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INTRODUCTION 
 
Maxillofacial dysmorphosis of the lower 
part of the face (disequilibrium between 
the mandible, the upper jaw and the 
face) has important functional, 
orthodontic and aesthetic consequences : 
respiration difficulties, mastication and 
elocution troubles, disruptions of the 
dental occlusion, face asymmetry… 
Orthognathic surgery can correct these 
problems but is very delicate. It mainly 
consists in osteotomies and bone 
segment repositioning in order to realign 
the upper and lower jaws (Fig. 1). This 
surgery requires precise planning of 
bone structure displacements. One of the 
main request of the patients concerns the 
prediction of the face aesthetic after the 
operation.  
 
A complete protocol for computer-aided 
maxillofacial surgery was already 

presented [1]. This protocol includes 
several important steps :  
− Simulation of bone osteotomies on a 

virtual 3D model of the patient skull,  
− Planning of the bone segment 

repositioning, with six degrees of 
freedom, using a 3D cephalometric 
analysis,  

− Quantitative measurement of the 
dental occlusion,  

− Prediction of the patient facial soft 
tissues deformations,  

 

 
 

Fig. 1 : Maxillar and mandibular 
osteotomies 

 



− Computer-aided intervention in the 
operating room thanks to the 3D 
bone repositioning planning.  

 
To predict the soft tissues modifications 
resulting from the repositioning of the 
underlying bone structures, a finite 
element model of the face soft tissues 
has been developed. It is based on a 
generic mesh composed of several types 
of nodes : external nodes modelling the 
skin, intermediate nodes delimiting the 
dermis and the hypodermis and internal 
nodes mainly located on the skull (Fig. 
2). The generic model is conformed to 
the patient morphology using the Octree 
Spline elastic registration method [6]. 
The skin and skull surfaces of the 
patient are segmented from the CT-

scanner exam. The initial position of the 
generic model is determined manually. 
Both generic model and patient surfaces 
are considered as clouds of points by the 
registration process. A first elastic 
registration is effected to match external 
nodes of the generic mesh to the patient 
skin surface. The obtained 
transformation is applied to all nodes of 
the generic model. A second elastic 
registration is computed to match the 
internal nodes in contact with the skull 
to the patient skull surface. At this stage, 
some manual adaptation can be effected 
if the generic model do not match 
exactly the patient one. Moreover, the 
transformed generic mesh is corrected in 
order to fulfill regularity criteria needed 
for finite element computation.  
 

Fig. 2 : Adaptation of the finite element generic model to the patient 



OBJECTIVES 
 
The generic face model adaptation 
method described above works pretty 
well in many cases but several 
disadvantages have been identified :  
− The initial position of the generic 

model is performed by manual 
interaction, which can lead to 
significantly different registration 
results, according to the skill of the 
user.  

− The patient skin surface obtained 
from the CT-scanner exam is built by 
the Marching Cube algorithm and 
includes consequently internal 
structures of the skin (sinus, 
trachea…). This can disturb in many 
cases the registration process (the 
skin surface of the generic model is 
often matched on the sinus surface of 
the patient model, for example). The 
same problem occurs also with the 
skull surface. This is due to the 
point-to-point registration process 
that does not consider the models as 
“real surfaces” but only as clouds of 
points.  

 
This paper presents a new approach to 
perform accurate automatic face 
registration, based on multimodal data 
including cephalometric analysis and 
surface information.  
 
 
METHODS 
 
1. Determination of an initial 
position 
 
The first objective is to automatically 
determine an initial position for the 

generic model. To perform this task, we 
propose to use cephalometric data. They 
consist in a series of particular 
anatomical landmarks, easily 
identifiable and defined in 3D on the 
CT-scanner exam of the patient. The 
surgeon can perform cephalometric 
analysis [2,4], based on planes, angles, 
surfaces or volumes defined from these 
anatomic points (Fig. 3). For the generic 
model, these landmarks are defined once 
for all. It implies that two clouds of 
corresponding cephalometric points are 
available in patient and generic models.  
 

 
 

Fig. 3 : Three-dimensional cephalometric 
analysis based on a series of anatomical 

landmarks 
 
Our first idea was to compute an initial 
position by rigid registration of these 
corresponding points. However, patients 
suffering from maxillofacial 
dismorphosis present very different skull 
morphologies and even after this step 
the generic model can be located 
relatively far from the patient one. 
Therefore, we have preferred to use the 
elastic registration introduced by [6] to 



match the two clouds of corresponding 
points. This does not need much more 
time and the resulting transformed 
generic model corresponds better to the 
patient (Fig. 4).  

