enforce constraints of constant
area and volume. In the second problem we are concerned with numerical simulations of spontaneous cardiomoyocyte
contractions. In that case, the model couples an incompressible anisotropic medium with a reaction-diffusion system for
calcium concentrations. This coupling is through a calcium dependent active stress in the elastic medium. Our approach
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differs from that in [24,16] by the fact that no remeshing of the structure is needed during cell deformation. This leads to
significant computational savings.
An outline of the paper is as follows. In Section 2we focus on the problemof equilibrium shapes for biological vesicles.We

present our level set formulation for the shape optimization, and show numerical results for biological vesicles. In Section 3
we turn to the elastic deformation of a cardiomyocyte. We recall the level set Eulerian formulation derived in [6] for a
transverse isotropic elastic body. We couple this model with the reaction diffusion model [8], and show numerical results
illustrating the association of cell contraction with calcium waves. Section 4 is devoted to some concluding remarks.

2. Equilibrium shapes of 3D phospholipidic vesicles

Phospholipidic vesicles are routinely considered as physical models, in particular for red blood cells. Their membrane
is a bilayer made of a fixed number of molecules. As a result, it only responds to change of area or breakup. Taking the
hydrodynamics into account is necessary, in order to be able to study the behavior of these 3D cells when they are immersed
in a flowing fluid. Phase-field models have been developed and used in 2D simulations, but 3D simulation of vesicles
dynamics in shear flow is still a challenging problem. As a first step in this direction, we consider here the problem of
finding equilibrium shapes of these vesicles, constrained to have a fixed volume and area. An important parameter is the
volume ratio

η =
3V (4π)1/2

A3/2
(1)

where V is the volume and A is the area, which measures the ratio between the volume of the cell and the volume of the
sphere having the same area.
Our computational approach mimics the underlying biophysical dynamics, in the sense that we assume that the cell is

moving in an incompressible fluid, and is subject to a very stiff elastic stress localized on the membrane. The curvature
energy that the vesicle is supposed to minimize is used to derive an external force driving it towards its equilibrium.

2.1. Level-set formulation

In this section we give a level set formulation for the curvature driven dynamics of elastic membranes immersed in an
incompressible fluid. Consider a domain Ω of R3 containing some incompressible fluid into which a vesicle is immersed.
This vesicle is considered to be an elastic surface. One way to describe the motion of this surface is to introduce a function
ϕ, whose zero level-set is the surface [17]. Given a signed distance function ϕ0 such that the initial interface is given by

Γ0 =
{
x ∈ Ω, ϕ0(x) = 0

}
,

the problem of localizing the structure is reduced to an advection of the function ϕ by the fluid velocity u. The velocity is
solution to a Navier–Stokes system with a singular source term, which accounts for the elastic forces acting on the fluid. As
observed in [4], when u is incompressible, the change of area of {ϕ = 0} is recorded in |∇ϕ|. Following [5], this makes it
possible to express the area energy in terms of ϕ alone:

Ea[ϕ] =
∫
Ω

E(|∇ϕ|)
1
ε
ζ
(ϕ
ε

)
dx

and the associated force is given by

fa[ϕ] =
{

P∇ϕ⊥
(
∇[E ′(|∇ϕ|)]

)
− E ′(|∇ϕ|)κ(ϕ)

∇ϕ

|∇ϕ|

}
|∇ϕ|

1
ε
ζ
(ϕ
ε

)
. (2)

In this formula ζ is a cut-off function classically used in level-set methods to spread the singular force on the mesh, P∇ϕ⊥ is
the orthogonal projector on ∇ϕ⊥ and κ(ϕ) = div ∇ϕ

|∇ϕ|
is the mean curvature. The constitutive law r → E ′(r) describes the

response of themembrane to a change of area. As we already pointed out, in the present application themembrane is nearly
inextensible, and we choose E ′(r) = λ(r − 1) for large values of λ. This somehow corresponds to penalizing the change of
area.
In order to account for curvature effects, we next introduce the following energy:

