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! Abstract
In combination with two photon excitation, FLIM is currently one of the best techni-
ques to quantitatively study the subcellular localization of protein–protein interactions
in living cells. An appropriate analysis procedure is crucial to obtain reliable results.
TCSPC is an accurate method to measure FLIM. It is however an indirect process that
requires photon decay curve fitting, using an exponential decay equation. Although
choosing the number of exponential terms is essential, it is labor-intensive and time
consuming. Therefore, a mono-model is usually applied to a whole image. Here we
propose an algorithm, named Liv, allowing pixel by pixel analysis based on the Dv2

value. Liv was validated using simulated photon decay curves with known lifetimes and
proportions. It showed a high robustness for decay curves with more than 103 photons.
When applied to lifetime images acquired from living cells, it resulted in a more realis-
tic representation of the interaction maps. We developed an easy-to-use procedure for
multi-model FLIM analysis, which enables optimized FRET quantification for all inter-
action texture studies, and is especially suitable to avoid the classical misinterpretation
of heterogeneous samples. ' 2008 International Society for Advancement of Cytometry
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BIOCHEMICAL assays can identify potential protein–protein interactions in cell
extracts, but studying these interactions in living cells is a more challenging task. The
most promising approach for the measurement of molecular interaction dynamics
exploits the energy transfer between fluorophores over short distances (Fluorescence
Resonance Energy Transfer; FRET) (1). This transfer occurs only if both molecules
are in close proximity to one another (typically less than 10 nm) (2).

Several strategies are used to obtain this measurement which are mainly based
on fluorescence intensity (3), anisotropy (4), and lifetime (5) measurements. The lat-
ter is rather accurate, especially when using a Time Correlated Single Photon Count-
ing (TCSPC) system (6) and an instrumental setup with a narrow Instrumental
Response Function (IRF) (7). This spectroscopy technique can either be used for the
measurement of fluorescence lifetime of selected areas or for the acquisition of com-
plete images; in which case it is referred to as FLIM (Fluorescence lifetime imaging
microscopy). TCSPC is an indirect method that allows determination of the fluores-
cence lifetime species by fitting measured photon decay curves using the following
equation:

y ¼
Xn

i¼1

ai # e$t=si þ b

 !

& IRF ð1Þ

With ‘‘b’’ the background level, ‘‘IRF’’, IRF of the acquisition system, ‘‘i’’ an index
associated with each exponential, ‘‘a’’ the proportion of each component and ‘‘s’’ the
corresponding lifetime.
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A mean fluorescence lifetime defined as in Eq. (2) is used
to facilitate comparison between experiments (8),

sm ¼
P

i ai:sP
i ai

ð2Þ

With ‘‘a’’ the proportion and ‘‘s’’ the lifetime of each fluores-
cent component.

In general, fluorescence lifetime analysis is performed
based on the Least squares method relying on the iterative
minimization of the v2 parameter (9,10). Parameters that
according to Marquardt (11) describe the difference between
the model and the measured data are:

v2min ¼ minaj ;sj

1
2

Pn
i¼1 fiðaj :sjÞ

2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance

p
Þ2

ð3Þ

and

fiðaj ; sjÞ ¼ Vi $ b þ IRF&
X

j

aj :e
ð$t
sj
Þ

 !

ð4Þ

With ‘‘i’’ the time channel, ‘‘V’’ the photon number, ‘‘b’’ the
background, ‘‘IRF’’, IRF of our system, ‘‘j’’ an index associated
with each exponential, ‘‘a’’ the proportion of each component
and ‘‘s’’ the corresponding lifetime.

Using a least squares based fit procedure implies the
choice of the fluorescence species used in Eq. (1). This choice
is usually achieved based on the fit curve residual distribution.

To accurately calculate the fluorescence lifetime, the
choice of ‘‘n" in Eq. (1) is essential as demonstrated in Figure
1. On one hand, a missing exponential term leads to an over-
estimation of fluorescence lifetime (Fig. 1A). On the other
hand, an overestimation of the model’s degree of freedom, i.e.
exponential terms results in instability of the fitting algorithm
(12), and so, in higher dispersion of estimated lifetimes (Fig.
1B). The Occam’s or Ockham’s razor (13), also referred to as
parsimony law, states a preference for simple theories. Conse-
quently, the fit model that describes the photon decay curve
with the lowest number of exponentials is preferred.

