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In morphometric studies of peripheral nerves, the
statistical analysis of such data as axon diameters is
complicated by the presence of multimodal distribu-
tions. Nerve fiber diameters, for example, cannot be
analyzed by classical parametric tests, and such de-
criptive statistics as mean or variance lose much of
their usefulness.

The recent development of stochastic catastrophe
models offers a new parametric tool with which to
describe multimodal distributions. This paper de-
scribes our development of a PASCAL computer pro-
gram that permitted the modelling, comparison and
segmentation of multimodal distributions. The meth-
od is based on a description of the multimodal fre-
quency distributions by probability density functions

f the canonical exporential family.

Statistical analysis of biologic measurements is an
important feature of morphologic studies. In most in-
stances, classical univariate analysis is adequate and
easy to use; unfortunately, it fails in some particular
cases. Many authors who have conducted experi-
ments on peripheral nerves, such as comparing cne
set of nerves to a control set, have pointed out the
problem that arises frcm the bimodal frequency
distributions of myelinated axon diameters.? 3% 1:

Nonparametric testing procedures, such as the chi-
square or Kolmogorov-Smirnov tests, are commonly
used in these instances. Because of its great sensitivity
to interclassing and to the sample range, the chi-
square test is not entirely satistactory. The
Kolmegorov-Smirnov test does not possess the same
defect but is time consuming.

Another approach to the problem is to consider
bimodal distributions as mixtures of normally dis-
tributed subpopulations. After dividing frequency
distributions into their Gaussian components, it is
possible to compare these by a parametric statistical
test, such as the nested analysis of variance.? Various
methods for dividing bimodal frequency distribu-
tions, including graphic methods? 1 and computing
methods, ¢! have been described. This paper pro-
poses a method for dividing bimoda! distributions
that is based on recent applications of stochastic
catastrophe models.**

Materials and Methods

Tissue Preparation

Specimens of superficial peroneal nerves were ab-
tained from people who died of traumatic injuries at
the Regional Hospital Center of Grenoble. Three-
centimeter-long segments were dissected from the
third inferior part of the leg. The specimen; were
fixed for one hour in 2.5% glutaraldehyde in caco-
dylate buffer, pH 7.4, at room temperature. After
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postfixation for half an hour in 1% osmium tetroxide
in the same buffer, the pieces were dehydrated in a
graded ethanol series and embedded in Epon. The
nerves were cut as close as possible to the transverse.
All thin cross sections were stained with uranyl ace-
tate and lead citrate. Electron micrographs were
taken with a Philips 201 transmission electron micro-
scope. The final magnification was 2,800 X.

Measurement of External Axon Caliber

Using a Hipad digitizing tablet (Bausch & Lomb) con-
nected to an Apple IIl microcomputer, the external
contours of myelinated axons were recorded and
their areas were computed. From these values,
assuming the axons to be cylindrical, the external
diameter of the fibers was calculated as the diameter
of the equivalent circle (equal area)*®. All of the data
was stored on a disk file for further computations by
means of the PASCAL program.

Mathematical Tools

The principle on which this method for dividing
bimodal distributions is based is the description of
multimodal frequency distributions by probability

density functions of the canonical exponential family.

These provide at least four parameters that can be
employed in a new statistical parametric tool.

Modelling. The general expression of canonical expo-
nential models is

f(x) = E.exp(g(x))

where £ is a normalization coefficient and g(x) is a
polynomial, called a “shape polynomial” for the den-
sity f.

The degree k of the polynomial g is directly related
to the number of distribution modes; for a bimodal
distribution, k should be at least equal to three.
Various classes of multimodal density functions can
be defined by modifying the expression of the shape
polynomial. Four of these multimodal families, speci-
tied by the ‘litters N, G, 1 and B, are of particular in-
terest because the common unimodal frequency dis-
tributions (normal, gamma, inverted gamma and
beta) can be considered as special cases of these. The
expression of the shape polynomial for the N-density
class is: Oy A * x s

S(X) = a1*x+az*xz+ N +Xk’1

The estimation of the parameters a, through a,.
requires the solution of a system of linear equations

involving the 2k first empirical moments of the
distribution. The formula of the moments is

M = i X;/n
j=1

where n is the sample size. Let b,_, be the estimates of
the parameters a;, such that a,=—b,.,/i. For an
N-density function of degree 3, the b,., are solutions
of the following system:

M(i+j—2) » b(i—1) = R((i—1)*M(i—2))

1 M1 Mz M3 : bo 0
M] Mz Ma M| . bl —_ 1
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The solvability of this system depends on the in-
vertibility of the square matrix M(i +j—2). The esti-
mators b,., are consistent and asymptotically nor-
mal.* The normalization parameter £ is obtained by
integrating the density function. Afterward, the
goodness of fit for a calculated model function may
be examined with the chi-square test.

