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In order to study cellular sociology, a model of parametrization and quantitation of 
cellular population topographies is developed here. This approach is based on space 
partition constructed from the set of points locating the position of cells. This spatial 
partition from Voronoi paving is considered to be a set of individual forms which 
permits calculation of three parameters which are characteristic of the population 
topography, (i) RFav, the average roundness factor of those forms, (ii) RFH, a 
measure of the roundness factor homogeneity and (iii) AD, a measure of their area 
heterogeneity (also called area disorder). A characterization of the space defined by 
the three parameters, is obtained by simulation of spatial perturbations of various 
theoretical populations. These theoretical populations have been subjected to factors 
such as aggregation and randomization of positions by an increase of spatial degrees 
of freedom. The use of a diagram involving RFav, RFH and AD turns out to be a 
powerful tool for the determination of the intrinsic disorder of a cellular population. 
Furthermore, it makes it possible to determine for a given set of cells, a model 
including its nearest homogeneous set, and the intrinsic disorder to which it refers. 
Finally, this model appears to be a useful way to quantify topographies and study 
order and disorder in many point sets by a simple reading in the parametric space 
defined by RFav, RFH and AD. 

1. Introduction 

Numerous  studies of  considerable scope have been either devoted to cellular inter- 
actions or to cellular pattern analysis in order to elucidate the way the cell differentia- 
tion acts on cells scattering and clustering or vice versa, to organize the living mat ter  
(Welicky & Oster, 1990). Thus, it appears  that there is an increasing importance in 
both general comprehension of  mechanisms governing cellular interactions (Viallet 
et al., in press), and development of  therapeutic applications (Tosi et al., 1990), to 
determine the organization and the kind of  relations that  ceils are able to set up 
between themselves (Sengel, 1990). A cell is not born in an information free environ- 
ment,  but in a universe of  signals sent out by its fellows. Thus, the cell environment  
has to be considered as an environment organized by elementary exchanges between 
the populat ion members  where communicat ion plays a structural part.  Study of  the 
way cells structure their own environment  (Honda ,  1978, 1983; Zahn,  1971) should 
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therefore increase knowledge of homeostatic tissular controls, and allow us to draw 
information from spatial alterations seen in pathologies. 

The purpose of cellular sociology (Chandebois, 1976) is to explore the relationships 
existing between cellular functions, and spatial position. Before the widespread use 
of computers such studies were not feasible because of the vast amount of data 
involved. Data in the form of point sets, scattered within a region of space, are found 
in many fields such as biology and crystallography. It is possible to reduce many 
objects (i.e. cells, proteins) to points (cell gravity center), thus it is possible to treat 
any such data sets as spatial point patterns. Studies based on statistical analysis or 
graph constructions have been used to search for parameters describing order and 
disorder in biological structures (Hopkins & Skellam, 1954; Dussert et al., 1986, 
1987; Tezuka et al., 1990). Here we develop a new approach which generates richer 
information than the above methods . This method integrates the form dimension, 
and is based on spatial partition from Voronoi paving (i.e. Voronoi diagram). See 
Appendix for a list of abbreviations used. 

2. The Voronoi Diagram (Restriction to 2-D Studies) 

This method requires three main steps in its development, (i) a step of construction 
of the Voronoi diagram which associates a polygonal form to each point of the 
population, (ii) a step of elimination of points whose associated form has been altered 
due to the construction of the partition, and (iii) a final step of parametrization and 
quantitation of topographical informations. 

2.1.  C O N S T R U C T I O N  O F  T H E  V O R O N O I  D I A G R A M  

The Voronoi diagram is the space partition containing the most information 
(Toussaint, 1980). It contains all the information contained in the minimal spanning 
tree (Zahn, 1971), the relative neighborhood graph, and the Gabriel graph 
(Toussaint, 1980), that can be constructed on a given poulation. Let us briefly recall 
the basic definitions of this space partition. 

Let S, be a set of N points in the plane, i.e. the nucleus barycenters of cells. For 
each point pi in S what is the locus of points (x, y) in the plane that are closer to pi 
than to any other point of S'?. The solution to the above problem is to partition the 
plane into regions [each region being the locus of points (x, y) closer to a point of 
S than to any other point of S]. Given two points Pi and pj, the locus of points closer 
to pi than to pj is the half-plane containing p~ that is defined by the perpendicular 
bisector ofp,~j. Let us denote this half-plane by H(pg, pj). The locus of points closer 
to pj than to any other point, which we denote by V(i), is the intersection of 
N -  1 half-planes, and is a convex polygonal region having no more than N -  1 sides, 
that is, 

V(i) = (~ H(p~, pj). 
i ~ j  
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S 

FIo 1. Given a set (S) of a few points, V(i) is the associated Voronoi polygon ofpt (a point of S). 
The polygon associated to Pt is the locus of points (x, y) closer to Pi than to any other point of S. 

