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The purpose of this research is to study the growth of the normal human left ventricle (LV) during the
fetal period from 14 to 40 weeks of gestation. A new constitutive law for the active myocardium
describing the mechanical properties of the active muscle during the whole cardiac cycle has been
proposed. The LV model is a thick-walled, incompressible, hyperelastic cylinder, with families of
helicoidal fibers running on cylindrical surfaces [1]. Based on the works of Lin and Taber [2] done on
the embryonic chick heart, we use for the human fetal heart a growth law in which the growth rate
depends on the wall stresses. The parameters of the growth law are adapted to agree with sizes and
volumes inferred from two dimensional ultrasound measurements performed on 18 human fetuses.

Then calculations are performed to extrapolate the cardiac performance during normal growth of the
fetal LV. The results presented support the idea that a growth law in which the growth rate depends
linearly on the mean wall stresses averaged through the space and during whole cardiac cycle, is
adapted to the normal human fetal LV development.

Keywords: Human fetus; Growth; Constitutive law; Myocardium; Myocardial fiber orientation;
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INTRODUCTION

The differentiation and growth of the heart are governed
by two sets of factors: those that are genetic (time-
dependent) and those that are epigenetic (function-
dependent). The first set is mainly effective during the
very first stages of the embryonic cardiac development.
During most of life, however, the growth of the heart is
closely matched to its functional load [3,4].

Due to the poor availability of experimental data, no bio-
mechanical model attempts to simulate the growth of the
normal human heart during the fetal period. The work of
Lin and Taber [2], using the theory of Rodriguez et al. [5]
for finite tissue growth, suggests that wall stress may be
a reasonable biomechanical factor that regulates growth in
the heart. Their model for stress-induced growth in the
developing heart was applied to the embryonic chick LV,
and assumed that the rate of growth depends only on

the end-diastolic stresses and that the myocardium is
isotropic.

However, the cardiac muscle tissue, or myocardium, is
a complex structure composed primarily of cardiac
muscle cells arranged in a more or less parallel weave.
Each cell has several branches to other cells, but
nonetheless a sense of direction or grain is preserved.
We shall denote the local grain direction by the unit
vector t and refer to it also as the local “fiber” direction
with the understanding that individual continuous muscle
fibers do not really exist. The study of the topological
organization of myocardial cells is a basic requirement
for the understanding of the mechanical design of the
normal and pathological human fetal heart. Anatomical
observations show that, in the human, the adult cardiac
muscle tissue [6—10] as well as the normal fetal
myocardium [1,11-14] have a highly specialized fiber
architecture.
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TABLE I Distribution of the population according to gestational age
(GA in weeks) and of the end-diastolic echocardiographic studies. The
normal length of the human gestation is 41 weeks. F; (i = 1,...,18) : are
the eighteen fetal hearts analyzed. Vi,: LV cavity volume, L;,: Internal
major-axis, L.y External major-axis, rj,: Internal equatorial radius, rey:
External equatorial radius, Vg,,: Myocardial volume. The mean
gestational age at the time of the study is 28 weeks

Vinl Linl Lext Tint Text meo
Study, GA (ml) (cm) (cm) (cm) (cm) (ml)
F1,20 w 0.421 1.367 1.558 0.318 0.439 0.487
F2,20 w 0.182 1.716 2.003 0.234 0.452 0.765
F2,26 w 1.707 2.296 2.879 0.502 0.812 3.119

F3,20 w 0.470 1.628 1.991 0.328 0.529 1.045

F3,36 w 3380 2310 2.831 0.773 1.143 6.170
F4,21 w 0.259 1.056 1.227 0.301 0.478 0.467
F§,21w 0.290 1.486 1.649  0.287 0.444 0.432
F5,28 w 2.082  2.154 2.500  0.660  0.888 2.834
F5,35w 2432 3.074 3.645 0.579  0.964 5.267
F6, 21 w 0.273 1.414 1.538 0.271 0.423 0.372

F6, 33 w 1.801 2.037 2.256 0.488 0.657 1.784
F7,22 w 0.761 2.032 2.272 0.328 0.466 1.075
F7,27 w 1.395 1.795 2.046 0.482 0.677 1.337
F7,35w 2.193 2.488 2.727 0.627 0.814 2.345
F7,37w 4.010 2.971 3.344 0.662 1.104 6.222

F8, 24 w 0.653 1.441 1.715 0.464 0.701 1.105
F8,27 w 0.678 2.003 2.387 0.321 0.653 1.999
F8,37 w 4.912 3.186 3.566 0.735 1.020 4.895
F9,24 w 0.721 1.810 2.186 0.376 0.659 1.861
F9, 30 w 2.117 2.719 2.993 0.555 0.781 2.582

F10, 25 w 0.865 1.669 2.076 0.450 0.663 1.462
F11,25 w 0.448 1.643 1.851 0.357 0.527 0.699
F11,29 w 1.587 2.268 2.558 0.536 0.873 3.055
F12,25 w 0.337 1.302 1.569 0.290 0.534 0.930
F12,33 w 3.405 3.119 3.530 0.655 0.926 4.860
F13,27 w 1.027 3.041 3.390 0.403 0.679 2.526
F14,27 w 1.676 2.525 3.006 0.525 0.837 2.670
F15,28 w 2.658 2.002 2.233 0.635 0.920 2.810

F15,33 w 2.57 1.864 2282  0.691 1.011 3.120
F15,34 w 2.631 2.608 3.035 0.552 0.958 4.741

F16, 29 w 0.418 1.751 2.165 0.356  0.627 1.389
F16,35w 3.369 2.558 2.973 0.771 1.027 3.541
F17,33 w 1.093 2.253 2460  0.395 0.652 1.632
F18,34 w 3.655 2.278 2.806  0.699 0.980 4.073

Several clinical studies currently exist that attempt to
measure the change of ventricular geometry and cavity
volumes of the human heart during the fetal life [15—17].
Nevertheless, these studies did not provide LV mass and
wall thickness, which are required to simulate the growth
of the human fetal LV. In our study, LV mass, diameters,
and wall thickness was evaluated in 18 normal human fetal
hearts.

From our anatomical and clinical data obtained on the
human fetuses, we have developed a model for stress-
induced growth in the developing human fetal LV where:
(i) the myocardium is an anisotropic medium, (ii) the new
suggested constitutive law for the active myocardium
makes it possible to simulate continuously the LV
behavior during the whole cardiac cycle, (iii) the growth
rate depends linearly on the mean stresses averaged
through the ventricular wall and during the whole cardiac
cycle, and (iv) the coefficients of the postulated growth
law are adapted to fit the clinical data.