The choice of the optimal fit model based on the residual
statistics has a strong theoretical foundation in literature of
both statistics and information theory fields (14,15). However,
the information that is crucial to apply this theory is not easily
accessible from the FLIM analysis software. Moreover, it can-
not be directly used for the generation of lifetime images.

In this article, we describe an easy-to-use analysis procedure
based on the v2 variation that allows for best model choice on a
pixel-by-pixel basis. It uses information available in all FLIManaly-
sis systems without complex modification of the fitting algorithm.
We demonstrate its robustness throughout the analysis of series of
simulated photons decay curves. We then show the improvement
gained when applied to FRET investigation in living cells.

MATERIALS AND METHODS

Plasmids
The memb-eGFP-mCherry was constructed using the

memb-mCherry (16) which is derived from the PM-eGFP

(17). We inserted, upstream of the mCherry coding sequence
using standard molecular biological techniques, a hydrophilic
linker (18) and the necessary restriction enzyme cutting sites
for the in-frame subcloning of the eGFP fragment derived
from the pEGFP-1 (Clontech). Plasmid clones were propa-
gated in XL1 blue (Stratagene) and checked by sequencing.

For Rab6 and Rab11 plasmid constructs see (19) and
(20), respectively.

Cell Culture and Transfection
A HeLa stable cell line expressing eGFP was generated af-

ter transfection of 1 lg of pEGFP-1, using 3 ll of transfectin
(Bio-Rad). Clones were selected by repeated flow cytometry
sorting.

HeLa cells were grown in plastic flasks at 378C in 5% CO2

in Dulbecco’s modified Eagle’s medium (GIBCO/BRL) supple-
mented with 10% Fetal Calf Serum, 4 mM L-glutamine and
5 mM sodium pyruvate. Cells were plated on 32 mm diameter
glass coverslips 12 h prior to transfection. One hour before
transfection, culture medium was removed and replaced with
culture medium containing 100 units/ml penicillin/streptomy-
cin. Transient transfections of Rab plasmids were performed
by calcium phosphate method on native HeLa cells (21).

FuGENE HD was used for the transfection of memb-
eGFP-mCherry on HeLa cells stably expressing eGFP. Observa-
tions were conducted 24 h after transfection. For FLIM
imaging, culture medium was replaced by L15 medium (Invi-
trogen) for pH stabilization during experiments.

Two-Photon Fluorescence Lifetime Microscopy
The Time Correlated Single Photon Counting (TCSPC)

FLIM system was built around a Leica SP2 confocal Micro-
scope (Leica Microsystems), a pulsed laser source (Ti: Sap-
phire with a 5 W Verdi pump laser, Mira900-F, Coherent Inc.),
a detector with high temporal resolution (MCP PMT model
R3809U-52, Hamamatsu) and a dedicated photon-counting
and timing electronic card (SPC 730 TCSPC card, Becker &
Hickl). For more details about the system implementation and
characterization, see (7).

Monte Carlo Simulation of Photon Decay Curves
To assess the curve fitting estimation methods, a number

of data set or photon histograms with controlled/known pa-
rameters were generated using a Monte Carlo approach.

In brief, the method consisted of drawing in a random
number generator as many discrete time values as the desired
number of photons in the final data set. The density probabil-
ity function of the random generator corresponded to the the-
oretical decay curve of the simulated data set. To generate a
data set that mimics the instrument data acquisition charac-
teristics, we added uniformly distributed false photons to reca-
pitulate instrument noise. We also took into account that the
tail of photon decay curves could exceed laser pulse period
and consequently some photons might be collected in the
wrong time channels (data wrapping). This was solved by
implementing a modulo function that wrapped around the
generated data set.
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The controlled parameters were:

! n the number of time channels (1024 bins) in the photon
histogram,

! th the time length of a histogram bin, r the pulse repetition
period (12 ns),

! tp the start of the pulse,
! N the total number of photons,
! IRF the instrument response function,
! m the number of exponential decay functions fi such that
fi(t) 5 gi exp(2(t2tp)/si) when t ) tp and fi(t) 5 0 other-
wise, with gi the proportion and si the decay parameter,

! Nf the number of false photons due to instrument noise.