Where ~ denotes the intersection and V(i) is the Voronoi polygon (Fig. 1 ) associated 
with pi (Preparata & Shamos, 1985). The construction of the Voronoi partition 
associated to S, denoted Vor (S), follows an incremental method by local mod- 
ification of the diagram after each insertion of a point of S (Bowyer, 1981). 

2.2. ELIMINATION OF MARGINAL POLYGONS 

Due to the properties of the Voronoi partition, some polygons of the paving are 
not statistically representative of the set of polygons. The points of S whose associ- 
ated polygon is not absolutely representative of the population are considered as 
marginal. Those polygons are associated to points located on the border of the 
population, and have one or more summits which do not contain total information 
on their "surround". Such summits are created by points of  S which belong to a 
half-plane that does not contain this particular summit. Therefore, every point of S, 
whose associated polygon satisfies one of the two following conditions, is not taken 
into account in the further calculations. 

- -The polygon is open (the point belongs to the convex hull), 
- -a t  least one of the summits of the polygon is outside the convex hull of S. 
As an example (Fig. 2) let us consider a bidimensional Gaussian distribution of 

points and its associated Voronoi diagram. Fully representative polygons (in white) 
are conserved for further calculations and marginal polygons (shaded) are eliminated 
according to the previous rule. For convenience, only N =  500 points are shown, 
although actual computation involved N =  2000 points. 
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FIG. 2. Set (S)  of  500 points of  a bi-dimensional Gauss ian distribution and its associated Voronoi 
diagram given that each polygon is a region of  the locus o f  points (x, y) closer to the point of  S than to 
any other point of  S. The white polygons are representative polygons, shaded ones are marginal,  they 
intersect the convex hull (CH) of  S. 

2.3. T O P O G R A P H I C A L  P A R A M E T R I Z A T I O N  A N D  Q U A N T I T A T I O N  

This attempt to quantitate cellular topography is based on the strong relationship 
which obviously links form to disorder. Therefore, we defined parameters that are 
descriptors of both form and disorder. These parameters are calculated on the poly- 
gonal form which has been associated to each cell of the population during the 
construction of the Voronoi partition. 

Determination of the average type of the spatial occupation : for a convex set, X, 
where A ( X )  is the area and L ( X )  is the perimeter, it is possible to demonstrate the 
following isoperimetric inequality: 

L(X) 2 - 4~rA (X) >0  

Since Voronoi polygons are convex, the average type of S population spatial occupa- 
tion is well-characterized by the average roundness factor (RFav) 

1 N 4trA(Xi) 
R F a v =  N,~,  L(X;) 2 (0 < RFav_< 1). 
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Example: the roundness factor [RF = 4zrA ( X ) / L ( X ) 2 ]  of a n-sided Reuleaux polygon 
(Regular polygon with all angles and sides equals) is RF(n) = zr/[n tan (rr/n)]. Thus 
this formula makes it possible to predict the RF value of simulated polygons. The 
RF of a circle is 1, the RF of a line is 0. 

The intrinsic disorder of the population has been expressed as two prime factors, 
the disorder concerning the area heterogeneity of the population and the disorder of 
the geometrical properties. 

Determination of area heterogeneity and geometrical homogeneity of the spatial 
occupation inside S can be quantified by the following two parameters, area disorder 
AD, and roundness factor homogeneity RFH. 

"]- O'A --I ~ (1 "a t- O'RF / -1 
A D = I - ( I  Aav) RFH RFav/ 

where erA denotes the area standard deviation, o-RF the roundness factor standard 
deviation, Aav and RFav the mean area and the mean roundness factor. 

Using two types of invariant, geometrical one and area one, it can be demonstrated 
that RFav, AD and RFH are uncorrelated (Marcelpoil et al., 1991). These three 
parameters are defined on the [0, l] interval, which makes it easier to give a graphic 
representation of the values for a given population. Thus RFav, RFH and AD define 
a three-axis graph which represents topographical informations. We tested this model 
with different theoretical populations. 

3. The RFav vs. RFH vs. AD Diagram 

The RFav vs. RFH vs. AD diagram is a three-axis graph which represents topo- 
graphical informations. The three axis are defined on the [0,1] interval. Because of 
the intrinsic normalization process of RFH and AD, all distributions can be plotted 
in the RFav, RFH and AD space and easily compared with topographically well 
characterized populations. 

