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The statistical analysis of morphometric data collected from biopsies of human superficial peroneal 

nerve is complicated by the heterogeneity of the population of myehnated fibres. In order to make 

separate statistical analyses of the subpopulations of large and small fibres we have developed a 

computer program (written in PASCAL) for their automatic separation. 

The method is based on a dynamic centres clustering algorithm and was applied to the multifactorial 

space defined by the principal component analysis of the morphometric variables: axonal diameter, 

myelin sheath thickness, circularity index and g-ratio. 

The classification technique was applied to measurements obtained from 5 control nerves, and to 

simulated data, and in each case it gave consistent Gaussian subpopulations with no need for the 

introduction of supplementary variables. 

Introduction 

The widespread development of microcomputers and the parallel decrease in 
their cost during the last decade, has resulted in their presence in many laboratories, 
providing morphologists and neurobiologists with semi-automatic tools for data 
acquisition and processing (Curcio and Sloan, 1981; Barioz et al., 1982; Pullen, 
1982, 1984; Allpress et al., 1983; Mize, 1983; Saxod et al., 1983). In accumulating 
more morphometric information biologists face the problem of statistical analysis of 
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Fig. 1. Frequency distribution histogram of the external diameter of myelinated fibres in the human 
superficial peroneal nerve (fascicle of 655 fibres). 

their data. If frequency distributions happen to follow ordinary unimodal density 
functions such as normal or gamma laws the usual armoury of statistical analyses is 
adequate. Otherwise, it is necessary to find other methods or to elaborate specific 
mathematical models with which to describe the particular frequency distribution of 

the data. Unfortunately, this second situation confronts neurobiologists when 
conducting morphometric analyses of peripheral nerves. In particular, analysis of 
the frequency distributions of calibres of myelinated fibres in human superficial 
peroneal nerve (Fig. 1) and sural nerve (which are nerves commonly investigated in 
biopsies in hospital routine) reveals a great heterogeneity of fibre diameters resulting 
from the mixture of two subpopulations of large and small fibres (Origuchi, 1981; 
Grosse et al., 1981; Stoebner et al., 1981). A similar heterogeneity of axon calibres 
has been described in peripheral nerves of several animal species (Mira, 1978; 
Friede and Beuche, 1985). Some authors have pointed out the impossibility of 

conducting a significant statistical analysis of the relationship between axon calibres 
and thickness of myelin sheaths in such situations (Bronson et al., 1978; Berthold et 
al., 1983) and they suggest that these bimodal frequency distributions should be 
reduced to their Gaussian subcomponents to allow significant study. In the past, 
various methods for dividing univariate bimodal frequency distributions, including 
simple graphic methods (Harding, 1949; Bhattacharya, 1967) and sophisticated 
computing methods generally based on iterative maximum likelihood estimates 
(Day, 1969; Hosmer, 1973; Ling and Tolhurst, 1983) or moment recursion relations 
(Court, 1949) or using Fourier analysis (Gregor, 1969), have been described. 
Another approach is to design an appropriate mathematical model with which to 
represent multimodal frequency distributions. In a previous paper, we described 
such a method for the analysis of the distribution of myelinated fibre calibres 
(Usson and Drouet d’Aubigny, 1985) based on the use of probability density 
functions of the canonical exponential family (Cobb, 1978; Cobb et al., 1983). By 
means of these we have been able to compare the frequency distributions of fibre 
calibres and to separate large and small fibre populations using the antimodes of 
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functions as segregation thresholds. But this crude method of separation remained 
unsatisfactory because in the overlapping regions of the subpopulations it was not 

possible to distinguish between fibres of the same diameter belonging to different 
groups. It became obvious that the single criterion of calibre was not sufficient and 
we decided to adopt an approach involving multifactorial analysis. 

The aim of this paper is to describe the automatic method of multivariate 

classification of myelinated fibres we developed and which is now used in our 

laboratory * for the analysis of normal and pathological human superficial peroneal 
nerves. 