Let’s call D, the decay curve such that D(t) 5 IRF &P
1
mfi(t) where & denotes convolution.
The algorithm for data sets generation was the following:

1. Set all histogram bins to zero and variable count to zero,
2. Within a range from 0 to 1, draw a value x from a random

number generator with an uniform probability,

3. Find the tx value so that the normalised integral of D from
0 to tx equals x,

4. Calculate the bin number b/ integer[(tx mod r)/th], where
mod denotes modulo,

5. If b\ n then add a photon in bin b of the photon histo-
gram and increment count,

6. Repeat steps 2 to 5 until the counter equals N-Nf.
7. Within a range from 0 to 1023, draw an integer number k

from a random number generator with a uniform probabil-
ity,

8. Add a photon in bin k of the photon histogram and incre-
ment count,

9. Repeat steps 7 to 8 until count equals N.

Photon Decay Curve Analysis
Lifetime images were analyzed by fitting data with a

mono and bi-exponential function [see Eq. (1)] using the SPC
Image software (Becker & Hickl). First, for each point of the
curve, fi(aj,sj) was calculated according to Eq. (4).

Figure 1. Comparison between mean lifetimes obtained from a mono-exponential (A) or a bi-exponential fit (B) of simulated data sets,
compared with theoretical values. Simulations were performed on a mix of s1 5 0.6 ns and s2 5 2.4 ns with different proportions (0, 1, 5,
10, 25, 50, 75, 95, 99, and 100%) for a total simulated photon number of 105 and a signal to noise ratio of 100. Straight lines correspond to a
perfect correspondence between simulated and fitted lifetimes. Dotted lines correspond to 5% error. (C, D), v2 values obtained from the
previously described simulations either after mono-exponential (green squares) or bi-exponential (red open circles) fit for a total photon
number of 105 (C) and 106 (D) photons as a function of the second lifetime component proportion. 30 simulations per condition.
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The software then iteratively modifies aj and sj in order
to minimize the v2 parameter [Eq. (3)].

Following analysis, fluorescence lifetimes, proportions and
v2 values are exported in ASCII format and processed using the
MFS homemade ImageJ plug-in (22), available as a freeware.

RESULTS

Our aim was to optimize the fitting method, based on the
Occam’s razor or parsimony law, which implies that an addi-
tional exponential in Eq. (1) is only needed if it generates a
significantly improved solution. Although the natural tend-
ency of a fitting algorithm is to increase the number of vari-
ables in response to the system’s fluctuation, it is detrimental
to the overall understanding of the system. Therefore, imple-
menting a fitting quality criterion is essential and would
render both data analysis and biological interpretation, accu-
rate and relevant, respectively. Here, we propose to ground
this fitting quality criterion to the v2 variation as a function of
the incremental number of exponential terms.

We deliberately limited our demonstration to the choice
between a mono and bi-exponential model since it is represen-
tative of most interaction texture studies in living cells. It
could however be easily extended to a higher number of expo-
nentials terms.

Dv2 Definition and Threshold Determination
Although the v2 value is dependent on both the relevance

of the exponential model and the total photon number, a
threshold value may not be directly generated from these pa-
rameters to choose the best model. However, the difference
between the v2 after mono-exponential and bi-exponential fit
is only derived from the number of species included in the
model, as illustrated in Figure 2A. For instance, inaccuracy
linked to proper IRF estimation and convolution is the same
regardless of the number of species in the model. Thus, the
difference between v2 after mono-exponential and bi-expo-
nential fit results from the relevant usage of each exponential
model.

We next proposed to use the variation termed Dv2 in Eq.
(5) as a fitting quality criterion in order to ascribe the most
adapted exponential model.

Dv2 ¼
ððv2m $ 1Þ $ ðv2b $ 1ÞÞ:100

ðv2m $ 1Þ
ð5Þ

With ‘‘v2m’’ and ‘‘v2b’’ (2) being v2 value obtained respectively
after a mono-exponential or a bi-exponential fit applied to the
photon decay curve.

To test the relevance of this parameter as a fitting quality
criterion, we performed Monte Carlo simulations of photon
decay curves with different total photon numbers and expo-
nential component proportions (see MATERIALS AND METHODS

section). For each of these curves, the Dv2 was calculated. We
then tested different values of Dv2 as a discriminating criterion
to determine the optimal fit model. Results from these simula-
tions are summarized in Table 1.

To accurately quantify the fluorescence lifetime, the fol-
lowing requirements should be fulfilled: a minimum photon
number per curve and an appropriate Dv2 threshold. When
setting the Dv2 threshold to 20%, errors could be found in less
than 2% and 12% of the cases for acquisition respectively col-
lecting at least 105 and 104 photons per curve. When consider-
ing the usual amount of photons collected during FLIM acqui-
sitions on living cells, the above Dv2 threshold value leads to
both optimal accuracy and reproducibility.

