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Abstract

In this paper, we present some particular aspects of
discrete distances. The efficiency of chamfer distances in
two-dimensional (2D) and three-dimensional (3D) image
analysis is demonstrated for two applications.

Chamfer distances are computed in O(N2) time, and
have some properties related to discrete space. They are
often used to extract features, or to build medial lines. The
first application is a granulometry for the study of
materials in which size distributions are computed from
image distance. The second application is a 3D
reconstruction from cross-serial sections: this process is
based on the computation of a fate map from distance
images which provides the voxel structure of the inferred
object.

1 Introduction

In image processing, it is necessary to represent and
describe two and three dimensional shapes. Because
images are discrete (matrix of pixels), coded with integer
values, and are usually processed on sequential computers,
many approaches work directly on discrete space. Here we
have used discrete distances, in particular the chamfer
distances, which belong to the field of digital geometry
(Section 2).

Chamnfer distances are computed in O(N?) time for a
NxN image, and can approximate the Euclidean distance

very well. Moreover, chamfer distances have specific-

properties in discrete space. Distances also lead to medial
lines and are frequently used for shape splitting or shape
approximations.

The efficiency of chamfer will be shown here for two
applications. The first is the computation of granulometry
for study of materials (Section 3). Dilation and erosion are
easily extracted from the distance image. The size
distributions of pores inside a material are computed using
chamfer distances. The results are compared to the usual
granulometry by using mathematical morphology. The

second application is a strategy for reconstructing three
dimensional objects from serial cross-sections (Section 4).
Here a fate map is defined from the sections of the two
extremities. This fate map is an image in which each
pixel is assigned to a birth date or a death date deduced
from a distance image computed from the difference
between the two images. The results show the efficiency
and quality of the method on real applications in medicine.

2 Discrete Distances
2.1 Chamfer distances

Given a binary image A, a distance image is such that
each pixel of the objects (connected components) is
assigned to its distance from the background. The basic
distances are the City Block distance (d4) and the
Cheesboard distance (dg) [1] ; for two points P(ip, jp) et
Q(iQ, jQ), d4 and dg are defined by:

dg4 (P, Q) =lip-igl + lip -jql

dg (P, Q) =max (lip-iQl , lip-jQl)

These distances differ from the Euclidean distance dg,
but they are the basis of the sequential algorithm, efficient
on usual sequential computers and which generates integer
values [2]. These distances are called chamfer distances,
because the shape of the discrete disks that they generate
are polygons. We do not use the Euclidean distance
transform which requires storage of the displacements
along the two axes [3], because the algorithm is not so
simple and elegant, or it needs some special data structures

[4].

A chamfer distance is defined by a (2u+1)2 kemnel
(noted kery , in which the visible points, associated with
the Farey serie of order u, are assigned to weights defined
by the Euclidean distance: ker, (h,k) means that the
distance from the point (i,j) to the point (i+h, j+k) is
equal to ker,, (h,k).

The optimal kernels for a (3x3) and (5x5)
neighborhood are given below:
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To compute the distance image, the kernel is split into
kery, forward and kery | packward - For example:

43 4 ) ker —(
3 0 1, backward

- _ 03

ker 1, forward = 43 4
Then the image distance is computed in O(N?) times

as follows:

Fonvard scanning: .

fori=1toNdo forj=1toNdo

A(i,j) = min (h k) (A (i+h, j+K) + ker y, forward (0,K)';

Backward scanning:

fori=Nto 1do forj=Nto 1do

A(i,j) = min (h ) (A (i+h, j+K) + ker y, backward (1K) ;

When the size of the kernel increases, the error with
respect to dg can be decreased. For instance, the relative
maximum error with respect to dg can be reduced to [5]:

- 41.42% for d4, 29.29% for dg, 5.72% for d3_4, in a
3x3 kernel;

- 1.98% for ds_7.11, in a 5x5 kernel;

- 1.38% for dy3.17-°-38-43, in a 7x7 kernel,

- and even 0.47% in a 11x11 kernel.

The choice of the weights in the kernel depends on an
optimization criterion evaluated in comparison with dE,
and to several constraints in order to ensure that the
resulting chamfer distance is a distance (reflexive,
symmetrical and transitive) [5].

The main advantage of enlarging the kernel is that the
chamfer distance becomes robust under rotation, which is
necessary in many applications. :
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Figure 1. Distance image for d3._4.