For this purpose, the following simulations were made to characterize the 
RFav vs. RFH vs. AD diagram. Let us consider a perfect lattice with points ordered 
at the nodes. We consider disorder as the ability for each point to move for a 
maximum distance (l) in any direction of the plane from its original node. The 
disorder value is the diameter of the circle centered on the original node, in which 
the point is uniformly randomly located. This disorder is the percentage of the 
original length of the lattice mesh. When l equals zero [Fig. 3(a)], the set of points 
is perfectly ordered. When l increases, the population has an increasingly intrinsic 
disorder [Fig. 3(b) and (c)] and becomes randomly distributed for very large values 
of l [Fig. 3(d)]. 

Several populations corresponding to different lattices have been randomized from 
the hexagonal lattice, through a square to a triangular lattice (i.e. cells of a corneal 
epithelium), by small discrete changes. For each of these populations, AD varies 
when the value of the intrinsic disorder increases (Fig. 4). Note that a given value 
of AD corresponds to a given value of intrinsic disorder for any original population. 
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Fro. 3. (a) Set of 484 points ordered at the nodes of a perfectly square lattice• (b), (c) and (d) 
randomization of the arrangement of (a) giving each point a new position by its ability to move for a 
maximum distance (//2) in any direction of the plane from its original mode. Values of l are respectively 
(a) 0% of the original mesh length, (b) 25%, (c) 75% and (d) 200% which tends to a uniform random 
distribution. 

For  example ,  let us cons ider  a stratified epithel ium• The s tratum o f  cells next  to the 
basal lamina are wel l -ordered whereas  the locat ion  o f  these cells is r a n d o m i z e d  when  
they reach the apical face. With our m e t h o d  it b e c o m e s  poss ible  to measure  and 
express  the type o f  topographical  variat ions  and a m o u n t  o f  disorder that were intro-  
duced between  two  success ive  strata during the migrat ion  process  o f  the epithelial  
cells• 

Whatever  the popula t ion  and the intrinsic disorder we  consider ,  the A D  vs. R F a v  
diagram permits  to find the initial h o m o g e n e o u s  set and the value  o f  the intrinsic 
disorder again• W h e n  the popula t ion  does  not  have m o r e  intrinsic geometr ica l  dis- 
order than area heterogeneit ies ,  a R F a v  vs. A D  or R F a v  vs. R F H  diagram permits  
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FIG. 4. Values of AD for several population corresponding to different lattices when the intrinsic 
disorder increases for each population. The disorder value is the diameter of the circle centered on the 
original node in which the point is uniformly random located. The disorder values are given in percentages 
of the original mesh length. 

the characterization of the population topography. In fact the RFav vs. RFH vs. AD 
diagram is useful to quantify topography when the population has either a geometri- 
cal gradient or an area one. 

Figure 5 gives the values of RFav and AD for the same populations as in Fig. 4, 
from AD =0 (perfect arrangement) to AD ~0-28 (random distribution). Note also 
that the path leading to disorder varies with the original homogeneous population, 
but the AD value remains relevant to the intrinsic disorder and so allows the topo- 
graphy to be well-characterized. Indeed, to characterize a population topography 
it is sufficient to quantitate its intrinsic disorder (simple reading of the area and 
geometrical disorder) and to define the analogous homogeneous population [follow- 
ing back to order (AD = 0 RFH = 1) the path leading to disorder]. 

Figure 6 shows the RFav vs. RFH vs.AD diagram and the corresponding values, 
RFav, RFH and AD of the previous populations corresponding to an hexagonal 
lattice, a square lattice and a triangular one. In particular, three specific planes and 
two vectors can be defined in this diagram to help a visual reading of topographies. 
The planes marked I, II and III correspond respectively to (i) population whose area 
and geometric disorder are equal, (ii) a population whose points have the same 
associated area but have geometrical differences, (iii) a population whose points have 
the same geometrical definition of the associated polygon but have different areas. 
The two vectors u and v correspond to an aggregation and a repulsion vector. They 
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FIG. 5, The points ( 0 )  correspond to the values of  RF  and AD for several theoretical populations. 
( ) Values of  RF and AD for a given population when the intrinsic disorder increases. A given value 
of  intrinsic disorder corresponds to a given value of  AD. For a given value of  AD, the leftmost population 
is derived from an hexagonal lattice, the rightmost from a triangular lattice. All intermediary populations 
are obtained by discrete distortions of the hexagonal mesh, through a square, to a triangle. 

lead respectively (i) to populations containing aggregates in particular locations of 
the space, (ii) to populations containing barren islets. As an example, let us consider 
(Fig. 6) the uniformly randomly distributed population (UPop), and the Gaussian 
population (GPop). It appears that Upop (e.g. a swarm of myxobacteria in a nutri- 
tious medium) is next to the plane marked I (its geometrical disorder is rather the 
same as its area disorder) whereas GPop (e.g. a swarm of myxobacteria aggregating 
and forming a fruiting body in response to starvation) appears u translated, due to 
the aggregation in a particular point of the space. 

