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The observation of BrdUrd staining in 
the nuclei of cells from exponentially 
growing populations reveals different 
typical replicating patterns. We propose 
a methodological approach to order and 
characterize BrdUrd intranuclear distri- 
butions. First, visual ordering of the pat- 
terns is assessed using a spectral analysis 
coupled to a k-nearest neighbors cluster- 
ing technique. Subsequently, nine topo- 
graphical features are introduced to 
characterize the spatial distribution of 
BrdUrd-tagged fluorescence in the nuclei 

of proliferating cells. These topographi- 
cal features are based on a structural ap- 
proach. The localization of fluorescence 
spots is expressed in terms of the normal- 
ized distance from the nuclear border 
and its standard deviation. These topo- 
graphical features are simple to calculate 
and easy to relate to visual experience. 
Q 1992 Wiley-Liss, Inc. 
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This paper is the first of a pair of articles dealing 
with BrdUrd texture featuring. In the present paper we 
address methodological aspects of the analysis of tex- 
ture. The second paper (9) is dedicated to the study of 
the sequence of BrdUrd patterns during the S phase of 
MRC-5 cells cultured in vitro. 

Some authors have suggested that eukaryotic DNA 
replication occurs as a non random process in a re- 
producible temporal order. Inter-nuclei heterogeneity 
of the replication site distribution has been observed 
after the replicated DNA was labelled with BrdUrd 
(21). These authors qualitatively described the main 
characteristic of intra-nuclear DNA replication distri- 
bution during the S phase. However, this approach 
remains subjective and there is a real need for quanti- 
fication. To order these patterns objectively we used a 
Fourier spectral analysis followed by multifactorial 
data analysis methods. Subsequently we propose a set 
of new topographical features with which the spatial 
distribution of BrdUrd can be expressed quickly and in 
a comprehensible way. Texture analysis methods have 
been used in cytometry to investigate the chromatin 
distribution in cell nuclei (1,4,14,22). Our topographi- 
cal features are based on a structural approach similar 
to that introduced by Young et al. to describe the 
heterogeneity, granularity, and margination of chro- 
matin (22). 

MATERIALS AND METHODS 
Biological Material 

All information concerning the culture of MRC-5 
cells, BrdUrd incorporation and indirect immunof luo- 
rescence staining of BrdUrd can be found in the second 
paper of this pair (9). 

Image Acquisition 
The fluorescence images of 66 BrdUrd-labelled 

nuclei were photographed using an Axiophot Zeiss 
(Oberkochen, GDR) photomicroscope with a 485220 
BP exciter filter, a 515-565 BP barrier filter and a 
x 40 (n.a. 0.75) dry PLAN NEOFLUAR objective (spa- 
tial resolution 0.42 pm). Digital images were obtained 
by digitization of the photographic negatives using a 
CCD video camera (Tokina CP3000, Tokyo, Japan) con- 
nected to a SAMBA cytological image analyzer (Alca- 
tel-TITN-Answare, Grenoble, France). The digitization 
of photographic negatives insured a good signal to 
noise ratio and crisp images. 
Spectral Texture Analysis and Pattern Ranking 
Visual pattern ranking. The BrdUrd images were 

ordered subjectively. In the first step, a raw order of the 
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b i - d  ime s i o n a  1 
FIG. 1. Fourier spectral analysis. a) Example of the bi-dimensional 

power spectra obtained for four HrdUrd-labelled nuclei. The nuclear 
images and the power spectra are represented in negative contrast for 
visual convenience. High intensities of fluorescence and high energy 
harmonics appear in dark while low fluorescence intensities and low 

patterns was established on the basis of the previously 
described typical intranuclear DNA replication distri- 
bution (21). The second step consisted in refining the 
first ordering by means of a step by step analysis of 
pattern similarities. 