Then simulations are run on LV in normal condition,
and the resulting performances are analyzed.

DETERMINATION OF LV VOLUME, MASS AND
GEOMETRY IN NORMAL HUMAN FETUSES BY
TWO-DIMENSIONAL ECHOCARDIOGRAPHY

Population and Methods
Population

The research study was approved by the Human
Investigation Committee of our institution. We studied
18 fetuses noted F;, i=1 to 18 (11 of which were
analyzed at least twice), from 20 to 37 weeks of gestation.
Gestational age was estimated by sonographic study in the
first trimester and or measurements of fetal biparietal
diameter and femoral length during the second trimester
according to the norms of our laboratory. The pregnancies
were normal as well as the clinical postnatal control of the
neonates. Table I gives the population used and shows the
distribution of gestational age for the 34 two-dimensional
echocardiographic (2DE) studies performed on 18 fetuses.

Analysis of Imaging

Fetal hearts were examined using an Acuson 128 variable
focus ultrasound system with a 5 or 3.5MHz sector
transducer. A complete examination of the fetal heart was
performed using cross-sectional imaging and spectral
Doppler to confirm a normal fetal heart anatomy. The
examinations were recorded on video tape for off-line
analysis. Analysis of 2DE recording was performed using
a computer-assisted analysis system and commercially
available software (UN-SCAN-IT, Silk Scientific, Utah,
USA). End-diastolic frames from the LV in apical two-
chamber view were selected and digitized. To select
appropriate frames for analysis, cine-loop acquired image
were carefully observed over several cardiac cycles. The
frame at atrioventricular valve closure was defined as the
end-diastolic frame. Alternatively, when the precise points
of valve closure could not be clearly identified, frames that
reflected the largest ventricles were selected. The septum,
endocardium and epicardium of the LV were traced and a
Simpson’s rule algorithm using thirty cords (n = 30) was
used to calculate LV cavity and external volumes (noted
respectively Vi, and V) (Fig. 1)

n n

Vint :%T;alz%7 Vext = g;A?L;Xt (1a,b)
where L;,, and L., are the internal and external major-axis
lengths measured from the endocardial-apical point and
epicardial-apical point to the point between the aorta and
the mitral valves, respectively. The Simpson’s rule is
based on the summation of n disks of equal height. The
parameters a; and A; (i = 1ton) in the Egs. (1a) and (1b)
are the internal and external diameters of the ith disk
respectively and are defined in Fig. 1. The myocardial
mass (Mpy,) is then obtained from the myocardial volume
(meo = Vext = Vint) using the formula Mmyo = pmyonyo
where ppy, is the volumic density of the myocardium
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FIGURE 1 Schematic representation of the apical two-chamber view of
the human fetal heart. LV: left ventricle, RV: right ventricle, LA: left
atrium, Ao: Aorta, A; and a; (i=1,...,n) correspond to the measured
diameters, L;,: internal long-axis, L.y external long-axis.

almost constant during fetal life [3] and equal to
1.05 X 10 *kg/ml. We have also measured, at end-
diastole, the internal diameter (2r;,) and external diameter
(2rex) at the equatorial level of the LV for every fetal
hearts. The equatorial plane is the plane perpendicular to
the major-axis at the level of the mid-internal major-axis

(Fig. 1).

Comparison and Clinical Results

Comparison

The 2DE determination of the end-diastolic, LV cavity
volumes (Vi,), internal long-axis (Li,) and internal
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FIGURE 2 Measured and computed end-diastolic LV cavity volume
during the normal human fetal life. We compare our sequential
measurements to those of McCaffrey e al. (1997) and Schmidt et al.
(1995). The best fit of our data is also presented. The open circles
correspond to our data given in Table L

4
----- Range of McCaffrey et al. P
- Sequential data L7
Best fit (Eq.2c) ’,’

Internal Long-axis (cm)

1

36 38 40

T T T T

I I 1 T
18 20 22 24 26 28 30 32 34
Gestational age (weeks)

FIGURE3 Measured and computed end-diastolic LV internal long-axis
during the normal human fetal life. We compare our sequential
measurements to those of McCaffrey ef al. (1997), and the best fit of our
data is compared to the model predicted values. The open circles
correspond to our data given in Table 1.

equatorial radius (t;,) were compared with those obtained
on human LV by Schmidt er al. [16] and by McCaffrey
et al. [17] (Figs. 2—4). McCaffrey et al. [17] calculate the
LV cavity volume from the apical four-chamber view and
Schmidt et al. [16] from two orthogonal apical views
which are the two-chamber and the four-chamber views.
The latter validate their volume calculations on fetal
lambs, by comparing the 2DE methods to the cast volumes
of these ventricles [18]. Figure 2 compares calculated end-
diastolic LV cavity volumes obtained by Schmidt et al.
[16] and McCaffrey et al. [17] with ours. Figures 3 and 4
compare measured end-diastolic LV internal major-axis
and internal equatorial radius obtained by McCaffrey et al.
[17] with our data. Our measurements and volume
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FIGURE 4 Measured and computed end-diastolic LV internal radius
during the normal human fetal life. We compare our sequential
measurements to those of McCaffrey et al. (1997), and the best fit of our
data is compared to the model predicted values. The open circles
correspond to our data given in Table L.
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FIGURE 5 Measured and computed end-diastolic LV external radius
during the normal human fetal life. The best fit of our data is compared to
the model predicted values. The open circles correspond to our data given
in Table L.

calculations are in agreement with those of the previous
authors. We did not find values concerning the major-axes
and the equatorial radii from Schmidt et al. [16,19] in their
published data. Figures 5 and 6 illustrate the change of the
LV external equatorial radius (r,;) and myocardial mass
(Mmyo), measured at end-diastole and during fetal life.

Intraobserver Variability

To test the variability in volume calculations from 2DE
(Vine and Vey,), major-axis lengths (L, and L.,,) and radii
(rine and 1ey) measurements, 5 randomly selected
echocardiographic calculations and measurements were
repeated. Variability was expressed as difference from the
mean of the two results in percent of the mean. We get a
variability of 5.5%, 11.7%, 11.7%, 6.8%, 8.2% and 1.7%
for Vint, Vinyos Lints Lexts Tint @nd Tey respectively.