Materials and Methods 

Tissue preparation 
Specimens of superficial peroneal nerves were taken from subjects in a post- 

traumatic coma requiring circulatory and respiratory assistance. Segments of 3 cm 

length of the sensory portion of the nerves were exposed and excised from the distal 
third of the leg. Sensory nerve conduction velocity and action potential amplitude 
were measured in each case, and appeared normal. The specimens were fixed for 1 h 

in 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, at room temperature. 
After postfixation for half an hour in 1% 0~0, in the same buffer, the pieces were 

dehydrated in a graded ethanol series and embedded in Epon. Ultrathin sections 
were cut and stained with uranyl acetate and lead citrate and mounted on single-hole 
Formvar-covered grids. Electron micrographs were taken with a Philips 201 trans- 
mission electron microscope and after printing the final magnification was x 2800. 

Morphometric measurements 
Using a Hipad EDT11 digitizing tablet (Bausch & Lomb) connected to a micro- 

computer (Apple III and Apple Macintosh), the external contour of the myelin 
sheath and the axonal contour of each myelinated fibre were recorded and stored as 

files of Cartesian coordinates (x,, y,). From these values the cross-sectional areas 
(A) and the perimeters (P) were calculated using the following formulas (Pullen, 
1984): 

n-1 

A = 4 C [Cxi + xi+l)(Yi+l -Yi) - (YI +Yz+*)Cx,+l -xi>] 

i=l 

n-1 

p= c (Xi+1 - xi)2 + (Yi+l -Yi>* 

i=l 

where n is the number of points of the closed contour and where coordinates of the 
first point (xi, yi) are identical to those of the last point (x,, yn). External 

* and in the Service de Microscopic Electronique et Pathologie Ultrastrwturale, Centre Hospitalier 
Regional de Grenoble, France. 
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diumeters and axonal diameters were deduced from external and axonal perimeters 
assuming axonal shape to be cylindrical. For each fibre the myelin sheath thickness 

was calculated as being half the difference between external diameter and axonal 
diameter and the g-ratio was obtained by dividing axonal diameter by external 
diameter. Finally, to express deformation of fibre contour from an ideal circular 
section we calculated a circulurig index using the following formula: 

47~Ae Ci = ~ 
Pe2 

where Ci is the circularity index, ranging from 1 for a circle to 0 as the contour 
deviates from the circular shape, Ae is the surface area and Pe is the perimeter 
delimited by the external contour of the fibre. 

Mathematical tools 

The software was written in standard PASCAL and implemented on Apple 
microcomputers (Apple III and Macintosh). 

Principal component analysis. The classification algorithm was not directly ap- 
plied to the raw space defined by the morphometric variables. As our aim was to 

obtain the best segmentation between the two populations of fibres it was more 
judicious to work on a transformed space within which the heterogeneity of data 
was emphasized. Principal component analysis (PCA) is a multivariate statistical 
tool (Kendall, 1975; Charfield and Collins, 1980; Lebart et al., 1982; Harris, 1984) 
which suited our purpose in the sense of building a geometrical space enhancing the 
differences between data points. The first step of PCA consists of normalizing data; 
for each variable the arithmetic mean and standard deviation are calculated, and 

then the value of the mean is subtracted from each data point and the result divided 
by the standard deviation. This normalization offers the advantage of reducing any 
possible distortion effect related to the metric of each variable (linear metric for 
diameters and sheath thickness versus logarithmic metric for g-ratio and circularity 

index) or their scale range (0 to + cc for diameters and sheath thickness versus 0 to 
1 in the case of g-ratio and circularity index). 

As data are now homogeneous in scale a correlation matrix can be built which 
contains the values of correlation coefficients for all possible pairs of variables. The 
examination of correlation coefficients permits the finding of redundancies inside 
the set of data, followed by elimination of all redundant variables from further 
analysis (i.e. those which are strongly correlated with another variable). The conse- 
quence of this process is a reduction of the dimensionality of the factorial space to 
its significant vectors alone (morphometric variables). The possibility of reducing 
the number of variables is a most interesting feature when large iterative programs 
such as PCA and Clustering Algorithm have to be implemented in a microcomputer 
environment, that is, with limited memory and slow computation speed. 