Fourier analysis. The Fourier spectral analysis 
was performed on digital images of the nuclei. The size 
of each image was 128 x 128 square-shaped pixels, 
with a density of 0.34 km per pixel. In  order to avoid 
unwanted influence of spatial information, the nucleus 
was centered in the image and its major axis oriented 
in parallel with the horizontal axis of the frame prior to 
digitization. The images were apodized and normalized 
prior to the Fourier analysis. The apodization consisted 
in calculating the product of the nuclear image with a 
two-dimensional cosine function with the same period 

m o n o - d i m e n s  iona 1 
energy harmonics appear in light grey. b) Conversion of a bi-dimen- 
sional power spectrum into a mono-dimensional one. The magnitude 
of the harmonics of same rank are averaged along concentric circles 
centered on the constant component of the power spectrum (white 
central spot). 

as the width of the image. This minimized the contri- 
bution of pixels on the edge of the image. The second 
prepocessing was intensity normalization: the average 
intensity of the image was subtracted from each pixel 
intensity and the result divided by the standard devi- 
ation of intensities in the image. Therefore, all the im- 
age power spectra were directly comparable. The Fou- 
rier analysis was performed using a two-dimensional 
Fast Fourier Transform (FFT) programme based on the 
classical algorithm by Cooley and Tukey (2) (Fig. la). 
Because directional information was not relevant to 
our study, the two-dimensional power spectrum was 
transformed into a uni-dimensional one. This was ob- 
tained by averaging the magnitude of the harmonics 
along growing concentric circles originating from the 
continuous component of the power spectrum (Fig. lb). 
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The final result is a spectral signature of each nucleus 
image based on a spectrum of 64 harmonics. 

Cluster analysis. Each power spectrum may be 
considered to be a vector with 62 components (the con- 
tinuous component and the first harmonic were dis- 
carded because they were identical in all the spectra as 
a result of intensity normalization). Then, multivariate 
data analysis tools were used to compare and order the 
power spectra. 

Principal component analysis. Prior to cluster- 
ing, the power spectra were submitted to Principal 
Component Analysis (PCA). This method offered the 
main advantage of reducing a multifactorial space to a 
small number of factors which summarize most of the 
information contained in the original space (10,ll). 
First, PCA made it possible to eliminate redundancies 
and non significant harmonics. Second, it provided a 
normalized space, well adapted to a clustering algo- 
rithm based on Euclidian distances. 

K-Nearest neighbors clustering. To obtain an ob- 
jective ranking of BrdUrd textures, the spectral signa- 
tures of the nuclei images were analyzed by a k-nearest 
neighbors (k-NN) clustering algorithm (3,121, where k 
is the number of neighbors. The principle of k-NN clus- 
tering is the following: in a first step the Euclidian 
distances separating all pairs of spectral signatures in 
the PCA space were calculated. Then for each nuclear 
spectral signature we determined the k-nearest spec- 
tral signatures, that is, those with the smallest Euclid- 
ian distances. Then a graph of the K-NN was made. It 
consisted in joining each nucleus to its spectral k- 
nearest neighbors using a distance filter. Only those 
neighbors among the k-nearest whose distance was 
smaller than a preset threshold were qualified. In the 
present study, the number of neighbors ( k )  was set to 5 
and the distance threshold was set to ten percent of the 
maximum scattering of the projections of the spectral 
signatures on the first factorial axis of the PCA space. 

Pattern ranking was derived from the graph of the 
k-NN using an algorithm of search for the shortest 
path in a weighted graph (17). This method consisted in 
finding the path with the property that the sum of the 
weights is minimized, with a constraint that prohibits 
passing twice over the same point. In our k-NN graph 
the weights were the distances between direct neigh- 
bors. 

Topographical Pattern Featuring 
Nuclear mask segmentation. The segmentation of 

nuclear masks was achieved in two steps. The first step 
consisted in a simple level thresholding of the image 
intensity histogram. This raw thresholding resulted in 
a satisfactory segmentation for most of the nuclei. 
However, for nuclei with only a few fluorescent spots a 
second interactive step was necessary. Thus, the user 
could redefine or correct the nuclear mask using the 
interactive graphic tools of the image analysis system. 

Intra-nuclear segmentation. The fluorescence in- 
tensity histogram of each BrdUrd labelled nucleus was 

divided in three relative classes: high, medium, and 
low intensity. The segmentation of these three classes 
was obtained using a specialized algorithm for auto- 
matic grey level classification based on the moving 
means clustering algorithm (19,20). This segmentation 
algorithm offered the advantage of being invariant to 
changes in the image acquisition process. Thus, the 
result of the three class segmentation was independent 
of the absolute fluorescence intensity. At the end of the 
process the nuclear mask was divided in subregions 
corresponding to the three fluorescence classes (Fig. 2). 