Results

The fetal ultrasound measurements and calculations are
presented in Table I. The best regression equations found
for the end-diastolic, LV cavity volume (Viy,), myocardial
volume (Vyy,), internal major-axis (L;y,), external major-
axis (Ley), internal equatorial radius (r;,) and external
equatorial radius (r.,) were:

Vine = 0.017 X 10%%%¢ 1 = 0.87 (unit: ml)  (2a)
Vinyo = 0.056 X 10°°%¢ 1 = 0.85 (unit : ml)  (2b)
Line = 0.676 X 10°%'7'¢ 1 = 0.77 (unit: cm)  (2c)
Lexe = 0.795 X 10%917' 1 = 0.77 (unit : cm)  (2d)
Iine = 0.104 X 10%9%8 1 = 0.84 (unit : cm) (e)

Lexe = 0.187 X 10%2"® 1 — (.87 (unit : cm) (2f)
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FIGURE 6 Measured and computed end-diastolic LV myocardial mass
during the normal human fetal life. The best fit of our data is compared to
the model predicted values. The open circles correspond to our data given
in Table 1.

where ¢, is the growth time or gestational age in weeks,
and r is the correlation coefficient.

MAPPING OF THE ORIENTATION OF
MYOCARDIAL CELLS BY POLARIZED LIGHT
MICROSCOPY IN LATERAL WALL OF THE
NORMAL HUMAN FETAL LV

Quantitative measurements of fiber orientation through the
heart wall by means of polarized light analysis [20,21] on
some thick sections of normal human fetal heart embedded
inaresin and polymerized have been made by Ohayon et al.
[1] and Jouk et al. [14]. A complete three-dimensional
cartography of the pattern of the myofibers in the second
trimester fetal human heart has been established by Jouk
etal. [14]. Their data base (18 hearts aged 14 to 27 weeks of
gestation) (i) shows that at the beginning of the fetal period
the endocardial trabeculated muscle account for no more
than 15% of the gross myocardial volume, and (ii) supports
the assumption of transverse isotropy of the myocardium at
the fetal stage. The previous work [1] concerns three
normal human fetal hearts (FH) of 14, 20 and 33 weeks of
gestational age. For every heart, a series of thick sections
(500 pm), transverse with reference to the base to apex
axis, was cut. At a given myocardial point (or voxel which
is an elementary volume of 130 X 130 X 500 wm), the
elevation angle (or helicoidal angle) y with reference to the
plane of the section is measured. This angle yis the angle of
the fiber with the section plane. All their measurements are
made in the lateral wall of the fetal LV. For the three FH,
the variation of the elevation fiber angle from the
endocardial to the epicardial surfaces in the lateral wall
are measured in each transverse sections. From their
observations they can extract two anatomical features in
the lateral wall of their three fetal LV: (i) in one FH
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FIGURE 7 Description of the active rheology approach. The activation
of the muscle sample is a combination of two transformations. The first
one, changes only the material properties without changing the geometry
of the sample (from state P to state Ag), then the second one contracts the
muscle without changing the rheology (from state Ay to state A). At the
end, loading is applied (from state A to state C). We use the symbol @ for
a non elastic transformation and the letter F for an elastic transformation.
B is the activation function (8 = 0 at end-diastole and 8 =1 at end-
systole) and 7 is the Cauchy’s stress tensor.

the observed variations of the endocardial to epicardial
distributions of the elevation angle from base to apex were
small. Therefore they use, for the normal FH, a mean radial
distribution of y (noted 7o), and (ii) the mean radial
distributions of the elevation angle form endocardial to
epicardial surfaces between the three FH are quite the
same. Their best fit of this distribution is given by the
equation  Ynor.(p) = —55('2P70P — 1)/(*P70Y + 1)
(Fig. 4B in Ohayon et al. [1]) where Yy, is in degree and
pis the normalized radial position in the wall with p = 0 at
the endocardium and p = 1 at the epicardium, 0 = p = 1.

MECHANICAL MODEL FOR THE DEVELOPING
NORMAL HUMAN FETAL LV

In this model of structural and functional development of
the normal human fetal LV, the following assumptions are
made:

i) The active and passive material properties remain
constant during fetal life.

ii) Only radial, circumferential and longitudinal growth
of the fetal LV are considered.

iii) The muscle activation amplitudes and the time
phases in the cardiac cycle do not change during
fetal life.

iv) The kinematics of the LV growth allows only radial
displacement of the LV base and the apex is free to
move.

Left Ventricular Geometry and Fiber Organization at
the Initial Time of Growth

Let Py and S, denote the passive stress-free state and the
passive unloaded physiological state of the human fetal

LV at the beginning of the fetal life (t; = t,), respectively.
To keep the problem mathematically tractable, we have
made three major assumptions on the geometry of the LV
and fiber organization at the initial growth time,
corresponding to 14 weeks of gestation in our study:

i) The passive stress-free geometry of the LV (state Py)
is approximated by a thick-walled open cylinder of
length Lp, internal radius R;, , external radius
R., and opening angle ®p"". In fact we assumed
that the equatorial region of the LV drives the
cardiac performance.

ii) We neglected the penetration angle by assuming that
the fibers are running on cylindrical shells of
revolution. It has been shown [1,22,23] that this
angle affects mainly the LV torsion with almost no
effect on the LV pressure-volume relation and that
the elevation angle distribution is one of the major
determinant of the cardiac performance.

iii) We assumed an axial symmetry of the elevation
angle measured in the lateral wall of the LV at state
So, and we used a same radial distribution of
elevation angle invariant from base to apex given in
Section 3 by Ynor.(p). Note that the previous radial
distribution of 7s, (Or Ynor) as well as the internal
radius Riso , external radius RCSO and the length Lg, are
only given at the initial physiological state So. Then
these geometrical parameters and the radial distri-
bution change with the gestational age and become
one output of the model.

Constitutive Relation for the Active Myocardium

To be consistent with our mathematical formulation, the
letter @ is used for non elastic gradient tensor and the
letter F is used for elastic gradient tensor.