The next step of PCA is diagonalization of the correlation matrix obtained after 
the redundant variables have been eliminated (Kendall, 1975), in order to find its 
eigenvalues and eigenvectors. The latter are used to calculate the new coordinates of 
each data point. Consequently, PCA may be understood as switching axes from 
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Fig. 2. Dynamic centres clustering algorithm. Example of classification of two dimensional data into two 

subpopulations (0, 0). The arrows (4 -,) symbolize the Euclidian distances of a data point from 

the centres of gravity of the subpopulations. 

those initially defined by the variables to those calculated from the scatter proper- 
ties of the data. The operations of rotation to achieve the final geometrical 
transformation have been described by Yelnik et al. (1983). 

Classification algorithm, The classification software is derived from an iterative 

clustering algorithm elaborated by Diday (1971) and known as the dynamic clusters 

method. Diday’s algorithm performs aggregation of the data points with reference 
to series of “standard points” chosen a priori in the data. In our program we adopt 

a slightly different approach by aggregating the data points around moving centres 
of gravity as described later in this section. This method has the advantage that it 
can be applied to any data set without the a priori knowledge of the characteristics 

of the clusters required in the dynamic clusters method. Our method consists of 
aggregating the n data points around k moving centres (where k is the expected 
number of classes) as a function of the Euclidian distance of each point from every 
center. At the end of each iteration step, new centres are calculated on the basis of 
the groups obtained, and the aggregation process is repeated until the centres are 
stabilized. To illustrate the principle of the method an example of the classification 
of two-dimensional data into two subpopulations (k = 2) is given in Fig. 2. At the 

beginning (iteration 0) two data points are randomly taken as initial centres of the 
two classes. The Euclidian distances separating data points from these centres are 
calculated and each point is subsequently attached to the nearest centre. Two 
groups of data points are thus obtained and their centres of gravity are calculated. 
These centres are used as new aggregation centres for the next step (iteration 1) of 
the classification. For each group, respectively, the Euclidian distance between the 



new location of the centre of gravity and its location in the previous step is 
calculated. The sum (Zd) of these distances is used as a measure of stabilization of 
the centres of the groups. The classification process converges rapidly and after a 
small number of iterations both groups and centres of gravity are stabilized, that is 
when 2d is zero or less than an arbitrary threshold (10 -‘). In our example, the 
stabilization occurs between iterations 3 and 4, and there is no need to repeat the 
process further. 

The rate of convergence depends on a small number of factors such as the 
number of classes one wants to obtain, the random choice of initial centres in the 
first step and the existence of significant subpopulations in the raw data. However, 

depending on the choice of initial centres, the final result of classification may differ 
for a few data points located near the border between the two groups. To minimize 
misclassification of these points it is necessary to repeat the classification process 
several times (an odd number from 5 to 11). Each point is then attached to the 
group it was most frequently associated with. 

Simulated data. The accuracy of the method was tested on simulated data sets 

within which every element was known and identified. These were created by mixing 
stochastically generated populations whose statistical parameters (proportions, 

means, variances and covariances) were imposed. Therefore, after classification has 
been performed on simulated data one can establish an index of classification 

failure by scoring elements which belong originally to a particular subpopulation 
but were misclassified with another. 

Results 

The results illustrated in Figs. 1, 3, 4 and 5 and presented in Tables I and II 
correspond to a fascicle containing 655 myelinated fibres whose characteristics are 

summarized in Table IV (case 1095). 

Principal component analysis 

Five available morphometric variables were submitted to Principal Component 
Analysis. Table I shows the values of correlation coefficients obtained for each 
possible pair of variables. Simple examination of these values shows that the 
external diameter is strongly correlated with both the axonal diameter (0.9313) and 

myelin sheath thickness (0.9157). This is not surprising, since external diameter 
depends only on axonal diameter and myelin sheath thickness. As it gave redundant 
information the external diameter was then removed from the analysis. The absolute 
values of the correlation coefficients obtained for the 4 remaining variables are less 
than the value of 0.8 that we arbitrarily chose as the redundancy threshold (Kendall, 
1975; Charfield and Collins, 1980). Accordingly, these were retained for the rest of 
the analysis. The eigenvalues of the correlation matrix obtained by diagonalization 
are presented in Table II as well as the percentages of explained variance associated 
with the four factorial axes. It appears that the value of cumulated variance reaches 
an amount of 99.41% when the percentages of explained variance associated with 
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TABLE I 