In sections 3 and 4, we will limit ourselves to the use
of d3_4 (see Fig. 1), and ds_7.1] (see Fig. 2) and we show
that they already provide excellent results.
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Figure 2. Distance image for ds_7.11.
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2.2 Use of discrete distances

Distance images are very useful in image processing,
and we give a few examples in this section. One of the
best known fields of application is the extraction of
medial axes for shape coding [6], or medial lines for shape
description and shape splitting of aggregates [7,8].

Feature extraction is also of primary interest, because
features can intregrate distance images in 2D [9] and in 3D
[10]. Distances are also used in shape approximation [11],
shape matching in 2D space [12] or 3D space [13] and
hierarchical description of shape [14].

Distance images were also used in robotics to
represent the configuration space of an "arm robot" and to
compute its trajectory [15].

3 Granulometry
3.1 Image analysis and granulometry

Granulometry is used in the study of materials, such
as sand, pebbles or cellular phases of components, to
characterize the size distribution of the particules inside a
material. Processed by hand, the elements are sorted, for
instance, through a riddle and then counted or weighted.

In fact granulometry is not confined to only counting
particules because it can be extended to features and then
to images representing elements which are not
disconnected [16].

A granulometry on a set X is represented by a
normalized distribution function defined by:

G() = [Meas(X) - Meas(Tu(X))] | Meas(X), where
Meas is the chosen measure and Ty, the transformation
applied on X. The associated density function is given by:

B
g(w) =G'W) or G() =J g(w.dp
0

We are interested in measuring surfaces by

granulometry. Using image analysis, we deal with



granulometry by opening, which involves mathematical
morphology operators [17].

Then Meas is the measure of areas in the image, and
Ty, is an opening with a structuring element of radius p;
the structuring element must be convex to ensure that the
granulometry is correct.

Granulometry is computed by repeatedly applying
openings with structuring elements which are circles of
increasing radius. These operations are time consuming
when computed on a sequential computer.

3.2 The use of chamfer distances

On an image distance, we know for each point its
distance to the background; this is sufficient to efficiently
compute opening operations. More presisely, a chamfer
disk is a polygon (an octogon for d3.4, and a hexadecagon
for ds_7.11), that we will use as approximations of the
Euclidean disk (see Fig. 3).

Figure 3. Discrete disks for dg4, dg, d3_4, d5.7.11.

An opening is an erosion followed by a dilation. The
eroded set of X is the location of points x of X such that
the structuring element centered on x is included in X.

Consequently, using a chamfer disk of radius R, the

eroded set of X is the subset of X whose distance to the
background is greater than B.R, where =3 for d3_4, and
B=5 for ds_7.11.

The dilated set of X is the location of points x for
which the structuring element centered on x intersects X.
This is equivalent to saying that it is the union of disks
whose center is in X; so we simply have to define the
disks centered on contour points.

Using chamfer distances, the disks can be computed
efficiently by taking into account the properties of these
distances. For instance, in the first octant, for P(x,y) [5]:

d3.4(0,P) = 3x+y;

ds_7.11(0,P) = Sx+y if x>2y

and ds5_7.11(0,P) = 4x+3y if x<2y.

These properties of chamfer disks speed up the

. computation process for dilation.

Then the chamfer opening of radius R of an image A
is computed as follows (see Fig. 4):

- compute DTA, the chamfer distance image of A;

- for each pixel (i,j) with a non zero value:

- if DIA(,j) > B.(R+1) then (i,j) is in the opening set

else if DTA(i,j) > B.R then the chamfer disk centered
on (i,j) is in the opening set.

Bledd ioa] BN

erosion dilation

Figure 4. Opening as erosion and dilation
for d3_4, with R=2.

3.3 The results on material studies
The method described in §3.2 has been applied to the

study of the porous phase of an autoclaved aerated concrete
(AAC) and to characterize various materials (see Fig. 5).

Figure 5. Material: polished section of AAC.



For instance AAC samples are impregnated by a black
dye epoxy resin, then the two main classes of the porous
phase (a microporous structure in the solid matrix and a
macroporous cellular structure of air bubbles) can be
distinguished. The size of air bubbles allows direct
observation by optical microscopy and characterization of
the cellular porous phase.

We compared the results of mathematical morphology
and 3-4 chamfer on density function and distribution
function. The resulting functions are shown in Figure 6
and 7. The latter provides some results close to the
former, and the computation time is smaller by an order of
magnitude: developed on a Apollo-HP computer, the
chamfer methods takes 2 minutes on a 512x512 image,
while more than one hour is necessary with the other
approach.
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Figure 6. Density and distribution functions for
AAC using mathematical morphology.
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Figure 7. Density and distribution functions for
AAC using chamfer distance d3_4.

