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ABSTRACT
Computational cell models appear as necessary tools for handling the complexity of intracel-

lular cell dynamics, especially calcium dynamics. However, while oscillating intracellular calcium
oscillations are well documented and modelled, a simple enough virtual cell taking into account
the mechano-chemical coupling between calcium oscillations and cell mechanical properties is
still lacking. Considering the spontaneous periodic contraction of isolated cardiac myocytes, we
propose here a virtual cardiac cell model in which the cellular contraction is modelled using an
hyperelastic description of the cell mechanical behaviour. According to the experimental data, the
oscillating cytosolic calcium concentrations trigger the spatio-temporal variation of the anisotropic
intracellular stresses. The finite element simulations of the virtual cell deformations are compared
to the self-sustained contractions of isolated rat cardiomyocytes recorded by time-lapse video-
microscopy.
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1. INTRODUCTION

Computational biology is booming and generates many hopes in terms of public
health, particularly in the domains of heart physiology (Noble, 2002). This is partly due
to the fact that modelling the dynamics of complex biological phenomena by nonlinear
partial differential systems is now tractable, as demonstrated by the Virtual Cell project
(Slepchenko et al., 2003), and amenable to a more straightforward confrontation with real
data because of the increasing development of recent imaging and physical measurements
techniques in living cells.

In the field of cardiac dynamics, modelling approaches started almost forty years ago
and have been developed at cell, tissue and organ levels. Since the pioneering work of
Fabiato and Fabiato (1975), who first measured the contractile force of isolated cardiac
myocytes, study of myocardial function from analysis of single cardiac muscle cells
have received an increased attention. Indeed, experiments conducted at the isolated cell
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level enable an analysis of cardiomyocyte response to mechanical stress, as well as
a visualisation of fast cytosolic and nuclear calcium dynamics in contracting cardiac
myocytes (Ishida et al., 1999).

But while mechanical stretch plays a key role in cardiac pathologies, especially
cardiac hypertrophy, it remains unclear how mechanical tension is controlled and propa-
gates intracellularly during cardiomyocytes contraction. It is known that this contraction
is triggered by the mechanism of calcium-induced calcium release (CICR), a nonlinear
process in which calcium liberation from the sarcoplasmic reticulum (SR) is activated
by cytosolic calcium (Fabiato, 1983), due to the presence of inositol 1,4,5-triphosphate
(IP3R) receptors calcium release channels, as well as to specialized ryanodine receptor
channels (RyR). In the presence of CICR, calcium influx within the cell triggers intra-
cellular calcium release and the propagation of a calcium wave which controls the cell
mechanical contraction.

Spontaneous calcium waves have been currently observed in cardiac myocytes (Ishida
et al., 1999), and this self-sustained dynamical behaviour has been implicated in patholo-
gies such as cardiac arrhythmia, after-contractions, and systolic and diastolic dysfunc-
tions (Stern et al., 1988; Takamatsu and Wier, 1990; Grouselle et al., 1991; Lakatta,
1992). Understanding the dynamic of the mechano-chemical couplings underlying the
self-sustained contraction of isolated cardiomyocytes can be greatly facilitated by math-
ematical modelling of these integrated and multi-scale biochemical and biomechanical
processes. However, while oscillating intracellular calcium oscillations are a well doc-
umented and modelled phenomenon (Schuster et al., 2002), a precise analysis of the
coupling between such oscillations and the spontaneous periodic contraction of isolated
cardiac myocytes, which would take into account the cell mechanical properties and
morphology, is largely lacking.

In the present work, we propose a virtual cardiac cell which exhibits the ex-
perimentally observed qualitative and quantitative features of the rhythmic contrac-
tion of isolated cardiomyocytes. Starting from the one-pool CICR model proposed
by Goldbeter et al. (1990), we developed a mechano-chemical cell model, which
couples the anisotropic diffusion of Ca2+ cytosolic concentrations to the anisotropic
contraction of the cell sarcomeres. This coupling is based on a precise quantifica-
tion of the cardiac cell rheology derived from the stress/strain response curves ex-
perimentally obtained with isolated cells (Cazorla et al., 2003). With the aid of the
bifurcation diagrams associated with the nonlinear cell model, 2D finite element
simulations of the virtual cell deformations have been undertaken and compared to
the self-sustained contractions of isolated rat cardiomyocytes recorded by time-lapse
video-microscopy.