The activation of the muscle fibers changes the rheology
of the material and at the same time contracts the muscle
itself. To have a continuous elastic description during the
activation of the myocardium, we used an approach
similar to the one proposed by Chadwick [24], Ohayon
and Chadwick [25], Humphrey and Yin [26], Guccione
et al. [27], and Hunter [28]. From its passive zero-stress
state P, the activation of the muscle fibers is modeled by
the following two transformations (Fig. 7): the first one
(from state P to virtual state Ag) changes the material
rheology without changing the geometry, and the second
one (from Ag to A) contracts the muscle without changing
the rtheology of the material. Thus, the former is not an
elastic deformation and is described by the gradient tensor
®py, =1 where I is the identity matrix. In that first
transformation, only the strain energy function is modified
using an activation function J(t), where t is the cardiac
cycle time (Osec =t = 0.5sec). The second transfor-
mation is an elastic deformation caused by the active
tension delivered by the fibers and is described by the
gradient tensor F4,4. Finally, external loads are applied to
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FIGURE 8  Description of the human fetal LV growth taking into account the cardiac cycle (see text for details).

state A deforming the body through E¢ into C. When the
geometry of the muscle at state P is simple as a rectangular
sample with unidirectional fibers, the state A is also free of
stresses (Fig. 7). This is not the case for more complex
structure made of different fiber layers as the fetal LV
(Fig. 8).

The change of the material properties of the
myocardium during the cardiac cycle is described by a
time-dependent strain-energy function per unit volume of
state P noted W(Epy, t):

W(Eps, 1) = Winat (Epn) + W (Epp)

+ BOW: , (Epy) (3a)
where Epy is the Green’s strain tensor at an arbitrary state
H calculated from the zero strain state P (the state H could
be one of the states Ay, S, A or C shown in Figures 7 and 8),

Wmat, represents the contribution of the surrounding
collagen matrix, Wpas and W' arise from the passive and

the active component of the embedded muscle fibers
respectively, and B(t) is an activation function equal to
zero at end-diastolic state and equal to one at end-systolic
state (0 = B(t) =< 1). The third term of the right side of the
Eq. (3a) gives the variation of the muscle fibers rheology
during the cardiac cycle.

We treat the myocardium as a homogeneous, incom-
pressible, and hyperelastic material transversely isotropic
with respect to the local muscle fiber direction. This last
direction is characterized in an arbitrary state H by the unit
vector tg. In this study, the strain-energy functions are
[29]:

W (Bps) = £ (@09 — 1) (3b)

Whao Bpr) = 207D — 1 — bl = 1)) (o)
f

Wi (Epg) = (I4+I4 —2)% (3d)
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where a, b, ag, by, ¢, dr are material constants and I, I, are
two strain invariants given by I;(Epy)=tr Cpy and
L«(Epy) = tp-Cpytp where Cpy is the right Cauchy-
Green strain tensor (Cpy = 2Epy +I). Note that I is
directly related to the fiber extension A(Iy = A?).

To incorporate the active contraction, an active fiber
stress T© was applied in the deformed fiber direction tc.
Hence, during the cardiac cycle, the Cauchy stress tensor
in state C (noted 7¢) is given by:

aW(EPCa )]

Fbo — pcl + BOTOtc®tc (3e)
oEpc

7c = Fpc

where p¢ is the Lagrangian multiplier resulting of the
incompressibility of the material [30—32], and the symbol
® denotes the tensor product.

Description of the Human Fetal LV Growth

The growth of a tissue results of its cell division
(hyperplasia) or enlargement (hypertrophy). Cardiac
growth involves an increase in the number of myocardial
cells (hyperplasia) through fetal life and continues until
three months after birth in human [3]. After birth,
hyperplasia is prominent initially, and then cell size
increases (i.e., hypertrophies) with binucleation occurring
[33]. Considering the cardiac cycle in the present growth
model, it is necessary to point out that there are two time
scales, the growth time (noted t,) and the cardiac cycle
time (noted t). The former may have a scale of hours or
days, while the latter is less than a second. The growth
flow-diagram is shown in Fig. 8. From state Py, we
simulate directly the cardiac cycle and calculate the
cardiac stresses. Then these stresses affect the growth rate
@f,:;v. The fetal LV undergoes volumetric growth while
remaining stress-free, we therefore obtain the fetal LV
state P at time t, = t, + At, with an opening angle
OY"(t, + Atg). Then that state P(t, + At,) initializes a
new cardiac cycle and so on.

Governing Equations

In this work, the cylindrical coordinates and their
associated unit vectors in an arbitrary state H are noted

Ry, Oy, Zyy) and (ergr, o, €zm), respectively.

Kinematics of the LV Growth (tensor Gradient ® ')

We choose a simple kinematics of the LV growth, to keep
mathematics tractable in the present model. Only radial,
circumferential and longitudinal growth were considered,
thus the cylindrical geometry of the LV is conserved, and
no twist occurs during the growth process:

grow __
‘I)POP = agerp@erp, + ageppdeqp,

+ azezp®ezp, (4a)

where
oRp Rp 90p 0Zp
Ry~ O R0, %0 M4 gz, (-

Moreover, we assumed that the growth stretch ratios o
i=R, O or Z) vary with t, and have no spatial
dependence. Then if we allow only radial displacement on
the LV base (on Zp, = 0), the integration of the Egs.
(4b—d) gives:

*
C)
Rp = OZRRPO, ®p = —:@PO, ZP = azZpo (4e—g)
Py
with
®) = 0 aoag' (4h)

where Rip, =Rp, =Rep,, —Op =0p, =0, and
~Lpy = Zp, = 0. The two angles @, and @), are related
to the opening angle of the LV at state P (noted ©p"*") and
Py (noted @), respectively, by the equations @, =
77— OF"/2and O = m— OF" /2. Note if apay ' = 1
then the opening angle at initial stress-free state Py stays
the same at stress-free state P (i.e., @; = ('3);0). In addition,
if the cylinder at state Py is closed (@;0 = 77) then the
growth strain is geometrically compatible [34] and the LV
stays a closed cylinder at state P (®ps = I in Fig. 8).

With such a kinematics (Egs. (4e—h)) a same fiber runs
always on cylinder shells and the unit vector in the fiber
direction is given by t, = cos ype@p + sin ypezp where
vp is the radial distribution of the elevation angle at state
P. The relation between yp and the radial distribution of
the elevation angle at state Py (noted vyp,) is given by the
equation (see appendix part B):

Yp = arctan (ozé1 az tan yp,) (41)

Because the radial distribution 7y is only known at
passive unloaded physiological state S, it is useful to
write yp, as a function 7s, (see Eq. (B7) appendix part B).