Distance encoding. The topographical information 
inside a nuclear mask was expressed using the shortest 
distance of a pixel from the border of the nuclear mask. 
A distance map was created by a classical algorithm of 
generation of distance curves in a binary mask using 
the “city block’ distance metric (13,16). 

TopL‘graphical featuring 
Features. The principle of calculation of the topo- 

graphical features is illustrated with the example of 
nuclear image in Figure 3. For each fluorescence class 
a histogram of distances from the edge was built using 
the intersection of the mask of this fluorescence class 
with the distance map. From this histogram it was pos- 
sible to compute three variables: the percentage of pro- 
jection area (A%) of a fluorescence class with reference 
to the total nuclear projection area, the mean distance 
from the edge (MD), and the standard deviation of the 
distances from the edge (SD). The first variable (A%) 
expresses the relative importance of a fluorescence 
class, the second variable (MD) gives the average loca- 
tion of the subregions, and the third variable (SD) ex- 
pressed the heterogeneity of the locations. In order to 
make the MD and SD variables comparable from one 
nucleus to another it was necessary that the variables 
not be influenced by the shape and size of the nuclei. 
This was made possible by a shape and size normaliza- 
tion. 

Shape normalization. One of the drawbacks of us- 
ing a statistic based on a “distance from the edge” en- 
coding was that in a closed shape such as a nucleus, the 
pixels close to the edge are more numerous than those 
far away. This appeared as a decreasing frequency gra- 
dient from the edge to the center of a nucleus. Further- 
more, the envelope of this gradient is correlated to the 
shape of a nucleus. Consequently, for a fluorescence 
class the average distance value obtained directly from 
the distance histogram would be systematically biased 
towards the small distances regardless of the position 
of the sub-regions. For example, if a nucleus had only 
one high fluorescence spot located midway from the 
edge to the center of the nucleus, the average value 
would be significantly smaller than expected. To com- 
pensate for this gradient, the frequencies of the dis- 
tance histograms of each fluorescence class were 
weighted by the corresponding frequencies of the dis- 
tance histogram of the total nuclear mask. 

Size normalization. For each nucleus, size normal- 
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FIG. 2. Intra-nuclear segmentation of the fluorescence histogram. 
Top line, nuclear images; bottom line, three class segmentation masks. 
The nuclear images are represented in negative contrast for visual 
convenience. High intensities of fluorescence appear in dark while 
low fluorescence intensities appear as light grey. The masks are ren- 

dered in black for the high fluorescence class, dark grey for the me- 
dium fluorescence class, and light grey for the low fluorescence class. 
The examination of the segmentation of four examples of nuclei shows 
very different spatial distributions of the three fluorescence classes. 

normalized distance 
hlst.oograms per class 

I- A 3 classes s e p n t a t i o n  

edge center 

Texture features 
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edge cenw 

distance from edge cenW 
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FIG. 3. Topographical texture featuring. The nuclear image is rep- 
resented in negative contrast for visual convenience. High intensities 
of fluorescence appear in dark while low fluorescence intensities ap- 
pear in white. The fluorescence image (left side) of the nucleus is 
segmented in three classes of fluorescence (high, medium, and low 
intensity). A distance map is built from the total nuclear mask (dis- 
tance from the edge encoding); the distances here are symbolized by 

alternating dark and clear rings. For each fluorescence class, a nor- 
malized distance histogram is calculated (see Materials and Methods). 
From this histogram, three features are calculated: A%, the percent- 
age of projection area with reference to the total nucleus; MD, mean 
distance from the edge; SD, standard deviation of distances; HF, high 
fluorescence class; MF, medium fluorescence class; LF, low fluores- 
cence class. 
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ization consisted in calculating relative distances. 
These were obtained by dividing the actual distance 
values by the maximum distance from the edge ob- 
tained for that nucleus. Thus, the MD and SD could be 
expressed as percentages of the maximum distance 
from the edge (0% on the edge, 100% in the center of 
the nucleus) and compared directly from one nucleus to 
another. 