Ec[ϕ] =
∫
Ω

G(κ(ϕ))|∇ϕ|
1
ε
ζ
(ϕ
ε

)
dx

where |∇ϕ| 1
ε
ζ
(
ϕ

ε

)
dx is an approximation of the surface measure. A common choice is G(r) = 1

2 r
2, but the identification

of terms is made easier in the following by keeping a general function G. The strategy to compute the curvature force is to
take the time derivative of the energy, and identify it with the power of the generated force:

dEc
dt
= −

∫
Ω

fc · udx.
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Let us first compute the differential of Ec :

dEc[ϕ](δ) =
∫
Ω

G′(κ(ϕ)) div
(
∇δ

|∇ϕ|
−
∇ϕ · ∇δ

|∇ϕ|3

)
|∇ϕ|

1
ε
ζ
(ϕ
ε

)
dx

+

∫
Ω

G(κ(ϕ))
∇ϕ · ∇δ

|∇ϕ|

1
ε
ζ
(ϕ
ε

)
+ G(κ(ϕ))|∇ϕ|

1
ε2
ζ ′
(ϕ
ε

)
δdx.

The two terms in the second integral may be combined: upon integrating the first one by parts, one obtains

−

∫
Ω

G(κ(ϕ))κ(ϕ)
1
ε
ζ
(ϕ
ε

)
δ + G(κ(ϕ))

∇ϕ

|∇ϕ|

1
ε2
ζ ′
(ϕ
ε

)
∇ϕδ +∇G(κ(ϕ)) ·

∇ϕ

|∇ϕ|

1
ε
ζ
(ϕ
ε

)
δ.

Therefore

dEc[ϕ](δ) =
∫
Ω

G′(κ(ϕ)) div
(

P∇ϕ⊥(∇δ)
|∇ϕ|

)
|∇ϕ|

1
ε
ζ
(ϕ
ε

)
−G(κ(ϕ))κ(ϕ)

1
ε
ζ
(ϕ
ε

)
δ −∇G(κ(ϕ)) ·

∇ϕ

|∇ϕ|

1
ε
ζ
(ϕ
ε

)
δdx

which from the expression of the mean curvature κ(ϕ), also reads

dEc[ϕ](δ) =
∫
Ω

G′(κ(ϕ)) div
(

P∇ϕ⊥(∇δ)
|∇ϕ|

)
|∇ϕ|

1
ε
ζ
(ϕ
ε

)
− div

(
G(κ(ϕ))

∇ϕ

|∇ϕ|

)
1
ε
ζ
(ϕ
ε

)
δdx.

Since P∇ϕ⊥(∇δ) · ∇ϕ = 0 the first term may be integrated by parts to give

−

∫
Ω

∇
[
|∇ϕ|G′(κ(ϕ))

]
· P∇ϕ⊥(∇δ)

1
|∇ϕ|

1
ε
ζ
(ϕ
ε

)
= −

∫
Ω

P∇ϕ⊥
[
|∇ϕ|∇G′(κ(ϕ))

]
·
∇δ

|∇ϕ|

1
ε
ζ
(ϕ
ε

)
dx

where the symmetry of the projector on ∇ϕ⊥ has been used. Integrating once more by parts we find

dEc[ϕ](δ) =
∫
Ω

div
[
−G(κ(ϕ))

∇ϕ

|∇ϕ|
+

1
|∇ϕ|

P∇ϕ⊥
(
∇[|∇ϕ|G′(κ(ϕ))]

)] 1
ε
ζ
(ϕ
ε

)
δdx.

Let us now compute the time derivative of the energy. Using the advection equation on ϕ,

d
dt
Ec[ϕ] = dEc[ϕ](ϕt) = dEc[ϕ](−u · ∇ϕ) = −

∫
Ω

fc(x, t) · udx (3)

which by identification gives:

fc[ϕ] = div
[
−G(κ(ϕ))

∇ϕ

|∇ϕ|
+

1
|∇ϕ|

P∇ϕ⊥
(
∇[|∇ϕ|G′(κ(ϕ))]

)] 1
ε
ζ
(ϕ
ε

)
∇ϕ. (4)