Cardiac Cycle (Tensor Gradient ®pc or F4,c)

At a given growth time t,, the LV fetal stress-free state P
(Fig. 8) is subjected to the following deformations to
simulate the cardiac cycle: (i) The cylindrical geometry of
the LV at state P (or Ag) remains cylindrical at states S(t),
A(t) and C(t), (ii) The base of the fetal LV is only radially
free to move and the axial extension is proportional to the
distance of the plane from the base, (iii) a uniform simple
torsion in a plane perpendicular to the Z axis is
proportional to the distance of the plane from the base.
From these assumptions, a same fiber runs always on a
cylindrical shell and the unit vector in the fiber direction is
given by ty = cos yueen + sin yyezy, where vy is the
radial distribution of the elevation angel at the arbitrary
cardiac cycle state H.
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From state P, the activation of muscle fibers is modeled
as described previously (Section 4.2). The non-elastic
transformation ®p4, =1 changes the material rheology
without changing the geometry, then the LV undergoes
three elastic deformations. The closure of the open
configuration Aq gives the state S, and from that state S,
the fiber contraction produced by the active tension
delivered by the fibers gives the state A. Finally the
external load applied to state A gives the state C. Note that
two virtual states (Ag and S) are used to simulate the
cardiac cycle.

With this model, the cardiac cycle is viewed as a global
elastic transformation because ®pc = Fy)cPpy, = Fu,c.
The following paragraphs formalize, at a fixed growth
time, the governing equations of that elastic trans-
formation F4,c. Let the cylindrical coordinates in state
P (or Ap) and C(t) noted (R =R,,0 = @p,Z = Zp) and
(t=Rc, 0= 0Oc,z="7Zc), respectively, for simplicity.
Then the corresponding position vectors are

R =Regr + Zez and r +re, + ze, (5a,b)

According to the above hypothesis and using the
kinematics of the LV growth (Egs. (4e—h)), the kinematics
of the fetal LV during the cardiac cycle is described by:

TO+VWZ, z=AWMZ (Sc—¢)
Op

r=rR,t), 6=

where Rip =R =R, 0, =0 =0, -Lp <Z =0,
v = \I’pc = \PPUCQZI and A= Apc — Apocagl. The
axial extension ratio and the LV twist by unit of LV length,
at state Q relative to state H, are noted Ayp and Yo
respectively (H and Q are two arbitrary cardiac cycle
states).

From Egs. 5c—e and B6a—c (see appendix part B) we
can derive the temporal evolution of the LV cavity volume
at state C during the cardiac cycle (noted V):

Ve= 77T12ALP with Lp = aszo and
1 (6a—c)
Lp, = APOSOLSO

where 1; is the internal LV radius at state C.

Let identify in this study the curvilinear coordinates
o', 0% 63) to (r, 6, z). The base vectors, the components
of the metric tensors in states P and C, as well as the
invariants I; and I, are given in part A of the appendix.
Moreover, the incompressibility of the material yields
det ®pc =1, or:

ar 0,
3R = R—F(An @)

Associated to the cardiac cycle kinematics (Egs. (Sc—e)),
the non zero components of the Cauchy stress tensor given

* =1
(C)
- yc =arctan [(—PR> cos yp + Wsin pr
T

by Eqs. (3a—e), are:

0, . _\ow
'T]C1 = —Ppc + 2(R7P(Ar) 1) E (83)
e, \ W
2 - P 2
T8 = —pcr +{[(W ) b
@, \ aw| @b
+ <7P R> cos 7y, + Psin y, A
-+ B’T(O)r“zcosz Yc
oW . oW
7%3 = —Ppc + 2A2 <ﬁ‘ + SIHZ’)/p aT)
1 4 (80)
+ BTOsin?y,
W e, \ '
2 =73C2_2A{‘If§1—+ <7PR> Ccos yp
(8d)

+Wsin sin il
S 2"
Yp Yp TP

+ BTOr ™ cos yesin ye

where 8W /91, and 9W /91, can be easily derived from Eq.
(3a—d). The elevation fiber angle 7y at state C, which is
needed to derive the components of the Cauchy stress
tensor at the same state 7¢. (Egs. (8a—d)), is given by (see
appendix part B):

-1
r ! Asinyp

®

Neglecting the inertia and the gravitational effects, the
local equilibrium equation becomes divre = 0, or:

atl 1
C 4o

pral ik 1 ==, (10)

The boundary conditions at state C for the present
problem consist of a balance of forces and moments at the
closed end of the cylinder (or at the apex, on z = —L)
and specified tractions at the inner (or endocardium, on
r=r;) and outer surfaces (or epicardium, on r = r,).
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TABLEII Eleven cardiac cycle points where the simulations are run for
the results presented in Fig. 10. V.4: LV end-diastolic cavity volume, Vg:
LV end-systolic cavity volume (Ves = (1 — EF*)V,q, where EF* is the
ejection fraction), ED: End-diastolic state, BE: Beginning ejection state,
ES: End-systolic state, BF: Beginning filling state, 8: Muscle activation
amplitude (0 = B = 1), t: Cardiac cycle time, T.y.: Cardiac cycle period

State t/Teye B LV cavity volume
ED 0 0 Ved
BE 0.06 0.5 Ved
0.155 0.625 (BVed + Vep)/4
0.25 0.75 (Vea + Ves)/4
0.345 0.875 (Vea + 3Vey)/4
ES 0.44 1 Ves
047 0.4 Ves
BF 0.5 0.1 Ves
0.64 0.008 (3Veq + Veu)/4
0.76 0.004 (5Ved + Veo)/6
0.88 0.001 (11V,g + Ve)/12
ED 1 0 Vea

For an internal pressure P, and negligible external loads,
these conditions are:

Te

1
Jqﬁgr dr = EPvrf on z=-L¢ (11a)
I

Te
quc3r3dr =0 on z=—L¢ (11b)

b
Tlcl =—-Py(t) on r=m; (11c)
T};I =0 on r=r, (11d)

The Growth Law

As Lin and Taber [2] we used a linear relationship for the
growth law, but we assumed that the growth rates (noted ¢
with i=1,2,3 or (dg, de, dz)) depend of the mean
physical components of the wall Cauchy stress tensor
averaged through the space and during whole fetal cardiac
cycle (noted o) with j=1,2,3,4 or (G’(rr>,0'(99>,0'<zz>,
O(62))):

&; = Dyj(oyy — szj)) with i =1,2,3,
12)
and j=1,2,3,4

where dot denotes growth time differentiation, and
0'2}) = (a'zm, Uz09>, UZ‘ZZ>,0'Z‘Q>) are the growth equilibrium
stresses or the mean physical components of the Cauchy
stress tensor averaged through the ventricular wall and
during the whole adult cardiac cycle. The constants D;; are
the growth rate coefficients (unit: kPa~'s™') characteri-
zing the contribution of jth Cauchy stress physical
component on the growth in the ith direction. Note that
& > 0,4 <0andd; =0 means growth, resorption
and growth-equilibrium in the i direction, respectively.