2. MATERIALS AND METHODS

2.1. Cell Isolation

Cardiac myocytes were kindly provided by the LBFA laboratory (Grenoble Univer-
sity). Briefly, cells were isolated from rat heart ventricles by enzymatic dissociation as
described in Olivares et al. (1992). Cardiomyocyte contractions were then observed at
room temperature to favour spontaneous cell contraction.
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2.2. Time-Lapse Video-Microscopy

The spontaneous contractions of the isolated rat cardiomyocytes have been recorded
by phase contrast time-lapse videomicroscopy, using an imaging workstation composed
of an inverted microscope (Zeiss Axiovert 135) equipped with a Phase 1 Achrostig-
mat 5x or x10 objective, automated shutters (Uniblitz) and a CCD camera (CoolSNAP,
Roper Scientific) monitored via a computer by an image acquisition and analysis soft-
ware (MetaVue, Roper Scientific). The microscope calibration was performed using a
micrometric slide (PRESS-PRO21). Scaling along x and y axes with 5x objective were
respectively of 0.833 μm/pixel and 0.909 μm/pixel.

3. DESCRIPTION OF THE MODEL

3.1. Modelling Intracellular Calcium Oscillations

As a first step of our modelling approach, we considered the simplified but quite
well established two-variable model of Goldbeter et al. (1990) as a basic core for the
generation of spontaneous self-sustained calcium oscillations. In this model, the CICR
process is described by nonlinear fluxes between cytosolic Z (t) and sarcoplasmic Y (t)
calcium concentrations.

In order to take into account spatial effects linked to the intracellular propagation of
free calcium within the cardiomyocyte, we extend the above CICR model by consid-
ering the anisotropic diffusion of cytosolic calcium. Indeed, using microinjection of a
non-reactive fluorophore, Subramanian et al. (2001) found experimentally that calcium
diffusion in the cytoplasm of cardiac cells is anisotropic, with longitudinal diffusion (i.e.
along the principal cell axis) being favoured over transverse diffusion.

Considering a 2D domain corresponding to the projected morphology of an isolated
cardiac cell (Figure 1), the spatio-temporal variation of Z (r, t) and Y (r, t) at location
r(x, y) within the cell is thus given by the following partial differential equations:∣∣∣∣∣∣∣∣

∂ Z

∂t
= ν0 + ν1.β − ν2(Z ) + ν3(Y, Z ) + k f .Y − k.Z + ∇.(D∇Z ) (1)

∂Y

∂t
= ν2(Z ) − ν3(Y, Z ) − k f .Y (2)

In this model, ν1β is the constant flux of calcium into the cytosol, controlled by the
calcium concentration inside the SR as well as by IP3 concentrations. The flux k f Y is
a basal leak of calcium from the SR, while the input flux ν0 and efflux k Z refer to the
inward and outward Ca2+ fluxes taking place at the cell membrane respectively. The
intracellular calcium fluxes ν2 and ν3 are modelled by enzymatic like Michaelis-Menten
reaction terms, where the integers n, m and p represent the cooperativity degrees of the
activation process, according to the relationships:

ν2 = VM2.
Zn

K n
2 + Zn

ν3 = VM3.
Y m

K m
R + Y m

.
Z p

K p
A + Z p

(3)

where the positive constants VM2 and VM3 define the maximum rates of Ca2+ pumped
into and released from the SR respectively. D is a diagonal diffusion tensor with com-
ponents Dii (Di j = 0). According to experimental data (Subramanian et al., 2001), we
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Figure 1. Microscopic view of an isolated rat cardiomyocyte and associated geometrical 2D domain

showing the geometrical boundaries and the finite element mesh used in the model simulations. The cell

size is of 110 μm × 27 μm. The spatial mesh is refined in the neighbourhood of the small central region

where the cell is assumed to be stuck to the underlying dish. This corresponds to zero displacement

boundary conditions in the model.

considered the ratio D22

D11
between transverse diffusion coefficient and longitudinal diffu-

sion coefficient to be equal to 0.5.
Equations are non-dimensionnalized, according to the change of variables given in

the appendix, with new variables

C(r, τ ) = Z (r, t)

K2

; S(r, τ ) = Y (r, t)

K R
(4)

where the vector r denotes the spatial position and τ is the normalized time.
The spatio-temporal variation of these normalized Ca2+ concentrations are then given

as solutions of the following nonlinear differential system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂C(r, τ )

∂τ
= ϕ − C(r, τ ) + .

kr

ke
f cs[C(r, τ ), S(r, τ )] + ∇.(d∇C)

∂S

∂τ
= −1

ke
. f cs[C(r, τ ), S(r, τ )]

C(r, 0) = C0; S(r, 0) = S0

(5)

with

fcs(C, S) = ks .S. +
(

C p

k p
a + C p

)
.