A more general derivation of curvature driven level set models for shape optimization will be given in [11].
The two forces (2) and (4) are finally inserted as forcing terms in the Navier–Stokes equations, leading to the following

model: given an initial velocity field u0 and an initial interface ϕ0, find (u, ϕ) solution to
ρ(ϕ)(ut + u · ∇u)− div(µ(ϕ)D(u))+∇p = fa[ϕ] + fc[ϕ] onΩ×]0, T [
div u = 0 onΩ×]0, T [
ϕt + u · ∇ϕ = 0 onΩ×]0, T [
u = u0 ϕ = ϕ0 onΩ × {0}

where, in the case of homogeneous interior and exterior fluids, we have µ(ϕ) = µ1H(
ϕ

ε
) + µ2(1 − H(

ϕ

ε
)) and ρ(ϕ) =

ρ1H(
ϕ

ε
)+ρ2(1−H(

ϕ

ε
))+ν 1

ε
ζ
(
ϕ

ε

)
where ν is themembrane surface density (in its reference state) andH(r) =

∫ r
−∞

ζ (s)ds.
The boundary condition to be enforced on ∂Ω plays a marginal role. For simplicity we in general choose homogeneous
Dirichlet boundary conditions.
Note that for this model the following energy equality holds for all t ∈ [0, T ]:
1
2

∫
Ω

ρ(ϕ)u2 dx+
∫
Ω

E(|∇ϕ|)
1
ε
ζ
(ϕ
ε

)
dx+

∫
Ω

G(κ(ϕ))|∇ϕ|
1
ε
ζ
(ϕ
ε

)
dx+

1
2

∫ t

0

∫
Ω

µ(ϕ)D(u)2 dx dt

=
1
2

∫
Ω

ρ(ϕ0)u20 dx+
∫
Ω

E(|∇ϕ0|)
1
ε
ζ
(ϕ0
ε

)
dx+

∫
Ω

G(κ(ϕ0))|∇ϕ0|
1
ε
ζ
(ϕ0
ε

)
dx

which shows that the spreading of elastic and curvature forces inherent to the level-set method does not introduce any
energy dissipation. We also remark that the resolution of the full problem fluid/membrane, while not mandatory to obtain
equilibrium shapes (but mandatory to study the dynamical behavior of vesicles in shear flow), brings some advantages
from the viewpoint of volume conservation: indeed we will use a projection method which will ensure this conservation at
the discrete level. Note that in order to solve the minimization problem without any fluid, it is necessary to add a volume
constraint, which is usually enforced through a Lagrangemultiplier approach. Thismay result in a loss of accuracy for volume
conservation.
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Fig. 1. Shape optimization for equilibrium shapes of biological shapes. Top pictures: η = 0.8, bottom pictures: η = 0.586. Initialization to steady-state
from left to right. Computations made by Thomas Milcent.

2.2. Numerical results

The numerical results presented here show two typical situations of optimal shapes for 3D vesicles. The final shape
depends on the volume ratio coefficient r defined in (1). The first test case corresponds to r = 0.8, giving apeanutminimizing
shape (Fig. 1, top pictures). The second one to r = 0.586 looks like a real red blood cell (Fig. 1, bottompictures). In each series
of pictures, we have represented a sequence of shapes from the initialization stage (left pictures), to the steady-state optimal
shapes (right pictures). These shapes qualitatively agree with those observed for corresponding η values [19]. Ongoingwork
deals with the extension of the present method to simulate the dynamical behavior of 3D vesicles in shear flow.
Numerical resolution of Navier–Stokes equations is performed using a finite differences solver (projection method) on a

MAC mesh [1] of size 1283. In order to ensure volume conservation, which is crucial in this problem, the level-set function
is advected, using a fifth order WENO scheme [20]. Since the level-set function is used through its gradient to compute
the stretching, we do not perform the usual redistancing operation on the level-set function [17]. Instead, we use the
renormalization ϕ

|∇ϕ|
to measure the distance to the interface. This approach was proved in [5] to be efficient from the

point of view of both volume conservation and interface force calculations.