Robustness of Dv2 as a Discriminating Factor
To further investigate the relevance of the Dv2 threshold,

we tested it on a series of photon decay curves, generated via

Figure 2. Estimation of a 20% Dv2 threshold in decay curve analy-
sis with variable lifetime contributions. (A) behavior of v2 values
after bi-exponential fit and Dv2 from curves presented in Figure 1.
Curves are either mono-exponential (squares 100% of s 5 0.6 ns,
green or s 5 2.4 ns, black) or bi-exponential (purple crosses, 5% of
s 5 0.6 ns; cyan dots, 10% of s 5 0.6 ns; blue asterisks, 25% of s 5
0.6 ns; red open circles, 50% of s 5 0.6 ns. The remaining % are s
5 2.4 ns contribution). Total photon number is 105 or 106 photons.
(B) analysis performed on data presented in Figure 1 based on a
Dv2 threshold set to 20%. Simulations were performed on a mix of
s1 5 0.6 ns and s2 5 2.4 ns with different proportions for a total
simulated photon number of 105 and a signal to noise ratio of
100. 30 simulations per condition.
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Monte Carlo simulations, with variable lifetimes, proportions
and signal-to-noise ratios values.

Firstly, we performed an extensive study by mimicking dif-
ferent behaviors of fluorophores solutions through the mixture
of simulated fluorescent lifetimes of s15 0.6 ns and s25 2.4 ns
as shown in Figure 2. These values were chosen because they are
representative of the ones obtained in classical FRET studies,
using the most common FRET pairs (i.e. CFP-YFP, GFP-mRFP,
and their variants). The first step was to assess whether any
advantages could be drawn from a Dv2 study over a regular v2

study. Data from Figure 2A clearly showed that no v2 value
could be found to classify experiments between mono-exponen-
tial and bi-exponential curves. However, all mono-exponential
curves exhibited a Dv2 below 10%, while bi-exponential curves
resulted in a Dv2 greater than 40%. Thus the previously chosen
fitting quality criterion, Dv2, set to 20% was hereby validated
since it provided the optimal exponential model choice. Confir-
mation came from Figure 2B where fluorescence lifetimes
obtained after a model choice based on a Dv2 5 20% were con-
sistent with expected theoretical lifetimes. In addition, the calcu-
lated mean lifetime benefited from both, mono-exponential fit-
ting stability, and bi-exponential accuracy.

Secondly, we determined the robustness of the Dv2 criter-
ion on simulated photon decay curves with variable lifetimes
and signal to noise ratios.

! 50%/50% mixes of different lifetime (Figs. 3A1 and 3A2)
! 50%/50% of s1 5 0.6 ns and s2 5 2.4 ns with different sig-
nal to noise ratio (Figs. 3B1 and 3B2).

In all cases, Dv2 enabled the optimal model choice while
keeping well above the 20% threshold value. The robustness of
the fitting quality criterion was validated, and applied to live
cell FRET measurements in classical fitting configurations
encountered in FLIM experiments.

Liv Algorithm
The different characterization steps enabled us to propose

an algorithm, Liv, based on Dv2 value, which is applicable to life-
time images. It is integrated in MFS, a Java plug-in for ImageJ.

Liv is divided into four steps:

! The photons/pixel threshold should be set to 103 to exclude
background pixels.

! The photons/pixel threshold should be set to 104. Based on
both simulations and theory, only a mono-exponential fit-
ting is reliable (17).

! Then, for each remaining pixel, the Dv2 is calculated [Eq.
(5)]: If Dv2 is less than 20%, a mono-exponential fitting is
chosen. If Dv2 is more than 20%, a bi-exponential is more
reliable.

! Finally, fluorescence lifetime values from previous steps are
gathered into a single lifetime image.

Extending Liv to more than two exponentials is easily fea-
sible. In order to do so, one needs to fix a new threshold value
for each additional exponential term and to calculate the Dv2

between ‘‘n’’ and ‘‘n 1 1’’ exponentials. Then, every image cal-
culated from each cycle should be gathered into one.