The relationship between the non-zero local physical
stresses (noted oj;) and the components of the Cauchy
stress tensor are: Oy = TH, Opp = 12722, 0y = T, Oy =

.

NUMERICAL RESULTS AND DISCUSSION

Computational Procedure

At given growth time t,, the boundary problem (Egs. 4(h—
i), B7, 6(a—c), 7, 8(a—d), 9, 10, 11(a—d) and 12 for the
unknowns 7., 72, T, 7,1, yc, pe, Py, Aand W) was
solved numerically on a Silicon Graphics Indy 5000
SC/180 Mhz using the International Mathematical Statis-
tical Library (IMSL) routine NEQNS for nonlinear
equation systems. First, we evaluated the growth-
equilibrium stresses ‘sz)(i =1,2,3,4) by simulating the
adult cardiac cycle. In a second step, state P is computed
by fixing the value of the opening angle ®3’*" and inputing
the knowledge of the geometry and the fiber organization
of the FH at state Sj,. Then the growth computation starts,
and at each growing-time step the mechanical behavior
of the LV FH simulated during the cardiac cycle.
The growing-time step is chosen to be 1 week for our
computations knowing that numerical simulations done
with a growing-time step of 1 day give the same results.

For the adult and fetal life, we simulate the cardiac
cycle at 4 points corresponding to the opening and closure
of the valves for which we give the fiber-activation
amplitudes: B=0 at end-diastole, 8= 0.5 at the
beginning of ejection, 8 =1 at end-systole and 8 = 0.1
at the beginning of filling (states noted ED, BE, ES and
BF, respectively). We also give the period of filling phase,
isovolumic contraction phase, ejection phase and iso-
volumic relaxation phase, which are respectively 0.5Tcyc,
0.06Tyc,0.38Tcyc and 0.06T.,. where Ty, is the cardiac
cycle period. In order to compare our numerical results
with some experimental data coming form the literature,
we ran simulations at eleven points of the cardiac cycle.
For each point we know the values of the normalized
cardiac cycle, the amplitude of activation and the cavity
volume (Tab. II).

Adult Heart

The equations describing the cardiac cycle of the human
fetal LV (Egs. 6(a—b), 7, 8(a—d), 9, 10 and 11(a—d) can
also be used to simulate the cardiac cycle of the human
adult LV by letting agr = o = o, = 1 and by fixing the
value of (OF" or ©}). We were unable to find values for
the opening angle of the human adult LV, therefore we
used the data of Rodriguez et al. [35] obtained on the
mature rat LV (0" = 45°0r @), = 157.5°). The pre-
vious system is solved for the unknowns
T, T2, T8, T2, T, Yo, Pe, Py, A, and W, For the passive
unloaded physiological state of the adult LV (noted Cj),
corresponding to states C when myocardium is passive



122 J. OHAYON et al.

with zero cavity pressure (Fig. 8), we use the following
cavity volume, internal and external radii: V¢, =
64.34ml, Ric, =1.6cm, Rec, =2.55cm [36,37]. We
were unable to find values for the elevation angle in the
human adult LV myocardium, but based on the work of
Streeter [8] done on adult dog we assumed a linear radial
distribution of the fiber elevation angel yc, going from 70°
at the endocardium to —70° at the epicardium. The adult
simulation use an ejection fraction of 0.5 with an end-
diastolic volume of 192ml [38]. In a first step state P
(or Ap) is computed by letting the open angle " = 45°,
then simulation of the cardiac cycle is performed. The
passive material parameters are adapted to agree with the
experiments of Demer and Yin [39], and Lin and Yin [40]
done on the passive myocardium : a = 0.1kPa, b = 1.5,
ar = 0.4kPa, by = 2. The active material parameters are
adapted to agree with the physiological pressure-volume
relation obtained on normal human adult LV [36,38]:
cg=T70kPa, df = 1.2, Tg = 35kPa. From our calcula-
tiqns we obtained 0':“_> = —2.84kPa, 0?00> = 21.37kPa,
0., = 10.00kPa and 04y = 2.61kPa.

Normal Fetal Heart Growth

As said before, the geometry of the 14 weeks LV was
chosen as the growth passive reference state P, with
O = 0°. In fact we assumed that there is no residual
stress in the human LV at the beginning of the fetal period
[41] and that states Py and S are the same (Fp,s, = I). The
values of the cavity volume, the internal and external radii,
the internal long axis and the transmural distribution of vy
at state Sy are based on anatomical data of normal human
FH measured by Ohayaon et al. [1]: Vg, = 8.04 X
107 ml, R =0.16cm, Re, = 0.28cm and ys,(p) =
Ynor.(p) Where o is defined in Section 3. We began the
computational at 14 weeks by letting ®p %" = I (or ag =
ae = az = 1), then the next a; were calculated from
Eq. (12).

Friedman [42] found that developed tension is lesser in
fetal lambs than in adult sheep. This finding supports the
idea of decreased contractility in the fetus. Because the FH
was composed of only 30% myofibrils as opposed to the
adult heart with 60%, Friedman suggested that the
contractility of individual sarcomeres was similar in fetal
and adult hearts, but there was simply more contractile
material in adult hearts. Based on the Friedman’s
conclusions, we kept the same adult passive rheological
parameters a, b, a, by and d; for the FH, but we use a lower
values of c; = 20kPa and Tq = 15 kPa. These last data are
adapted to agree with the mean arterial blood systolic
pressure measured at the beginning of the fetal sheep
period [43] which is in the order of 25 mmHg. Moreover,
we assume that the muscle properties of the heart do not
change during human fetal development. Obviously, this
assumption may not be valid, but few data are available to
determine how these properties change. Concerning the
passive properties of the myocardium it is known that the
density of collagen in the myocardium increases slightly

with the gestational age, in fact the main change occurs
during postnatal heart development [44].