PRINCIPAL COMPONENT ANALYSIS - CORRELATION MATRIX OF THE FIVE MORPHO- 

METRIC VARIABLES 

Axonal diameter 

Sheath thickness 

Circularity index 

g-Ratio 

External 

diameter 

0.9313 

0.9157 

0.2683 

- 0.4544 

Axonal 

diameter 

0.7064 

0.0709 

-0.1175 

Sheath 

thickness 

0.4431 

- 0.7534 

Circularity 

index 

- 0.5750 

TABLE II 

PRINCIPAL COMPONENT ANALYSIS - EIGENVALUES AND PERCENTAGES OF EX- 

PLAINED VARIANCE ASSOCIATED WITH THE FACTORIAL AXES 

1st factorial axis 

Zndfactorial axis 

3rd factorial axis 

4th factorial axis 

Eigenvalue 

2.4046 

1.1079 

0.4634 

0.0241 

Explained Cumulated 

variance variance 

60.12% 60.12% 

27.70% 87.82% 

11.59% 99.41% 

0.59% 100.00% 

the factorial axes 1, 2 and 3 are summed. That is the three-dimensional scatter space 
defined by these axes summarizes 99.41% of the total information contained within 

the original four-dimensional parametric space. The dispersion of data along the 
fourth factorial axis represents merely 0.59% of the total variance. This value is less 
than the relative error due to measurement (a raw 1%) and biological variations 
(commonly assumed to be 5%). The eigenvectors are given in Table III and show the 

disposition of the original morphological variables with reference to the principal 
factorial axes. The projections of the variables myelin sheath thickness and g-ratio 
on the first factorial axis are, respectively, 0.955 and -0.836. This means that the 
first factorial axis, which represents 60.12% of the total variance, is strongly 

correlated with these two parameters and in particular with the myelin sheath 
thickness. 

TABLE III 

PRINCIPAL COMPONENT ANALYSIS - PROJECTIONS OF THE MORPHOMETRIC VARIA- 

BLES ON THE FACTORIAL AXES 

Axonal MyeIin 
diameter thickness 

Circularity g-Ratio 

1st factorial axis 0.584 0.955 0.673 - 0.836 

2nd factorial axis 0.783 0.237 - 0.542 0.381 
3rd factorial axis 0.203 - 0.141 0.503 0.386 

4th factorial axis - 0.072 0.113 0.000 0.079 
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Clussificution algorithm 

To eliminate variations due to the random positioning of centres in the first 
iteration step, the classification was repeated 5 times for each data set. The number 
of iterations necessary to reach convergence ranged from 3 to 12. The final result of 
the classification into two subpopulations of a real data set consisting of 655 
myelinated fibres is shown in Figs. 3-5. The projections of fibres in the scattergrams 
(Fig. 3) are represented with different symbols corresponding to the groups defined 
by the automatic classification (square for small fibres, triangle for large fibres). The 

fibres cluster in two distinct places with different densities. These clusters have 
various shapes depending on the pair of morphometric variables considered: 

ellipses (Fig. 3A, B), kidney shapes (Fig. 3C). This is of particular interest since 
according to Diday (1971), the aggregation of data points with reference to the 
centres of gravity and not with reference to “standard points” may lead to 
round-shaped clusters even when the subpopulations are in fact elongated. It 
appears that the small fibres have less dispersed characteristics than the large fibres 
for any of the variables studied, with the exception of the circularity index. In this 
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Fig. 3. Scattergrams of axonal diameter vs the 4 other morphometric parameters. A: vs external diameter. 
B: vs sheath thickness. C: vs g-ratio. D: vs circularity index. The projections of myelinated fibres are 

represented with different symbols corresponding to the groups defined by the automatic classification. 