Application to Enhance Live Cell Lifetime Imaging
Upon Liv validation with Monte Carlo simulated photon

decay curves, we tested the algorithm by analyzing HeLa cells
stably expressing eGFP and transiently transfected with a
membrane targeted construct expressing eGFP and mCherry
in tandem (see MATERIALS AND METHODS section for details).
This plasmid was used as positive FRET reference (Fig. 4).

This experiment enabled the acquisition of images exhi-
biting an heterogeneous photon count, with mono-exponen-
tial areas, characterized by signal in the green channel only
(Fig. 4A, cell No. 1), and bi-exponential areas characterized by
signal from both green and red channels (Fig. 4C, cell No. 2
and No. 3). When considering the fitting residuals (Fig. 4B),
the random distribution after mono-exponential fit obtained
in cell No. 1 and No. 2 confirmed the relevance of such a
model choice while the non-random distribution obtained
from cell No. 3 suggested a lack of exponential species in the
model. The automated Liv based fit model choice presented in
Figure 4D revealed an analyzed image that consistently took
into account the above observation: a mono-exponential fit

Table 1. Frequency of occurrence when the wrong model is selected; depending on the number of photons and Dv2 threshold
[Color table can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Simulations were performed on a mix of s15 0.6 ns and s25 2.4 ns with different proportions (0, 25, 50, 75, and 100%) and a noise ratio
of 100. 30 simulations per condion.
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was applied to cell No. 1 and No. 2, and a bi-exponential fit to
cell No. 3. Most important, these results were achieved with-
out the need for a fastidious pixel by pixel manual inspection
of the fitting residuals. The resulting contrasted fluorescence
lifetime variation image is presented in Figure 4E.

Finally, we applied Liv to the analysis of HeLa cells co-
expressing Rab6A-CFP, Rab11A-YFP and a non-tagged
Rab6IP1 (21). These proteins are localized in the dispersed
Golgi apparatus upon nocodazol treatment (Fig. 5). Interac-
tions between Rab6A and Rab11 triggered by Rab6IP1, which
occur only in some vacuoles, provide a good example of inter-
actions heterogeneity in living cells.

A classical mono-model fitting (mono or bi-exponential
model applied to the whole image) yielded fluorescence life-
time images shown in Figures 5A and 5B, resulting in errors in
interaction interpretations. However, using our algorithm, we
generated a fluorescence lifetime image (Fig. 5C), containing

areas with one or two fluorescent species. The lifetime distri-
bution given for each pixel (Fig. 5D) underlined the mis-inter-
pretation resulting from a mono-model analysis. Indeed, the
mono-exponential analysis showed a single population, where
the bi-exponential model exhibited a bimodal distribution but
with wrong proportions. Figures 5E and 5F present photon
decay curves (blue) with associated mono-exponential (Figs.
5E1 and 5F1) or bi-exponential (Fig. 5E2 and 5F2) fitting
curves (red) and fitting residuals (black). Photon decay curves
presented in Figure 5E were extracted from a bi-exponential
area in accordance with both Liv and fitting residuals analysis
(red arrow). Obviously, there was a degree of freedom missing
in Eq. (1) after a mono-exponential fit (Fig. 5E1) when com-
pared to a bi-exponential fit (Fig. 5E2). In contrast, photon
decay curves, gathered from a mono-exponential area accord-
ing to Dv2 (green arrow), were perfectly adjusted with a
mono-exponential model (Fig. 5F1), while a bi-exponential

Figure 3. Estimation of a 20% Dv2 threshold in decay curve analysis with 50%/50% of different contributing lifetimes (A), respectively 1.6/
1.4 ns (red crosses), 2.0/1.0 ns (green circles) and 2.4/0.6 ns (blue asterisks); or different signal to noise ratio (S/N) (B), respectively S/N 5 1
(red cross), 10 (green open circle) or 100 (blue asterisk). (1), behavior of Dv2 as a function of v2 values after bi-exponential (2), fluorescence
lifetimes obtained after a mono-exponential fit (smono), a bi-exponential fit (sbi), fit using model determined by a Dv2 of 20% (sDv2), or cal-
culated from the lifetime and proportion used for simulation (sreal). 30 simulations per condition.
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fit improved neither the v2 value nor the fitting residual
(Fig. 5F2).

DISCUSSION

Fluorescence lifetime imaging is a powerful tool for loca-
lizing interactions in living cells. However, interaction texture
studies become increasingly interesting in the case of heteroge-
neity, which implies different behavior of photon decay curves.
FLIM analysis software, such as SPCImage, only proposes a
mono-model analysis, which dramatically decreases the life-
time contrast and leads to erroneous interpretation of FRET
measurements. Our algorithm, Liv, which is based on the cal-
culation of the Dv2 parameter, greatly improves the informa-
tion that can be extracted from lifetime images.