Again, we were unable to find values for the end-
diastolic and end-systolic LV pressures during human fetal
life in the literature and therefore regard the LV cavity
pressure as a free parameter. Instead, we use the measured
end-diastolic ventricular volume as an input of the model
(Eq. (2a)). Moreover, the ejection fraction (EF*) of fetal
LV is near constant and equal to 0.6 [16,45].

In our growth law we assume that the normal stresses o,
ogp and o, contribute in an equal manner to the tissue
growth in their direction (D;; = Dy, = D33) which is
consistent with the observed homothetic growth of the
myocardium [46]. Similarly, we assume that the normal
stresses influence the growth in their perpendicular
directions in an identical manner (Dj; = Dy; = D3 =
D31 = Dy3 = D3;) and that the shear stress o, regulates
equally the circumferential and longitudinal growth (Dyy =
Ds4). With such assumptions our growth law depends
only on 4 parameters D, D;,, Doy and D;4. Because the
growth cells are very sensitive to the shear stress [47]
which is small compared to the circumferential stress, we
have chosen a large amplitude for the coefficients Dy (i =
1,2, 3). The four growth-rate coefficients D;; are adapted to
agree with the measured variations with gestational age of
internal long axis, equatorial radii and LV wall
mass (Figs. 3-6): Diy =Dy =Ds33 = —6.5X%
107°kPa~!s™!, Djy =Dy =Dj3 =D3; =Dp3 =D3, =
—42x1073kPa~'s7!, Dyy =D3y = 30X 1073 kPa~!s~!
andDjy = —10X 103 kPa~ s

Figure 9 shows computed LV pressure—volume loops of
the normal heart during fetal development from 20 to 40
weeks of gestation. It appears that the slope of the
Growth End-Diastolic Pressure—Volume Curve
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FIGURE 9 Numerical simulation predicting the evolution of the LV
pressure-volume loops during normal fetal life from 14 to 40 weeks of
gestation. To have a better view of the pressure-volume loops evolution,
the cardiac cycle is presented every two weeks and only with the 4 points
corresponding to the opening and closure of the valves. The numbers
indicate the gestational age. GEDPVC: is the growth end-diastolic
pressure-volume curve, GESPVC: is the growth end-systolic pressure-
volume curve. (1 mmHg = 0.13 kPa).
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FIGURE 10 Comparison between computed values for a FH of 35
weeks of gestation and experimental data of a fetal lamb heart at similar
development. The plain lines are the computed LV pressure-volume loop,
end-diastolic and end-systolic pressure—volume relations for the human
fetal heart of 35 weeks of gestation. Open and closed circles are the
experimental data, of 2 isolated fetal lamb hearts between 129 and 135
days of gestation, given the end-diastolic and end-systolic pressure-
volume relations (Weil et al., 1993). The volume is normalized by the
passive unloaded physiological LV cavity volume. (1 mmHg=
0.13 kPa).

(noted GEDPVC in Fig. 9) is almost constant, while the
slope of the Growth End-Systolic Pressure-Volume Curve
(noted GESPVC in Fig. 9) decreases with gestational age.
The calculated end-systolic LV pressures (25 mmHg,
35 mmHg and 55 mmHg respectively for the FH of 20, 30
and 40 weeks) are in the order of the measured mean arterial
blood pressure during fetal sheep period [43]. For the end-
diastolic LV pressures our calculations (2.5 mmHg,
2.5mmHg and 7 mmHg respectively for the FH of 20, 30
and 40 weeks) are in agreement with the passive pressure-
volume curves obtained on fetal sheep ventricles [48]. Weil
et al. [49] have measured the end-diastolic and end-systolic
LV pressure-volume relationship on 10 isolated fetal lamb
hearts of 129 to 135 days of gestation. Knowing that the
term gestation for sheep is between 145 and 155 days, we
have compared their measurements with the numerical
results obtained for a human FH at similar development
which is 35 weeks of gestation. The comparison shows a
good agreement between experimental data and computed
values (Fig. 10).

Residual stress can also be predicted with such a model.
Figure 11 (curve a) gives computed opening angle of the LV
during fetal life from 14 to 40 weeks of gestation. This
result shows that the opening angle of the fetal LV increases
rapidly at the first weeks of the fetal life and slowly near
neonatal age with about 70° at 40 weeks of gestational age.
To date, there is no available experimental data of residual
stresses and strains to compare with our numerical results,
for the human fetal hearts. Actually, the prediction of the
residual stresses and strains could be also obtained with
growth laws based on other assumptions [50].

The shape of the computed transmural distributions of
end-systolic fiber stress are very similar during fetal growth
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FIGURE 11 Effect of the initial opening angle ®2"" on the predicted
evolution of the LV opening angle ®3"" during normal fetal life from 14
to 40 weeks of gestation.Curve a: @p" = 0° this corresponds to a
simulation where no residual stresses are assumed at the beginning of the
fetal period. Curve b: @F*" = 30°, Curve c: O3 = 60°.

and at the adult age, but the main change of amplitude
seems to occur during the postnatal period (Fig. 12).

The assumption of zero residual stress at the beginning
of the fetal period (@™ =0°) is not supported by
Taber’s et al. [51] data. The average opening angle
measured by these authors at stage 24 of LV chick embryo
(approximately 4.5 days of a 21-day incubation period) is
74° = 7°. To evaluate the effects of the initial opening
angle ®p°" on the structural and functional development
of the normal human fetal LV, we have made some
additional computations by changing only (with @2 =
30° and 60°). Compared to the simulation with @3 = 0°,
the increase of the initial opening angle gives almost
no change on the evolution of the myocardial mass
and end-diastolic cavity length, during fetal life. At end-
diastole, the main changes occur on the evolutions of
the wall thickness (which decreases), inner radius
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FIGURE 12 Computed transmural distributions of end-systolic fiber
stress for the normal hearts, at 20 (curve FH20), 30 (curve FH30) and 40
(curve FH40) weeks of gestation and at the adult age. Edo.: Endocardium,
Epi.: Epicardium.
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(which increases), opening angle ®"" (which increases,
see Fig. 11), and on the end-diastolic and end-systolic
pressures (which increase), during fetal period. Thus, with
this model and compared to the simulation with no initial
residual stress, an initial non zero residual stress gives a
thinner wall and in the same time decreases the
compliance of the passive fetal LV and improves the
active LV performance by generating higher systolic
pressures within physiological range.