When all these normalizations were applied, the fi- 
nal formulas for MD and SD were 

and 

where F is the fluorescence class under consideration, 
i is the current distance from the edge (integer value), 
max is the maximum distance in the nucleus, H,[i] is 
the frequency of the ith bin of the distance histogram of 
class F, and H,,,[i] is the frequency of the ith bin of the 
distance histogram of the total nuclear mask. 

RESULTS 
All the analyses were performed on a set of 66 

BrdUrd-labelled nuclei taken from an exponentially 
growing cell population. A detailed presentation of 
these nuclei and their DNA content is given in the 
second paper of this pair (9). 

Spectral Texture Analysis 
Fourier analysis. The bi-dimensional power spec- 

tra of four typical BrdUrd-tagged nuclei are illustrated 
in Figure la.  A power spectrum should be read from its 
central point to the edges. The central point corre- 
sponds to the constant component and the harmonics of 
same rank are located on the same circle centered on 
the constant component. From left to right and top to 
bottom of Figure la: the first nucleus exhibited a few 
small fluorescent spots scattered over the surface of the 
nucleus. The associated power spectrum showed many 
high frequencies, the energy being spread up to har- 
monic 16. In the second nucleus the spots were more 
numerous and fused to  form large ones. This resulted 
in a concentration of energy in the low frequencies (up 
to harmonic 5) of the power spectrum. In the third nu- 
cleus, a very large central spot was observed, with a 
few small spots located close to the perinuclear mem- 
brane. The spectral distribution was similar to the pre- 
vious one but contained higher frequencies. Finally, 
the fourth nucleus contained a few large spots (larger 
than in the first nucleus) resulting in the presence of 
high frequencies in the power spectrum. 

F'Ic. 4. Factorial plane of the Principal Component Analysis of the 
spectral signatures. The two factorial axes summarize more than 75% 
of the total scattering. Reduced images of the nuclei are plotted at the 
location of projection of their respective spectral signatures. A neutral 
grey background is used to help visualize small intensity variations in 
the dark nuclei as well as in the bright nuclei. A black or a white 
background would squeeze the visual dynamics and therefore make 
these variations invisible in one or the other category of nuclei. 

One can note that for the two-dimensional power 
spectra the harmonics were not identically distributed 
along all the directions radiating from the center of the 
power spectrum. This was due to two reasons: first, the 
nuclei were elliptical and second, the spots were not 
evenly distributed in the nuclei. For this reason, in 
order to reduce the orientation influence, each bi-di- 
mensional power spectrum was converted into mono- 
dimensional one by averaging the magnitude of the 
harmonics of the same rank along concentric circles 
radiating from the center of the power spectrum (Fig. 
lb). 

Principal component analysis (PCA). In the first 
step of PCA the correlation matrix of the spectral sig- 
natures was calculated. This matrix showed that there 
was a high correlation (greater than 0.90) between the 
harmonics of rank higher than 13. Indeed, the magni- 
tude of these harmonics were very low in all the power 
spectra, and in fact accounted more for the background 
noise than for significant variations in the images. 
Therefore, only the harmonics 2 to 13 were taken into 
account in the following step of the PCA. The analysis 
of the eigenvalues of the correlation matrix showed 
that the first six factorial axes summarized 92% of the 
variance of the original space. Figure 4 shows the pro- 
jections of the spectral signatures on the first factorial 
plane. In this figure, the reduced images of the nuclei 
were plotted at the location of their respective projec- 
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6 I B  
FIG. 5.  k-nearest neighbors clustering graph. The graph is plotted 

on the same factorial plane as in Figure 4. The squares symbolize the 
projections ofthe spectral signatures. The grey lines correspond to the 
link between two projections which satisfy both the k-nearest neigh- 
bors rule (with k equal to 5 )  and the distance criterion (Euclidian 
distance smaller than 10% of the scattering along the first factorial 
axis). A ranking can be derived by defining the shortest path between 
direct neighbors. 

tions. The analysis of the projections of the different 
harmonics on the factorial axes showed that the har- 
monics with rank greater than 7 mainly contributed 
to the first factorial axis. Therefore, it tended to sepa- 
rate nuclei with high frequencies, that is, with small 
spots, from nuclei poor in high frequencies, that is, 
with a less heterogeneous texture. Smaller rank har- 
monics mainly contributed to the second and third 
axes. These axes tended to separate the nuclei as func- 
tion of the size and localization o f  spots. 