3. Eulerian three-dimensional modelisation and simulation of cardiomyocyte contraction induced by calcium waves

In a recent article, Okada et al. [16] investigated the mechanism of calcium wave propagation in connection with
cardiomyocyte contraction. They developed a 3D simulator, using themodel of [22] for the Ca2+dynamics and relying on the
Negroni and Lascano’s contraction model [14] which couples Ca2+concentration with force generation. For the elastic part,
an isotropic Saint Venant–Kirchhoff hyperelastic model was assumed and myofibrills, Z-lines, sarcolemma, cytoskeleton
and cytoplasmwere represented by various finite element families. In our paper we adopt a similar approach in an Eulerian
framework: following [6], we use a level set approach of the fluid-structure coupling that occurs between the surrounding
fluid and the cardiomyocyte, considering these two as a unique incompressible continuous medium. The microscopic
internal structure of the cardiomyocyte is not described: the passive property of themyocyte is given by nonlinear elasticity,
with a transverse isotropy assumption accounting for the topology of the sarcolemma. The calcium dynamics are coupled
through an active stress law given by Stuyvers et al. [23], as described in Tracqui et al. [24]. While our model does not
pretend to reproduce the internal structure as precisely as in [16], it is more realistic in some respects in the elastic part. In
particular, it is worth noticing that the Saint Venant–Kirchhoff constitutive law considered in [16] should not be used for
the large deformations observed in myocytes.

3.1. Description of the model

In this section, we rely on the level set framework developed in [6] for anisotropic elastic bodies in interaction with
incompressible fluids, and couple this model with a differential system for the Calcium concentration responsible for the
active stress.
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3.1.1. Eulerian formulation of the passive continuous medium
The cardiomyocyte is immersed in a fluid which lies in a bounded domainΩ ⊂ R3. We denote by u the divergence-free

velocity field of the whole continuous medium, assumed to be C1 and to vanish on the boundary ∂Ω .

(H) u ∈ C1(Ω × [0, T ]) and u = 0 on ∂Ω × [0, T ].

The interface between the cardiomyocyte and the fluid is captured by a level set function ψ0. Note that ψ0 needs not be
a signed distance function. In our calculations it was obtained from experimental data, specifically by confocal microscopy
[25]. Let us introduce the characteristics of the vector fieldu.Wedenote by s→ X(s; x, t) ∈ R3 the solution of the differential
system

∂X
∂s
= u(X, s)

with ‘‘initial’’ condition X(t; x, t) = x. Classically, under the assumptions (H), themap x→ X(s; x, t) is aC1 diffeomorphism
fromΩ toΩ . Since u is incompressible, one has div u = 0 and thus the Jacobian of X , denoted by J , is equal to 1. Following
[6], to compute X in an Eulerian fashion, we use the following transport equation satisfied by X as a function of t, x:

Xt(s; x, t)+ u(x, t) · ∇X(s; x, t) = 0 (5)

still with the same initial condition on t = s. Once X is computed at time t (for s = 0), several quantities can be easily
obtained. The cardiomyocyte boundary position is given by the zero level set of ψ(x, t) = ψ0(X(0; x, t)). The left Cauchy-
Green tensor is given by ([2], p. 15, [3], p. 43)

B = FF T where F(x, t) = (∇X)(t; X(0; x, t), 0) = (∇X)−1(0; x, t)

the last equality being obtained by differentiation of X(t; X(0, x, t), 0) = x. For an elastic material whose response is
isotropic at point ξ = X(0; x, t), the Cauchy stress tensor at x is given by ([2], p. 50, [3], p. 115)

T (x) = TD(X(0; x, t), B(x, t)).

If this material is incompressible, then this constitutive equation becomes ([9] or [10], p. 45, or [3], p. 259 after applying a
Piola transform):

−p(x)I+ TD(X(0; x, t), B(x, t))

where I is the identity. If we describe the surrounding fluid as Newtonian, the stress tensor in this part of the continuous
medium is given by −p(x)I + µD(u) where µ stands for the viscosity and D(u) = 1

2 (∇u + ∇u
T). The conservation of

momentum may thus be written as

ρ(ut + u · ∇u)− div σ +∇p = f

where σ = σ Sχ{ψ<0} + σ Fχ{ψ>0} and σ S = TD(X(0; x, t), B(x, t)), σ F = µD(u). Of course the momentum equation has to
be understood in the sense of distributions. For computational purposes, a regularization of χ using the level set functionψ
must be introduced. If we denote as above by r → H( r

ε
) an approximation of the Heaviside function, the regularized stress

σε = σ
S
(
1− H

(
ψ

ε

))
+ σ FH

(
ψ

ε

)
varies smoothly across the interface ψ = 0, and the momentum equation may be understood in the classical sense.