To improve the quality of the results, we decided to
use 5-7-11 chamfer. We show in Figure 8 the comparison
of the opening by mathematical morphology, and then
using 3-4 and 5-7-11 chamnfer.

One more advantage of chamfer distances, is that the
result is not influenced by the border of the image. These
tools were used to provide mesures in several projects of
material studies, and some characteristics were derived.

Radius Distribution Function
Circle Octogon | Hexadecagon

0 0.0000 0.0000 0.0000
1 0.0028 0.0037 0.0037
2 0.0107 0.0133 0.0133
3 0.0249 0.0306 0.0306
4 0.0418 0.0585 0.0507
5 0.0733 0.0858 0.0858
6 0.1020 0.1201 0.1201
7 0.1569 0.1935 0.1935
8 0.2448 0.3047 0.2855
9 0.3407 0.3808 0.3679
10 0.4550 0.4772 0.4798
11 0.5315 0.5792 0.5790
12 0.6557 0.7474 0.7058
13 0.8108 0.8336 0.8318

. 14 0.8934 0.9064 0.9053
15 0.9402 . 0.9535 0.9470
16 0.9782 0.9937 0.9808
17 0.9922 0.9940 0.9934
18 1.0000 1.0000 1.0000
v s GRS a

] RS octogon 4
hexadecagon
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Figure 8. Distribution functions and their
representations for AAC using mathematical morphology
(circle), d3.4 (octogon) and ds.7.11 (hexadecagon).

4 Three-dimensional reconstruction
4.1 Overview of methods

Three-dimensional reconstruction is necessary in many
applications in biology and medecine when a 3D object is
simply known by a limited number of slices. We consider
the case in which the slices are parallel cross-sections. The
resulting images are segmented into binary images.

In general the distance between the sections is greater
than the sampling distance in the section plane. This is
due to mechanical constraints in the case of physical
sections (the material between sections is destroyed by a
knife) or it is inherent to the properties of the imaging



system (lesser resolution along the optical axis of a
confocal microscope).

Our target is to infer the missing slices between each
pair of images. We can restrict ourselves to the case of
two images, one from each extremity. Each of these
images contains the connected components associated with
the slices of the 3D object.

The classical methods are based on the association of
these connected components two by two between the two
images. Then two approaches can be used.

The usual approach is to build a facet model of object
surface: during two simultaneous contour followings,
elementary triangles are defined, which take into account
some optimality criteria on local curvature, area... [18,
19]. The expected surface can also be associated with a
tetrahedrisation of the space, based on the Delaunay
triangulation of the contours, to which vertices are added
[20].

We previously developed a method which builds the
intermediate volume by using a representation by
weighted skeletons of the extremities: the corresponding
medial line graphs are matched and intermediate graphs
computed, each providing a new slice [21].

The main disadvantage of these methods is that the
extraction and the association of the images of the
extremities are necessary, requiring a tricky preprocessing
of the slices. Consequently these techniques cannot work
when the topology of the slices is complex, which is
most often the case in real applications, such as
reconstruction of human organs in medicine.

4.2 Inference of missing data based on
distance transformation

The method proposed here has been developed in a
voxel environment and gives satisfactory results as long
as there is a high degree of overlap between structures in
two consecutive sections. If we consider A and B to be the
binary images of two consecutive sections, some
structures in A intersect some structures in B and some do
not. During the inference process from A to B the shape
of some structures will have to be gradually transformed,
others will have to appear or to disappear.

Therefore, we can define a different destiny or fate for
all the structures and in extenso for their smallest
elements, the pixels. Our algorithm consists in building a
fate map of the pixels which is then used to reconstruct
each inferred section.

A pixel is given a fate depending on the combination
of its presence or absence in A and B, respectively. A
pixel missing in A but present in B will have to appear
(birth) during the inference. A pixel present in A but
missing in B will have to disappear (death). A pixel which
is both present or both missing in A and B will be left
unchanged.

The next step consists in defining the so-called date
of birth and date of death for those pixels that are to
be changed during inference. These dates are derived from
the distance transforms of A and B. For a pixel which is
bound to appear or disappear the date is the resultant of the
shortest distances to the closest edge in A and to the
closest edge in B. This condition insures that there is a
gradual change of shape from A to B since the respective
influences of edges in A and B is modulated as a function
of the distance to these edges.

Detailed formalization
Let A and B be two binary images, where

A ={7\?,...,N3} and LP ={}»113,...,?»2} are the sets of
the connected components of Aand B, respectively.