Pattern Ranking 
To obtain an  objective ranking of BrdUrd patterns a 

k-nearest neighbors clustering algorithm was applied 
to the projections of the spectral signatures on the fac- 
torial axes. Figure 5 illustrates the graph of the k - N N  
obtained with k equal to 5. This graph shows the neigh- 
borhood relationships between the nuclei. It can be 
seen that there is a pathway starting from the right 
side of factorial plane and running towards the upper 
left side. Subsequently, it runs from the top to the bot- 
tom and eventually ends on the right side of the plane. 
The left part of the graph looks very confused but most 
of i t  can be untangled when the third factorial axis is 
taken into account. It is a common artefact of PCA 
projections: two points that look close to each other on 
a factorial plane may be in fact very distant along an- 
other dimension (i.e., third axis). Searching the short- 
est path in this graph from one end to the other made 
it possible to establish an  objective ranking of the dif- 
ferent patterns. This ordering was then compared to 
the visual ranking. It appeared that these were com- 
patible: most of the nuclei were ranked similarly or 
some were displaced a maximum of plus or minus 3 
ranks. Only four nuclei were found to be in completely 

FIG. 6. Factorial plane Principal Component Analysis of the topo- 
graphical features. The two factorial axes summarize more than 80% 
of the total scattering information. Reduced images of the nuclei are 
plotted at the location of their respective projection. A neutral grey 
background is used to help visualize small intensity variations in the 
dark nuclei as  well as in the bright nuclei. A black or a white back- 
ground would squeeze the visual dynamic and therefore make these 
variations invisible in one or the other category of nuclei. 

different ranks (discrepancy of more than 10 ranks). A 
Spearman rank correlation test was used to assess the 
agreement of the spectral signature ranking and the 
visual ranking. A correlation value of 0.98 was ob- 
tained and differed significantly from 0 at a 0.001 
threshold. This objective ranking was used as a basis 
for a fine analysis of the changes of BrdUrd-tagged 
fluorescence during S phase of the cell cycle (9). 

Topographical Pattern Features 
The topographical features were measured for each 

of the 66 nuclei. These measurements were submitted 
to a PCA. Figure 6 shows the projections of the nuclei 
on the first factorial plane of the PCA. It appeared that 
the nuclei were not randomly distributed but were 
grouped specifically as a function of their fluorescence 
patterns. The analysis of the projections of the topo- 
graphical variables on the factorial axes (Table 1) 
showed that the percentage area of high fluorescence 
(A%HF), on one hand, and the three variables of the 
low fluorescence class (A%LF, MDLF, SDLF), on the 
other, mainly contributed to the first factorial axis. 
A%HF pointed to the left side of the plane; A%LF, 
MDLF, and SDLF pointed to the right side. Thus, the 
nuclei with labelling spread over the whole nuclear 
area were mainly on the left plane and nuclei with the 
labelling concentrated in a few spots were mainly on 
the right plane. The variables MDHF, SDMF, and 
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Table 1 
Principal Component Analysis of the Nine Topographical Variablesa 

A%HF MDHF SDHF A%MF MDMF SDMF A%LF MDLF SDLF 
1st axis -0.83 -0.33 0.19 -0.05 0.46 0.29 0.84 0.90 0.81 
2nd axis 0.28 -0.62 -0.59 -0.10 0.38 0.72 -0.14 -0.10 -0.04 

aRespective contributions of the variables to the two first factorial axes of the PCA. Contributions are dimensionless and a 
value close to 1 in absolute value corresponds to a maximum contribution A%, percentage of area; MI), mean distance from 
the edge; SD, standard deviation of the distances; HF, high fluorescence; MF, medium fluorescence; LF, low fluorescence. 