(
Sm

1 + Sm

)
− k23(Cn/1 + Cn)

(
Cn

1 + Cn

)
(6)

This model can be put into the form of a generalised FitzHugh-Nagumo model for
describing excitable membrane (Sneyd et al., 1993; Keener and Sneyd, 1998), which
provides a general framework for the analysis of the virtual cell model dynamical prop-
erties.
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3.2. Modelling Anisotropic Cardiomyocyte Contraction

As recalled in the introduction section, cytosolic calcium concentrations monitor the
mechanical contraction of the cardiac cell sarcomeres. This mechanical force is generated
by myosin dependent sliding of actin filaments, the overall process being controlled by
the local calcium concentrations.

3.2.1. Passive mechanical properties

The cellular medium is assumed to be an homogeneous quasi-incompressible and
hyperelastic neo-Hookean continuum (Holzapfel, 2001), characterized by a strain-energy
function already used to model the mechanical response of tissues and living cells (Caille
et al., 2002; Ohayon et Tracqui, 2005) and given by:

W = a1(I1 − 3) (7)

where a1 is the cellular material constant (in Pa), while I1 is the first invariant of the right
Cauchy-Green strain tensor C (I1 = Trace(C)).

For this incompressible medium, the initial shear modulus G is related to the initial
Young’s modulus Ecell by the equation Ecell = 3 G. Furthermore, an additional explicit
relationship between Ecell and the material constant a1 can be obtained for uniaxial
tension or compression of the medium: in this case, Ecell = 2a1(2 + λ−3) where λ is the
extension ratio in the direction of the uniaxial stress. Notice that for small extension ratio
(λ ∼ 1), this expression reduces to Ecell ∼ 6a1.

3.2.2. Active contraction model

In order to incorporate the anisotropic active contraction, an active tension Tactive is
applied along the deformed sarcomere direction, which is specified by the unit vector ex

(Bourdarias et al., 2003). Hence the Cauchy stress tensor in active loaded state is given
by:

τ = −pI + F
∂W

∂ E
F T + τactive (8)

with

τactive = Tactiveex ⊗ ex (9)

where p is the Lagrangian multiplier resulting of the incompressibility condition (i.e.
detF = 1), equivalent to an internal pressure. The symbol ⊗ denotes the tensor product,
and I, F and E are the identity, elastic gradient and Green strain tensors, respectively
(Holzapfel, 2001). One can note that the last term of the Equation (8) gives the expression
of the active Cauchy stress tensor.

3.2.3. Coupling active stress with calcium concentrations

In this study, the local amplitude of the active tension is assumed to be calcium
concentration-dependent

Tactive = γ (Z ).Tmax (10)

So, γ (Z ).Tmax represents local active cellular tension driven by the intracellular
calcium concentration Z (r, t), and Tmax is the maximal tension that can be delivered by
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the sarcomere. In agreement with experimental data (Stuyvers et al., 2002), we modelled
the mechanical coupling described by the normalized function γ (Z ) by the Hill function:

γ (Z (r, t)) = ZnH

ZnH
50 + ZnH

(11)

where the positive constant nH is the Hill coefficient and Z50 represents the half-
maximum concentration of cytosolic calcium.

Assuming plane strain loading and neglecting inertial effects and volumic forces,
the local equilibrium equations are numerically solved using a finite element method
(Femlab c© software, Comsol) in the 2D domain extracted from real cell morphology
(Figure 1).

The following boundary conditions are considered in the simulations: (i) zero-fluxes
(Neumann) conditions for Z (r, t) and Y (r, t) on the cell boundaries (ii) zero displacement
conditions at the cell centre and (iii) stress free boundary conditions on the cell boundaries
(σ . n = 0, where n is the vector normal to the cell membrane).

4. RESULTS

4.1. Existence of Time-Periodic Solutions of the Model

The temporal dynamics of the model has been analyzed with the continuation algo-
rithms provided in the software package MATCONT (Dhooge et al., 2003). Generation
of periodic solutions from bifurcations of the steady-states is illustrated in Figure (2A).
On the right-side of the bifurcation diagram, a stable limit cycle bifurcates from the
steady-state by a Hopf bifurcation. A second Hopf bifurcation is located on the left
side of the diagram, occuring for small values of the model parameter β in this case,
the emerging limit-cycle is unstable. The Hopf bifurcation is sub-critical and a stable
periodic limit cycle appears for a lower value of parameter β through a saddle-node
bifurcation of periodic orbits.