A and A are two subsets of £ defined as follows:
A = {N:e Ly kﬁmBi@ and ?»':CZB}

Ay = {X‘:e Iy ?\,ﬁcg}

‘B and ‘B, are two subsets of LB defined as follows:
B, = {KEE P 128 AA%2 ana x}jczA}

3, ={xfe LB kch}

The fate FateA—B of a pixel (i,j) during the process of
inference from A to B is given by:

birth if (j) e A NB

Fare®™B _ < death if (i) € AN B
N survival if (i,j) € ANB
nil if (i,j) ¢ AUB

Fateg_)B, date of birth =

T’ _
——L— ifdj)e ANnB )
A
DT, +DI;
ij ]
2
else
ij
afl - if,j)e B, @
L max [ D2, D12 | Ve =

The date of birth of a pixel (i,j) is given by the



distance from the closest edge in A weighted by the sum
of the distances from the closest edges in A and B
(formula 1), or it is given by the distance from the closest
edge in image B (formula 2). The weighting terms control
the smooth transformation of shape between A and B.

The date of death of a pixel (i,j) is given by similar
formulas (3) and (4) which correspond to the
transformation of the shape from A to B.

Fate.’o."—)B
ij

, date of death =

(o
ij _
— if (i,j) e 4;n B (3)
D‘Zg+DTP
ij
3 else .
o 1)‘2/3.2
if(i,j)e A4 (4)
Lmax [ D2, D732 ] ==

where o is an arbitrary coefficient Vranging from 0 to
1.

Finally, the value of a given pixel (i,j) in the kth
inferred image I is: :
(

1 if (i,j) € A NB and ——>Fare B
Kmax 1)
0 if (i,j) € A NB and - <Fate’* B
max
.90  ifG)e An B and—2Fael P
J kmax
1 if ij)e An B and X—cFaeh—B
kmax,
1 if (i,j) e AnB
0 if (i,j) ¢ AUB

where k is the inference order such as 02k=ky,x and
kimax the maximum number of images to be inferred.

4.3 Results

Two examples illustrate our approach, the first
example uses synthetic data and the second example shows
the application to a real case.

The trousers example

The starting section contains a large circular shape and
the end section contains two smaller circular shapes. The
latter overlap the shape in the starting section. Figure 9
shows the fate map that is used for the inference of
missing sections. The bottom part of Fig.9 shows three
different views of the reconstruction with 100 inferred
sections. The reconstructed object mimics a pair of
trousers where the starting section corresponds to the belt
and the end section corresponds to the cuffs. It can be seen

that the junction of the legs is shaped like an arch,
illustrating that the change between the starting and
ending shapes is continuous and moreover smooth.

end section

starting section

birth
dates

death
dates

fate map

three views of the inferred volume

Figure 9. Inference of missing data.
Synthetic example.

Human fetal heart example

This example is the application of our algorithm to
real data. In this case, these are the venticles of the heart
of human fetus.

There are 22 physical slices and the distance between
two slices is 12 fold the distance between pixels in the
binary images. Figure 10 shows the series of inferred
sections (numbered 24 to 35) between the original slices 2
and 3. Figure 11 left column shows two views of the
reconstruction obtained without inference. In this case the
voxels are elongated 12 fold along the z axis and the result
strongly resembles a staircase, in particular when the
angle of view is orthogonal to the z axis (bottom view).
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Figure 10. Series of 12 inferred séctions: human fetal heart.

Figure 11. Reconstructioﬁs of human fetal heart. Left: raw data, Right: inferred data.



Figure 11 right column shows two views of the
reconstruction obtained after inference. Here the voxels are
cubical and the obtained result is very realistic. In fact,
when the reconstruction after inference is compared with
photographs of the heart taken before it was cut, no
obvious differences are visible.

5 Conclusion

The introduction of discrete distances in various
application fields has proved to be efficient. The major
gain is the drastic reduction of computation time, mainly
because the methods do not imply either iterative or
combinatorial calculation and are straightforward. They are
easy to implement on sequential computers.

The distance image can also be used to characterize the
distribution of connections of pores or to evaluate a
thermal conductivity of a material [22].

The inference of sections by our method gives a very
realistic reconstruction of real 3D objects. However, on
the heart example (Fig. 11), one can see regularly spaced
striations on the volume. These striations are located at
the level of the original slices and are due to the fact that
the inference calculation is limited to the two enclosing
slices with no accounting for further neighbouring
sections. A future improvement to the method would be
to extend the inference support to several slices.
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