3.1.2. Transverse isotropy
In the myocardic tissue, cells have a rod-like shape and are assembled along fibres and bundled by collagen. Thus

anisotropy is expected. More precisely, following [13], p. 80, the myocardic tissue can be considered as transverse isotropic
[15]. Let τ be the preferred direction for the cardiomyocyte, i.e. its long axis at time t = 0. Such a material can be
characterizedwith a strain energywhich depends on F and τ⊗τ . The stress tensor has then the following general expression

σ S = −pI+ 2α1B+ 2α2(tr(B)B− B2)+ 2α4Fτ ⊗ Fτ + 2α5(Fτ ⊗ BFτ + BFτ ⊗ Fτ) (6)

where αi is the derivative of the strain energy with respect to the invariant number i, with

I1 = tr(B), I2 =
1
2
[tr(B)2 − tr(B2)], I4 = |Fτ |2, I5 = (BFτ) · (Fτ). (7)

While I
1
2
4 stands for the fibre elongation (preferred direction), I

1
2
5 carries also an information on the elongation in the direction

normal to the unpreferred directions. For the sake of simplicity, we will restrict ourselves in this paper to the case where
α5 = 0. As the quantity computed by resolution of (5) is (x, t)→ X(0; x, t), we have to express the stress law in terms of
its components Xi(0; x, t), i = 1, 2, 3. As F = (∇X)−1(0; x, t), and det F = 1 by incompressibility, this is easily done:

F(x, t) = cof ∇XT =

(X,x2 × X,x3
X,x3 × X,x1
X,x1 × X,x2

)
=
(
∇X2 ×∇X3 ∇X3 ×∇X1 ∇X1 ×∇X2

)
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where X,xi × X,xj are row vectors, and ∇Xi × ∇Xj column vectors. The components of B = FF
T are thus obtained from two-

by-two scalar products of the X,xi × X,xj . For the invariants I1 and I2 involved in (7), after some elementary computations,
there holds

I1 = tr(B) = |X,x2 × X,x3 |
2
+ |X,x3 × X,x1 |

2
+ |X,x1 × X,x2 |

2
= | cof ∇X |2

tr(B2) = tr(B)2 − 2(|X,x1 |
2
+ |X,x2 |

2
+ |X,x3 |

2), I2 = |X,x1 |
2
+ |X,x2 |

2
+ |X,x3 |

2
= |∇X |2. (8)

After some tedious, yet elementary algebra, using (X,x1 × X,x2) · X,x3 = 1, (tr B)B− B
2 has the following simple expression:

(tr B)B− B2 =

|X,x2 |2 + |X,x3 |2 −X,x1 · X,x2 −X,x1 · X,x3
−X,x1 · X,x2 |X,x1 |

2
+ |X,x3 |

2
−X,x2 · X,x3

−X,x1 · X,x3 −X,x2 · X,x3 |X,x1 |
2
+ |X,x2 |

2


and α1, α2, α4 are functions of |cof ∇X |2, |∇X |2, | cof ∇XTτ |2.

3.1.3. Active contraction and final model
We now come to the coupling of the elastic properties with the biochemistry taking place inside the cell. For the active

behavior of the cardiomyocyte, we follow [24] where the active stress is added to σ S . With our notations, it corresponds to
adding in (6) the term

T0γ (Z(x, t))

to α4, where Z is the intracellular Ca2+concentration, and γ is the following Hill function [23]:

γ (Z) =
ZnH

ZnH50 + ZnH
.