 
2. Surface matching 
 
The second objective concerns the 
integration of surface information into 
the elastic registration process. The 
Octree Spline elastic registration 
algorithm computes a transformation 
that minimizes an energy function which 
represents a weighted sum of distances 
squares. To calculate these distances, a 
corresponding point located on the 
target model (patient) has to be 
determined for each point of the source 
model (generic mesh). The point-to-
point registration process searches for 
corresponding points among nodes of 
the target model. Two improvements 
can be added to this method.  
The first one consists in taking into 
account the relative local orientation of 
the surfaces to match [3,5]. For each 
model node, the external normal can be 

computed thanks to the adjacent 
triangles. Then the search for a 
corresponding target point can be 
effected according to a double criterion : 
minimum Euclidian distance and near 

normal orientation (i.e. normal scalar 
product near to one). The corresponding 
point is searched only in an isotropic 
neighbourhood centred on the 
considered source point. A new 
composed distance Dist Comp (P, Q) is 
therefore defined between two points P 
and Q :  
 
Dist Comp (P, Q) =  Dist Eucl (P, Q)  
                         +  w . R . (1 - NP . NQ) /2 
 
Dist Eucl represents the standard 
Euclidian distance. NP and NQ are the 
normals associated to the points P and 
Q; w is the weighting factor of the 
normal orientation term and R is the 
radius of the isotropic neighbourhood. 
Note that the scalar product is rescaled 
between 0 and 1 in order to be high 
when orientations are discordant and 
null when normals are oriented 
identically. Since the first term of 

Fig. 4 : Automatic determination of the initial position based on feature points – a. Original 
position (scanner dependant); b. After rigid registration; c. After elastic registration. The 
generic model is in wireframe.  



Dist Comp is limited by R, putting w to 1 
corresponds to balance both the distance 
and orientation terms equivalently.  
Of course, if the source and target model 
are locally separated by a distance 
higher than R, the algorithm will not 
provide the good corresponding points 
in these zone. In our case, this situation 
does not occur thanks to the previous 
automatic computation of the source 
model initial position.  
 

 
 
Fig. 5 : Utility of using surface normals – a. 
Target model; b. Source model; c. Matching 
by smallest Euclidian distance; d. Using 
distances and normals.  
 
The orientation of both source and target 
models surfaces is thus taken into 
account (Fig. 5), which allows to match 
the surfaces more efficiently : source 
points are coupled with target points that 
correspond better anatomically.  
The second improvement is to search 
corresponding target points on the whole 
target surface and not only among target 
model nodes. This task is done in two 
steps : in a first time, the corresponding 
target node is determined thanks to the 
composed distance; in a second time, the 
closest corresponding point (using the 
composed distance) is searched in all the 
adjacent triangles of the previous node 
by recursive subdivision of each 
triangle.  
 
 

RESULTS 
 
Our method has been tested and 
validated on a set of 10 patients faces.  
The improvements of our work have 
been quantified by measuring distance 
parameters (maximum, mean, median, 
standard deviation and 95th percentile) 
for both methods : point-to-point 
matching (PPM) using only distance 
criterion and point-to-surface matching 
(PSM) using normals information 
besides.  
Subdivision level of the octree was 
limited to 5 because higher levels 
require too many computing resources. 
However, the matching result can be 
still improved after only one process. 
Therefore, two successive registration 
processes have been effected. The profit 
becomes negligible afterwards.  
Several zones of the generic model are 
not present on the patient data, 
depending on how the CT-scanner was 
done (face, neck, end of the nose…). In 
the same way, ears are not represented 
in our generic model but appear in the 
patient model. These zones, where no 
matching is possible for lack of data, 
have been removed manually and are 
not taken into account in the distance 
measurements (Fig. 6).  
Colour distance maps represent the 
distance between patient and generic 
model surfaces in order to evaluate 
locally the matching quality and to 
identify the possible problem zones 
(Fig. 7A and 7B).  
 
We have observed that the matching is 
particularly difficult in the lips region, 
where surface orientation can 
considerably vary from one person to 



another. The largest errors are often 
located in this area.  
It can also be noticed that with the PSM 
algorithm, the source model does not 
remain attached to the internal structures 
of the patient model (interior of the 
nose, sinus…).  
Several of our patients have orthodontic 
braces or teeth fillings which generate 
CT-scanner image and 3D surface 
artefacts but our matching technique 
remains robust.  
The time needed to proceed to one 
matching process is about one minute on 
Pentium IV 1.6Ghz PC computer, which 
is clinically acceptable.  
 
 

CONCLUSION 
 
The multimodal elastic registration 
algorithm presented in this paper has 
been validated to match a generic model 
of the face to several patients. This 
method is automatic, precise and robust. 
The computing time is compatible with 
clinical practice constraints.  
Future work includes mesh regularity 
verification in order to insure finite 
element computation feasibility. It will 
then be possible to simulate soft tissue 
deformations resulting from bone 
repositioning during maxillofacial 
surgery.  
 

Fig. 6 : Quantitative comparison between PSM and PPM algorithms  
(error distances are in mm) 
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Fig. 7A : Qualitative comparison between PSM and PPM algorithms – a. Initial situation; b. 
After two PPM processes; c. After two PSM processes; d. Errors distances map 
corresponding to the PPM final process; e. Errors distances map corresponding to the PSM 
final process 
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