As a final remark, we again emphasize that the paucity
of experimental data for the developing human FH forced
us to make a number of realistic assumptions that cannot
be validated at present. One of the major limitation of our
model comes from the fact that we did not take into
account the fiber penetration angle that we measured [1],
because of the increase of complexity of the mathematical
expression of the model. An obvious solution of the latter
problem will be the use of the finite element method which
is mathematically more complex and requires powerful
computing resources. Nevertheless the presented echo-
cardiographic measurements and the proposed mechanical
model based on a global growth law which can predict
reasonably the growth of the normal human LV during
fetal life, could be useful in fetal cardiology to assess the
functional capacities of the fetal heart. These conclusions
await further data on microstructure and material proper-
ties of the human fetal heart during development.
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APPENDIX

(A) Metric Tensors in States P and C, Invariants I; and
1, Lagrange Strains at State C Referred to the End
Diastolic State D

Metric Tensors in States P and C

The covariant base vectors in states P and C, 1'espeptively,
are Gi=R; and g =r;, where A,i=0A/00" (i=
1,2,3) with (8!, 82, 83) = (1, 6, z). The contravariant base

vector are defined by the relation G;-G/ = g;-gl = &, with
8. being the Kroenecker delta. The usual summation
convention on repeated indices is used throughout this
paper. Substituting the Eqs. (5c—e) into previous
equations gives the four bases:

aR
G] = EeR Gz = —PRGQ
" (Ala—c)
G3 = Aul 2 R\I’e@ — ez
* -1
a ®
Glz—reR GZ—-— —PR e@—}—‘I’eZ
IR m (Ald—f)
G3 = Aez
gi=¢e gr=1€) g3=¢e, (Alg-1)
gl=e g’=1""ey gi=e, (Alj-1)

Invariants I; and 1,

The components of the metric tensors in states P and C,
respectively, are Gy = Gi'Gj, GV =G"G} and g; =
gi-gj, g’ =ggl The covariant Lagrange strain com-
ponents are Ej; = Gi-Epc  Gj = (1/2)(gjj — Gjj) and the
two invariants I; and I, are:

I, = Gig; = GI(2E; + Gy),

L = gjtpth = (2B + Gij)thth (A2a,b)
where tiP(i = 1,2, 3) are the components of the unit vector
in fiber direction at state P (noted tp) in the base Gi(i =
1,2,3) or tp = t,G;.

Finally from Eqs. (A2a, b) we obtain the form of the
invariant derivatives:

al, L oly s
— =2GY, — =2t A3a,b

aEij ! aEij PP taa, by
useful to define (IW/9E;) = (9W/01,)(d1,/dE;) +
(aW/aI4)(aI4/aEij) himself needed to derive the com-
ponents of the Cauchy stress tensor Egs. (8a—d).

Physical Lagrange Strain Components at State C
Referred to the End Diastolic State

In measuring Lagrange strains in the canine LV at
midwall, some authors used end diastole as reference state
(noted state D). Following, we derive the relation between
these strain components and those referred to the passive
stress-free state P (Fig. 9).



126 J. OHAYON et al.

Lagrange stain components at states C and D relative to
state P are, respectively:

1
(Eipc = E[gij —G;] and
(Ada,b)
1
(Eij)pc = 7 [(gi)p — Gyl

where (g;j)p are the components of the metric tensors in
state D.

Lagrange strain components at state C relative to state
D are given by (Ejj)pc = %[gij — (gij)pl- This last equation
with Eqs. (A4a, b) yields

Ei)pc = Eippc — Eippp (AS)

Finally, using the Eqgs. (A4a, b), (AS) and the expression
of the physical Lagrange strain components at state C
relative to state D given by (Egj)pc = (Bij)pcl(gi)p X
(gi)p] ™"/, yields

(Eij)pc — (Eijpp
{[Gii +2Ei)pp][Gyj +2(Ej)pp]}

(E(ij))DC = (A6)

(B) Fiber Orientation in States S, Py, P and C

According to our assumptions, a helicoidal fiber running
on a cylindrical surface in state Sy remains always on a
cylindrical surface in states Py, P and C. Therefore the unit
vectors in the fiber direction in states Sy, Py, P and C are:

to = cos ypepp + sin ygezp with

Q:S();PO)P or C (Bla—c)

If we note dX,, the infinitesimal fiber length vector at
state Q of amplitude 1, then dXy =1pty where O =
S(), Po, PorC.

Relation Between the Elevation Angles in States Py,
Pand C

Knowing the two non elastic deformation gradient tensors
@55 (Eq. (4a)) and ®pc (derived from Egs. (Sc—e)):

ar

@ p—td
pPC aR

®* =]
eRC®eR,, + )'(7PR> EQC®E(5)P

+ 1"I’e@C®eZP + Aezc®ez,, (B2)

we are able to found the expression of tp and fc because
pr = q)f,:;:vpro and dXC = q3p(; dXP :

_ —1 f grow
tr =lplp Ppyp tr,

(B3a)
= Ip,1p ' (apcos yp,eqp + azsin yp ezp)

tc = lplglq)pctp

= lplgl{r

+Asin ypezc}

®* -1
(?PR) cos yp + Wsin yp} egc (B3b)

Therefore, the Eqs. (B3a, b) and (Bla—c) give the
relation between yp and 7yp, (Eq. (4i)) as well as the
relation between yc and yp (Eq. (9)).

From Egs. (Bla—c) and (A1) we can write the vectors tp
and fc in the bases G; and g (i = 1, 2, 3), respectively:

tp = tiPGi

G,

®>:< -1
<—P R) cos y, + ¥sin v,
™

+ Asin y,G3 (B4)

tc = tegi =1 'cos ycga + sin ycgs (BS)

This last equation (Eq. B5) is used to derive the
components of the cauchy stress tensor (Eqs. 8a—d).

Relation Between the Elevation Angles in States
Pyand S,

The kinematics of the elastic transformation from state P,
to state Sy is given by:
T

RSO = RS()(RPm t)) ®S0 = ®* ®P0;
Py

(B6a—c)
Zs, = ApysyZp,

From such equations, we can derive, as previously, the

elastic deformation gradient Fpys,, and the relation

between the two unit vectors tg, and tp, because dXs, =
F p,s5,dXp,. Therefore the relation between vy, and yp, is:

tan yp, = (Apys,@p Rp)) ' mRsytanys,  (B7)