4. Conclusion and Perspective 

The method presented here will be tested with respect to its effectiveness to analyse 
and quantify cellular topographies. The Voronoi diagram of a set of points, S, 
contains all the information contained in the minimal spanning tree, the relative 
neighborhood graph, and the Gabriel graph, that can be constructed on it (Toussaint, 
1980). In addition to other methods based on a subgraph of this diagram (Dussert, 
1986), the amount of information it contains makes it possible to decompose the 
intrinsic disorder of the population into two prime factors: the disorder of the area 
heterogeneity and the disorder of the geometrical properties. Generally, disorder is 
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FIG. 6. RFav vs. R F H  vs. AD diagram. Paths of  RFav and AD of  the previous populations (corre- 
sponding to an hexagonal lattice, a square lattice and a triangular one) when the intrinsic disorder 
increases are represented. Each location of  this parametric space makes it possible to define the corre- 
sponding population. Three characteristic planes can be defined: plane I, in which the geometrical disorder 
equals the area disorder, plane I! o f  geometrical invariants, and plane III o f  area invariants. The two 
vectors u and v correspond to an aggregation and a repulsion vector respectively. The location ( . )  
correspond to the values of  RFav, R F H  and AD of  a uniformly randomly distributed population, the 
location ( 0 )  corresponds to a Gaussian population and the location (O)  corresponds to an ordered 
population derived from a square lattice. Examples of  topographies corresponding to different locations 
of  this diagram are drawn in the three frames. 
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represented in one-dimension (l-D). Thus, the use of a 2-D representation of disorder 
(HRF vs. AD) makes now possible to represent population topography in three 
dimensions (RFav, HRF and AD). Quantitation of topography thus reaches accur- 
acy and discriminatory power. Particularly, it makes it possible to distinguish very 
well between populations with aggregates and populations with barren islets in it, 
populations that are common in cell biology. Recent theories about chaos underline 
the subtle relations that link form to disorder (Herrmann, 1986). This new approach 
to characterize cellular topography uses this relation. The human approach to 
describe a form usually refers to a geometrical form. Therefore, the description of a 
form is only possible in the absolute, if this form is perfectly geometrical (Coster & 
Chermant, 1985). Since all forms in a Voronoi diagram are perfectly geometrical and 
convex, we assumed that the Voronoi diagram of a given set of cells should permit 
the analysis and the quantitation of its topography. The different parameters calcula- 
ted from the Voronoi diagram satisfy the Hadwiger conditions of their continuity 
and scale, and translation and rotation invariance. Those conditions guarantee that 
the mathematical significance of the different parameters is not non-sensical. In 
addition, a physical meaning can be given to these parameters, thus strengthening 
the robustness of the method. For example, for given sets of cells, it becomes possible 
to determine a model including the nearest homogeneous set, and the inherent 
intrinsic disorder. Hence, this method should make it possible to describe and quan- 
tify pathological diseases that affect cellular topographies. This intrinsic disorder 
describes the difference between the given set of cells and the nearest homogeneous 
set. In physical terms, this difference can be expressed as energy. It means, the nearest 
homogeneous set is such that the theoretical work necessary to transform the original 
set in the final homogeneous set is the smaller one. For this purpose, accurate 
simulations to well-characterize topographies that correspond to given co-ordinates 
of the RF vs. RFH vs. AD diagram are currently under study. This should make it 
possible to determine a model of any cellular population by a simple comparison of 
the RFav, RFH and AD values with well-characterized populations. Thus, this 
method is very promising to determine an objective grading of tumors by measuring 
the amount of perturbations compared with normal population. This will permit the 
realization of planar cellular sociology. Since living systems are 3-D, we are currently 
extending our 2-D model to 3-D (Bertin, 1990). 
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APPENDIX 

List of Abbreviations 

A 
A D  
CH 
H 
l 
L 
R F  
RFav 
R F H  
S 
H 

V 

area 
area disorder 
convex hull 
half-plane 
distance 
perimeter 
roundness factor 
average roundness factor 
roundness factor homogeneity 
set of points 
aggregation vector 
repulsion vector 