The corresponding evolution of the period of the calcium oscillations is given in
Figure (2B). Model parameters have been chosen accordingly in order to get a period of
the order of 20 sec.

4.2. Identification of Cell Mechanical Properties

From the experimental measurements of Cazorla et al. (2003), we estimated a se-
cant Young’s modulus of about 30 kPa. Taking into account this elastic modulus value,
we furthermore assumed that the homogenised cardiomyocyte behaves like a nearly
incompressible medium.

4.3. Quantification of the Cell Contraction Dynamics

Typical snapshots of a cardiomyocyte contraction/relaxation dynamics are presented
in Figure 3. This images acquisition procedure enables us to first, establish the periodicity
of the cell contraction, second to quantify the contraction period and amplitude, the
duration of the non contracting phase as well as the cell contraction time profile (Table 1).
This overall dynamical pattern will be compared to our simulated cell behaviour.
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Figure 2. Bifurcation diagram given by the nonlinear model of intracellular temporal calcium oscilla-

tions associated with the differential system (1–2). Parameter β, which controls the balance of calcium

fluxes from the IP3 sensitive pool and from the extracellular medium, has been chosen as a bifurcation

parameter. (A) Evolution of the limit cycle in the phase plane (Y (t), Z (t)) when β increases and goes

through successively sub-critical and super-critical Hopf bifurcation points. (B) Associated variation of

the period of the limit cycle.
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Table 1. Quantification of the main features of the periodic spontaneous contrac-

tion we experimentally observed with isolated rat cardiomyocytes. These values

are derived from the analysis of the series of time-lapse videomicroscopy image

sequences we recorded on 6 contracting cells taken randomly in the dish

Number Contraction Duration of the Contraction Contraction

of cells period resting phase duration amplitude

6 17.0 ± 5.8 s 15.5 ± 5.4 s 1.5 ± 0.4 s 8 ± 0.9 μ m

Typically, the cell contraction periodicity is around 17 sec, including a very brief cell
contraction phase (1.5 sec) followed by a rest phase lasting almost 15.5 sec. (Table 1).
The maximal contraction amplitude of the cardiac cell is about 7.3% corresponding
approximately to 8 μm.

4.4. Simulating Virtual Cardiac Cell Contraction

On the basis of the theoretical analysis and on experimental data, the kinetic param-
eters defining the different calcium fluxes have been adjusted in order to get a simu-
lated temporal pattern of cardiomyocyte contraction which quantitatively agrees with
the recorded videomicroscopy time-lapse sequences. Their values are summarized in
Table 2. We also derived the amplitude Tmax of the active stress σactive. We get a value
of 3 kPa in order to obtain a contraction amplitude of about 8 μm (∼7% of cell length),
which is the mean value we obtained from the analysis of time-lapse sequences (Table 1).
The resulting time sequences of simulated cells morphological changes are presented in
figures 4 and 5.

The concentrations of free cytosolic calcium Z (t) oscillate between low values, dur-
ing which calcium is pumped into the SR (ν2 flux), and high values resulting from
autocatalytic efflux ν3 of calcium released by the SR.

The finite element simulations of cardiomyocyte contraction compare very satisfac-
torily with the observed real cellular dynamics. Assuming that a localized increase of
cytosolic calcium concentration occured on the left side of the cell, we observed the
subsequent propagation of a contraction wave from left to right (Figure 5), associated
with localized increasing then decreasing cellular deformations (Figure 6).

Figure 4 shows that the simulated contraction/relaxation appears periodically ev-
ery 16.6 sec and lasts approximately 3 sec, which agrees rather well with the mean
experimental values we measured (Table 1).

Figure 7 illustrates the temporal evolution of the Von Mises stresses, which reveals
the coupling between chemical and mechanical cell dynamics. Maximum stress values
propagate from left to right, keeping the cell under stress during all the propagation of the
calcium wave. Interestingly, the cell remains almost homogeneously contracted during
a short period, thus delivering at this time its maximal contractility performance.