SDHF contributed to the second axis. Thus, the second 
axis separated nuclei with many fluorescent spots dis- 
tributed all over their surface (upper plane) from nuclei 
with a large central spot and perinuclear spots (lower 
plane). The nuclei with many spots had a medium 
MDHF and high SDMF values expressing an even spa- 
tial distribution of fluorescence. The nuclei with a 
large central spot had high MDHF values expressing 
the concentration of labelling in the central part; the 
high SDHF expressed the spatial heterogeneity due to 
the perinuclear spots. The other variables (A%MF, 
MDMF) mainly contributed to third and fourth facto- 
rial axes. 

DISCUSSION 
The observation of BrdUrd staining in the nuclei of 

cells from exponentially growing populations reveals 
different typical replicating patterns (21). Some au- 
thors have attempted to  order these patterns as a func- 
tion of visual similitudes. However, this ordering re- 
mains subjective and there is a real need for 
quantification. Our first goal was to define an objective 
ranking of these patterns. A robust method to charac- 
terize a texture pattern is spectral analysis (15). The 
clustering algorithm based on Euclidian distances 
made it possible to analyze the neighborhood relation- 
ships of the nuclear spectral signatures and thereafter 
to establish a hierarchy. It is interesting to note that 
the k-nearest neighbors clustering method gave an or- 
dering that was not basically different (rank correla- 
tion 0.98) from that established visually. There were 
only a few discrepancies, and after a posteriori exami- 
nation of these particular cases the new ranking de- 
fined by the clustering method was found to be accept- 
able. In fact, these were cases that could be visually 
assigned to two possible ranks. In conclusion, the rep- 
resentation of the patterns by their spectral signatures 
is a powerful method. However, the spectral analysis 
does not give any clue on the exact location of the la- 
belling spots inside the nuclei and therefore it is not 
useful for interpretation of replication patterns. As an 
alternative we proposed a set of variables with which 
the spatial distribution of BrdUrd-tagged fluorescence 
could be expressed in a comprehensible way. 

Image analysis techniques have been used now for 
many years in the domain of cytometry (1) and differ- 
ent methods have been developed to quantify textural 
features in cells (14). For example, texture analysis has 
proved to be an efficient tool to analyse the condensa- 

tion of chromatin in the different phases of the cell 
cycle (6,221 and to investigate the maturation of the 
erythroblastic cell lineage (5,7). These methods are 
generally classed in two categories: stochastic methods 
(4,s) and structural methods (8,22). The stochastic 
methods are based on the use of statistical matrices 
such as cooccurrence and gray level run-length matri- 
ces (4). From these matrices a set of independant vari- 
ables are calculated. These variables were found to be 
very satisfactory for describing the various condensa- 
tion states of the chromatin during the cell cycle 
(6,7,18). However, these variables are very difficult to 
comprehend and to relate to visual experience. The 
structural methods use a different approach which con- 
sists in identifying different physical structures (i.e., 
dark or bright spots) and calculating the localization of 
these with reference to a particular point (22). It has 
the main advantage of providing variables that can be 
directly interpreted with respect to visual experience. 
Following the same principles of the structural ap- 
proach, we developed a set of topographical variables. 
To translate the “clumpiness” of the labelling in the 
nucleus we converted the image of the nucleus in a 
three intensity class image using a principle similar to 
that used by Young et al. (22). For each of these classes, 
the localization was expressed as the mean distance 
from the edge and the associated standard deviation. 
We chose the edge of the nucleus as a reference instead 
of the center of gravity because it corresponds to a con- 
sistently identifiable biological structure, i.e., the nu- 
clear membrane. Conversely, the center of gravity does 
not correspond to  any identifiable structure, and its 
location may not necesserally fall inside the limits of 
the nucleus as it is the case for example in a polynu- 
clear blood cell. Furthermore, iftwo spots are located at 
the same distance from the edge of an elliptic nuclei, 
but one is on the minor axis and the other on the major 
axis, their distances from the center of gravity are dif- 
ferent. 

In conclusion, the main advantage of these topo- 
graphical features is their simplicity. They are inde- 
pendent of the size and the shape of the nucleus, and 
also are independent of the overall fluorescence inten- 
sity. They do not require time consuming calculations 
(1 s per nucleus). With the recent introduction of con- 
focal laser scanning microscopy in biology there will be 
a need for three-dimensional texture analysis tools. 
Our topographical features can be easily adapted to 
studies of volumic textures. 