The constant T0 was fixed to 5.5 kPa such that predicted and experimental amplitudes match. The calcium dynamics are
given by the following reaction-diffusion system [22,8]:

∂Y
∂t
= ν2(Z)− ν3(Y , Z)− kf Y (9)

∂Z
∂t
= ν0 + ν1β − ν2(Z)+ ν3(Y , Z)+ kf Y − kZ +∇ · (D∇Z) (10)

Z(r, t0) = Z0; Y (r, t0) = Y0 (11)

where the diffusion tensor is diagonal. As experimentally observed by [22], we considered a ratio D33D11 =
D22
D11
= 0.5 between

diffusion along the sarcolemma direction and the transverse directions. The calcium fluxes ν2 and ν3 are given by the
following Michaelis–Menten functions:

ν2 = VM2
Zn

K n2 + Zn
(12)

ν3 = VM3
Ym

KmR + Ym
Zp

K pA + Zp
. (13)

We refer to [24] for the precise biological meaning of constants and function appearing in (9)–(13), and to Table 1 for the
values used in the forthcoming numerical simulations.
The final model consists of the following set of equations:

ρ(ut + u · ∇u)− div σε +∇p = f , div u = 0
Xt + u · ∇X = 0, F = cof ∇XT, B = FF T

σε = σ
S
(
1− H

(
ψ

ε

))
+ σ FH

(
ψ

ε

)
with σ S = 2α1B+ 2α2(tr(B)B− B2)+ 2(α4 + T0γ (Z(x, t)))Fτ ⊗ Fτ and σ F = µD(u), coupled with the system (9)–(11).

3.2. Numerical results

For the Navier–Stokes and advection equations we used the finite-difference method described in Section 2.2. The
reaction-diffusion systemwas solved on the samemesh using a seven-point discretization of the (diagonal) diffusive terms.
We considered two cases. In the first case, the calcium concentration is homogeneous in the cell. In the second case, the
calcium concentration is initialized randomly and produces, after some transient period, a coherent wave propagating
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Table 1
Parameters values used in numerical simulations

Parameter Value Unit Parameter Value Unit

ν0 0.45 µM s−1 Y0 0.1 µM
k 2.2 s−1 Z0 10 µM
ν1 4 µM s−1 Z50 2.5 µM
VM2 65 µM s−1 β 0.05 –
VM3 500 µM s−1 D11 300 µm2 s−1

K2 1.2 µM D22 150 µm2 s−1

KA 0.92 µM D33 150 µm2 s−1
KR 3.5 µM T0 5.5 kPa

Fig. 2. Geometry of a cardiomyocyte obtained by confocal imagery [25] as used to initialize the level set function ψ .

Fig. 3. Uniform contraction of a cardiomyocyte resulting from an omogeneous calcium release.

across the cardiomyocyte. In both cases the cardiomyocyte geometrywas acquired fromdata obtained in [25] using confocal
microscopy (see Fig. 2).
In all our calculations we used a grid of 1283 points in a box surrounding the cell (the cell itself represented about 50%

of the computational box). However, to obtain a better quality visualization, we ran a better resolved transport equation for
the level set, using velocity values interpolated from the low resolution results. Calcium concentration where represented
on the fine mesh by interpolation from the lower resolution calculations.

3.2.1. Uniform contraction
In this first test case (Fig. 3), the coefficient β which controls the source of calcium is set constant in space. This results

in an homogeneous calcium release and in a uniform contraction along the whole body of the cardiomyocyte. Note that this
leads to a nonlinear elasticity problem with large displacements.
The cardiomyocyte is discretized on a 3843 grid for the advection equation, while the fluid-structure equations are solved

on a 1283 grid.

3.2.2. Coupling with a calcium wave
In this case, the coefficient β is a spatially localized function. This triggers a calcium wave which is starting on the left

front of the cell and is propagating towards the other end (see Fig. 4). Note that the propagation is faster along the fiber
direction, due to the higher diffusion coefficient in the reaction-diffusion CICR system (see Table 1). In that case, the calcium
peaks come with a deformation in a plane transverse to the principal axis of the cell. The efficiency, in terms of contraction
along the principal axis, is clearly much lower than in the previous case. Note that for clarity, in this experiment as in the
previous one, the fluid is not represented.
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Fig. 4. Calcium wave propagating into a cardiomyocyte. The color codes for the calcium concentration. Total simulation time: 1 s.

4. Conclusion

We have presented level set methods, based on Eulerian representation of elasticity, to deal with fluid-structure
interactions. Two biophysical examples were provided to illustrate our method in this field, for vesicles shape optimization
and cardiomyocyte contraction. These examples focus on the interaction of a fluid with an immersed membrane, or an
anisotropic elastic material. Both involve elasticity with large displacements, which would be very time consuming to deal
with in the classical ALE method.
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