5. DISCUSSION

Considering simultaneously a minimal nonlinear model of intracellular oscillations
and experimentally based cardiac cell mechanical properties, we propose in this work an
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Table 2. Set of biochemical and biomechanical parameter values used for the virtual cardiomy-

ocyte simulations. Most of the biochemical parameters values are taken from the original vali-

dation provided in Goldbeter et al. (1990)

Model parameters Definition Values Units

Biochemical parameters
υ0 Basal Ca2+ influx from extracellular medium,

assumed constant

0.33 μM.s−1

k Rate of passive Ca2+efflux from cytosol to

extracellular medium

1.0 s−1

k f Rate of passive Ca2+efflux from SR into cytosol 0.1 s−1

υ1 Stimulated Ca2+ influx from extracellular medium,

space dependant

2.3 μM.s−1

β 0.1 −
VM2 Maximal rate of Ca2+ uptake into SR 8.0 μM.s−1

K2 Threshold constant for Ca2+ uptake into SR 1.0 μM

VM3 Maximal rate of CICR from SR 45.5 μM.s−1

K A Threshold constant for CICR from SR 0.93 μM

K R Threshold constant for Ca2+release from SR 2.0 μM

n Hill exponent of Ca2+uptake into SR 2

m Hill exponent of Ca2+release from SR 2

p Hill exponent of CICR from SR 4

Y 0 Model steady-state Ca2+concentration in SR 0.1 μM

Z0 Model steady-state concentration of cytosolic Ca2+ 1.6 μM

Spatial parameters

D11 Longitudinal Ca2+diffusion coefficient 100 μm2.s−1

D22 Transverse Ca2+diffusion coefficient 50 μm2.s−1

D12, D21 Cross-correlated Ca2+diffusion coefficients 0 μm2.s−1

Biomechanical parameters

a1 Cardiomyocyte elasticity modulus 5 kPa

Tmax Cardiomyocyte contractile tone 3 kPa

nH Hill coefficient for Ca2+dependant contraction 4

Z50 Half-maximal concentration value for

Ca2+dependant contraction

3.0 μM

original model of isolated cardiomyocyte periodic and self-sustained contractions. The
virtual cardiomyocyte dynamics compare very satisfactorily with real time-lapse video-
microscopy sequences. This agreement is obtained both qualitatively and quantitatively,
with simulated cell contraction period, duration and amplitude quite close to the measured
experimental values.

However, some limitations of the present model deserve to be discussed. The first one
concerns the passive rheological properties of the cardiomyocyte. Indeed, we assumed
linear and isotropic elasticity, while the stress elongation response curve is nonlinear.
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Another limitation is due to the plane strain hypothesis we used: the cell anisotropy and
almost cylindrical shape of cardiomyocytes tends to support plane stress conditions.

Even if a detailed presentation of all biochemical and biomechanical processes would
require more detailed models, the present work underlines how such an in silico approach
can help to integrate data and dynamical cell properties on both calcium kinetics, cell
rheological parameters and calcium/stress relationships. In the context of computational
biology, this study thus provides a reliable basis for further investigations of the dif-
ferent mechanotransduction pathways activated by mechanical stretches within cardiac
myocytes through an explicit consideration of the coupling between cell stretching and
intracellular calcium dynamics.
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APPENDIX

The calcium model is defined by the nonlinear differential system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ Z

∂t
= ν0 + ν1.β − VM2

Zn

K2 + Zn
+ VM3

Z p

K p
A + Z p

Y m

K m
R + Y m

+ k f .Y − k.Z + ∇. (D∇Z )

∂Y

∂t
= VM2

Zn

K2 + Zn
− VM3

Z p

K p
A + Z p

Y m

K m
R + Y m

− k f .Y

(A.1)

Equations are non dimensionalized according to the following change of variables:

C(r, τ ) = Z

K2

S(r, τ ) = Y

K R
ka = K A

K2

k23 = VM2

VM3

kr = K R

K2 (A.2)

ks = k f .K R

VM3

ke = k.K R

VM3

ϕ = ν0 + ν1.β

k.K2

dτ = k. dt d = 1

k
D

One then gets the nonlinear differential system governing the normalized Ca2+ con-
centration of in the cytosol and the SR, denotes C(r, τ ) and S(r, τ ) respectively:⎧⎪⎪⎨⎪⎪⎩

∂C(r, τ )

∂τ
= ϕ − C(r, τ ) + .

kr

ke
fcs [C(r, τ ), S(r, τ )] τ = ∇.(d∇C)

∂S

∂τ
= −1

ke
. fcs [C(r, τ ), S(r, τ )]

(A.3)

with

f cs(C, S) = ks .S. +
(

Q p

k p
a + Q p

)
.

(
Sm

1 + Sm

)
−

(
Qn

1 + Qn

)
(A.4)
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