Comparison of Multimodal Distribution. Because
they are consistent, the b,-, estimates can be used in a
two-sample test. Let N, and N, be the density func-
tions calculated for two sets of data and b, and b, be
the respective estimates of their parameters. Under
the H, null hypothesis, we assume N, to be equal to
N,, and b, must consequently be equal to b,. The
purpose of the two-sample test is to determine wheth-
er or not the difference b, —b, is significant. Because
the b,., are asymptotically normal, the quadratic
form of the matrix of differences, denoted

[

follows asymptotically a chi-square distribution with
k +1 degrees of freedom (k is the degree of the shape

polynomial):

S AN | RGN B HUR- R

where the t superscript denotes the transposition and
I is the identity matrix (a square matrix with unity on
the main diagonal and zero everywhere else).

The significance of the difference can be expressed
by the probability of exceeding the theoretical chi-
square value with k+1 degrees of freedom.



Table 1 Goodness-of-Fit Test for Calculated Density Functions of Increasing Polynomial Degree (K)

Superficial peroneal nerves

A B C D
K - X o P x2 a P x: a P xa a P
3 46.5 19 <.001 234 17 0.137 181.8 41 <.001 110.6 36 <.001
4 29.2 19 .063 17.6 17 0.416 50.5 41 147 42.6 36 .150
5 33.5 18 .015 13.9 17 0.669 59.4 40 .025 53.5 34 .018
1. is the calculated chi-square and P is the probability of exceeding the theoretical chi-square value with a degrees of freedom.

Results

Modelling

To test the adequacy of density functions computed
from real bimodal histograms, chi-square values
were calculated for a set of four nerves (A, B, C and
D). Under the H, null hypothesis, the goodness of fit
is expressed by the P value, which is the probability
of exceeding the theoretical chi-square value with e
degrees of freedom. The results for curves of the N
family with increasing polynomial degree are shown
in Table I. Except for nerve B, the optimum degree of
the shape polynomial appeared to be four. Below this
threshold, the goodness of fit was poor (P<.001). A
higher degree did not increase the quality of the
models. This is illustrated for nerve C (a set of 1,078
fibers) in Figure 1. The bimodality was well depicted
with degrees 3 and 5, but the goodness of fit was
severely eroded, with the overestimation of the first
mode and underestimation of the second. Further-
more, for degree 3, the second mode and the anti-
mode were displaced towards high values of the
diameter. Further calculations, therefore, were based
only on shape polynomials of degree 4.

Scale invariance of modelling was tested by com-
puting the N-density function for nerve C from the
transformed data and comparing it with the pre-
viously calculated density function. The transformed
data were obtained by dividing one hundred times
the diameter values of the original data file. Table II
shows the parameter estimates of the two functions.
The ratio of corresponding estimates shows that
these are related by a “ten to the h power” law, where
h is equal to the ratio of data unities multiplied by the
parameter order. The slight bias on the second deci-
mal of ratios must be attributed to a numerical
rounding limitation of our microcomputer.

Comparison of Bimodal Distributions

To test the method of comparison, we used the
N-density functions calculated for the previous set of
nerves (A, B, C and D). These curves are presented in

Figure 2 and illustrate the spreading of the spectra,
the locations of modes and antimodes and the rela-
tive amplitudes of the peaks. The quadratic differ-
ences of parameter estimates and the associated prob-
abilities of exceeding the theoretical chi-square value
were calculated for each possible pair of nerves; all of
the results are presented in Table III. Under the H,
null hypothesis, if the probability exceeds 0.95, the
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Figure 1

(A) Histogram of myelinated axon calibers of the superficial
peroneal nerve C. The fitting curve of the N-density function of
degree k=4 is superimposed. (B) Calculated density curves with
increasing degrees (3 to 5) for nerve C.
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