602 USSON AND HUMBERT 

1. 

2. 

3. 

4 

5 

6 

7 

8. 

9. 

10. 

11. 

LITERATURE CITED 
Brugal G Image analysis of microscopic preparations. In: Meth- 
ods and Achievement in Experimental Pathology, Jasmin G and 
Proscheck L (eds). Karger, Basel, 1984, 11: pp. 1-33. 
Cooley JW, Tukey JW: An algorithm for the machine calculation 
of complex Fourier series. Math Comp 19997-301, 1965. 
Fukunaga K: Introduction to Statistical Pattern Recognition. Ac- 
ademic Press, New York, 1972. 
Galloway MM: Texture analysis using gray level run lengths. 
Computer Graphics Image Processing 4:172-179, 1975. 
Gauvain C, Seigneurin D, Brugal G: A quantitative analysis of 
the human bone marrow erythroblastic cell lineage using the 
SAMBA 200 cell image processor. I. The normal maturation se- 
quence. Analyt Quant Cytol Histol 9:253-262, 1987. 
Giroud F: Cell nucleus pattern analysis: geometric and densito- 
metric featuring, automatic cell phase identification. Biol Cell 
44:177-188, 1982. 
Giroud F, Gauvain C, Seigneurin D, von Hagen V: Chromatin 
texture changes related to proliferation and maturation in eryth- 
rocytes. Cytometry 9:339-348, 1988. 
Haralick RM: Statistical and structural approaches to texture. 
Proceedings of the Fourth International Joint Conference on Pat- 
tern Recognition, IAPR (eds), Kyoto, 1978, pp. 45-69. 
Humbert C, Usson Y: Topographical Analysis of BrdUrd labeled 
nuclei: Eukaryotic DNA replication is a topographically ordered 
process. (Submitted). 
Kendall M G  Multivariate Analysis. Charles Griffin, London, 
1975. 
Manly BFJ: Principal component analysis. In: Multivariate Sta- 
tistical Methods: A Primer. Chapman and Hall, London, New 
York, 1986, pp 59-71. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

ods: A Primer. Chapman and Hall, London, New York, 1986, pp. 
100-113. 
Montanvert A: Medial Line: graph representation and shape de- 
scription. In: 8th International Conference on Pattern Recogni- 
tion, IAPR (eds), Paris, 1986, pp. 430-432. 
Pressman NJ, Haralick RM, Tyrer HW, Frost JK: Texture anal- 
ysis for biomedical imagery. In: Biomedical Pattern Recognition 
and Image Processing, Fu KS and Pavlidis T (eds). Verlag 
Chemie, Florida Basel, 1979, pp. 153-178. 
Russ JC: Computer Assisted Microscopy: The Measurement and 
Analysis of Images. Plenum Press, New York London, 1990. 
Russ JC, Russ JC: Uses of the euclidian distance map for the 
measurement of features in the images. J Comp Assist Microsc 
1:343-375, 1989. 
Sedgewick R Algorithm in C. Addison-Wesley, New York, Work- 
ingham, Tokyo, 1990. 
Usson Y, Saxod R: Schwann cell proflieration in the sciatic nerve 
of hypothyroid chick embryos studied by autoradiography and 
image analysis. J Neurocytol 17:639-648, 1988. 
Usson Y, Torch S, Drouet d’Aubigny G A method for automatic 
classification of large and small myelinated fibre populations in 
peripheral nerves. J Neurosci Methods 20237-248, 1987. 
Usson Y, Torch S, Saxod R: Morphometry of human nerve biop- 
sies by means of automated cytometry: Assessment with refer- 
ence to ultrastructural analysis. Analyt Cell Pathol 3:91-102, 
1991. 
van Dierendonck JH,  Keyzer R, van de Velde CJH, Cornelisse CJ: 
Subdivision of S-phase by analysis of nuclear 5-bromodeoxyuri- 
dine staining patterns. Cytometry 10:143-150, 1989. 
Young IT, Verbeek PW, Mayall BH: Characterization of chroma- 
tin distribution in cell nuclei. Cytometry 7:467-474, 1986. 

12. Manly BFJ:Cluster analysis. In: Multivariate Statistical Meth- 