Optimal conditions were reached, for both simulated
and measured photon decay curves, when the Dv2 threshold
was set to 20% and the number of photons was greater than
103 photons per curve. In this context, the sole obstacle to

information extraction is the potential application of a bi-
exponential analysis to photon decay curves with poor sta-
tistics. This became quite obvious upon analysis of indivi-
dual lifetimes of either mix with low contribution of the
longest lifetime (less than 25% of the long lifetime compo-
nent in Fig. 1), or mixtures of simulated fluorescence species
with respective lifetimes of 1.6 ns and 1.4 ns. A mono-expo-
nential equation offered the best result as a bi-exponential
fit was not able to extract the appropriate lifetime and pro-
portion and only induced a higher instability of the fitting
algorithm.

Such an example is provided by cell No. 2 (Fig. 4).
Indeed, the presence of both eGFP (stable cell line) and
memb-eGFP-mCherry (signal in the red channel) implied
the presence of two fluorescent species, and thus suggested a
bi-exponential behavior. Considering the mean photon
number per curves (*2.104), and in view of the fitting resid-
ual and Liv based choice, a mono-exponential fit was more
appropriate in this context. In addition, a bi-exponential fit

Figure 4. Dv2 based analysis of HeLa cells expressing e-GFP and memb-eGFP-mCherry. (A) Two Photon image of eGFP [Ex: 880 nm, Em:
400–435 nm], scale bar 10 lm. (B) fitting residuals obtained after a mono-exponential fit of curves extracted from the pixels indicated in
(A). (C) Confocal image of channel [Ex: 543 nm, Em: 580–660 nm] corresponding to mCherry fluorescence emission. (D) Model choice
based on Liv, background (black), mono-exponential choice (gray) and bi-exponential choice (white). (E) Fluorescence lifetime image
obtained through Liv-based analysis.
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Figure 5. Dv2-based analysis of HeLa cell
expressing two different Rab proteins
tagged with CFP or YFP after nocodazol
treatment. Fluorescence lifetime obtained
assuming a mono-exponential decay (A), a
bi-exponential decay (B) or after analysis
based on a Dv2 threshold of 20% using the
MFS ImageJ plug-in (C). (D) Lifetime distri-
bution in A, B, C, and associated Look Up
Table. (E), (F), Photon decay curves (blue
dots) using a mono-exponential (E1, F1) or
a bi-exponential (E2, F2) equation (red) and
associated fitting residuals (black)
extracted from pixels indicated respec-
tively by a red and a green arrow in (C).
Scale bar, 5 lm.
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did not lead to a proper estimation of individual lifetime
and proportions, and resulted in higher instability of the fit-
ting algorithm. When a higher number of photons was col-
lected (Fig. 4, cell No. 3, *4.104 photons per curve), a bi-ex-
ponential fit was needed to calculate the proper mean life-
time and allowed the determination of proportion of
interacting molecules (*60%), as well as lifetimes from both
eGFP fluorescent species (*1.6 and *2.5 ns).

As shown in Figure 5, the use of Liv also provided great
improvement in the mean lifetime estimation. We observed a
significant difference between mean lifetimes calculated from
mono-exponential or bi-exponential fits which led to different
interaction interpretations. Moreover, the examination of the
residual shape of fitted pixel, revealed and emphasized that
different models should be applied. For instance, the pixel
pointed out by the red arrow (Fig. 5) required a bi-exponen-
tial fit whereas the one indicated by the green arrow suffered a
mono-exponential fit. For these two pixels, mono and bi-ex-
ponential fits resulted respectively in a fluorescence lifetime
of 2.22 ns and 1.76 ns for the red arrow and of 2.50 ns and
2.34 ns for the green arrow, corresponding to an error of
0.46 ns and 0.16 ns, respectively.

In summary, this easy-to-use procedure, based on the
application of the Dv2 fitting quality criterion within the Liv
algorithm provides an accurate fit model decision on a pixel by
pixel basis, ensuring a robust interpretation of interacting popu-
lations, which would not be possible with a mono-model
approach. This validated approach opens a new way towards
interaction texture studies in heterogeneous biological samples,
which mostly need quality fluorescence lifetime imaging analysis.
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