0. 429 small fibres. A, 226 large fibres. 



100 

: 
2 80 

z 
"I; 60 

2 40 

"E 2 20 

0 
0 

245 

0 small flbres 

I larqe flbres 

2 4 6 8 10 12 

External diameter ( pm 1 

Fig. 4. Frequency distribution histograms of external diameter of the large and small fibre populations 
determined by automatic classification. 
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Fig. 5. Frequency distribution histograms of myelin sheath thickness of the large and small fibre 

populations determined by automatic classification. 

TABLE IV 

MEAN VALUES (+ STANDARD DEVIATIONS) OF THE DIAMETERS OF MYELINATED 

FIBRES IN FASCICLES OF FIVE CONTROL HUMAN SUPERFICIAL PERONEAL NERVES 

Case 

111 550 567 1095 1130 

Fascicle 

Number of fibres 

Mean external diameter (pm) 

Mean axonal diameter (pm) 

Small fibres 

% of fibres 

Mean external diameter (am) 

Mean axonal diameter (pm) 

Large fibres 

% of fibres 

Mean external diameter (am) 

Mean axonal diameter (pm) 

309 258 800 655 712 

5.46 + 2.47 4.77 * 3.01 5.90+2.19 4.95k2.13 6.26 f 3.04 

3.56+ 1.43 3.17+ 1.14 3.93 f 1.38 3.28 i 1.21 4.31* 1.77 

69.3 81.8 78.0 65.5 69.1 

3.9951.00 4.08 kO.88 4.90 * 0.99 3.59 +0.83 4.49 * 1.07 

2.79+0.83 2.81 f0.82 3.40 f 0.87 2.64 k 0.74 3.43 * 0.93 

30.7 18.2 22.0 34.5 30.9 

8.75 f 1.36 7.85 * 1.19 9.45 & 1.50 7.53 + 1.31 10.20 + 2.20 

5.28 + 0.93 4.83 f 0.89 5.81 k 1.19 4.51* 0.94 6.28 + 1.61 



case, the large fibres are grouped around a mean value of 0.87 & 0.06 indicating that 
their shapes are not much different from a circle. In contrast to this. the circularity 
index of small fibres spreads from 0.4 to 0.95 expressing a broader spectrum of 
deformations from a circular shape. The frequency distribution histograms 01 
external diameter and myelin sheath thickness are shown in Figs. 4 and 5, respec- 

tively. The histograms of the small fibre population are clearly normally distributed. 
The large fibre distribution of myelin sheath thickness appears less Gaussian and 
less regular because of the choice of class size, but in all cases the hypothesis of 

Gaussian distribution has been tested and verified using the chi-square test. For all 
the studied variables the frequency distributions of the two myelinated fibre 

populations overlap. Some of the large fibres have an external diameter smaller than 
the mean diameter of the small fibre population (Fig. 4 and Table IV). Minimum 
overlap between populations is observed for the myelin sheath thickness variable. 
This, in conjunction with the strong correlation between this variable and the first 
factorial axis (Table Ill) stresses the importance of myelin sheath thickness as a 
criterion of classification of myelinated fibres. Consequently. if one wants to 
determine to which population a single fibre belongs by using only one morphomet- 

ric variable, one should choose myelin sheath thickness. 

Simuluted dutu 

Five sets of simulated data were generated with characteristics based on those of 
the 5 control nerves (Table IV), to which different biases were added. The classifi- 
cation was performed on these data and the index of classification failure was 

established for each. The indexes of classification failure obtained were comprised 
between 0.1% and 1.5% and in all cases. the error was due to simulated large fibres 
misclassified in the small fibre population. 

Conclusion 

Our method permits a good separation of the large and small fibre populations 
and requires a maximum of 4 morphometric variables. The resulting groups are 
normally distributed and consistent. In conclusion, it appears that the myelin sheath 
thickness is a more discriminant morphological variable than the fibre calibre 
(although the latter remains a convenient descriptive variable insofar as total 
population characteristics are concerned) and consequently the different fibre types 
should be named “ thickly sheathed” and “thinly sheathed” rather than “large” and 

“small”. 
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