
Zandipour et al. V-V Sequence Planning 

From Sound to Sense: June 11 – June 13, 2004 at MIT                                1 

VOWEL-VOWEL PLANNING IN ACOUSTIC AND MUSCLE SPACE 
 

M. Zandipour 1,2, F. Guenther 2,1, J. Perkell 1,2, P. Perrier 3, Y. Payan 4, P. Badin 3 
1 Research Lab of Electronics, M.I.T., Cambridge, MA, USA 

2 Dept. of Cognitive and Neural Systems, Boston University, Boston, MA, USA 
3 Institut de la Communication Parlée, France 

4Techniques de l'Imagerie, de la Modélisation et de la Cognition, France 
majidz@speech.mit.edu 

ABSTRACT 
The objective of this research is to investigate the planning and control of vowel-to-vowel 
sequences using a computer model of the vocal tract. The vocal tract model, which is based on 
a French male speaker, consists of a biomechanical tongue model (Perrier et al., 2003) with the 
addition of jaw (rotation and translation) and lip (opening and protrusion) movements. A 
comparison of acoustic data from the subject on whom the model is based to simulation results 
from the model for /i/-/a/, /i/-/e/, and /i/-/u/ movements is presented. Results show that planning 
a V-V sequence in either acoustic space (F1, F2, and F3) or motor space (in terms of lambda 
values according to the equilibrium point hypothesis, EPH) produces formant trajectories similar 
to those of the subject's data, and at the same time has a smooth progression of muscle lengths 
between the two vowels. However, the modeling does not account for all aspects of the data. 

INTRODUCTION 
Speech production, like many other skilled movement tasks, is learned and refined gradually. 
The integration of sensory information and efference copies of motor commands is likely 
brought about by learned inverse and forward models. An inverse model is needed to provide 
an accurate estimation of the motor commands required to achieve a desired sensory response, 
whereas a forward model predicts the sensory consequence of an action and minimizes the 
delay and noise between the sensory inputs and motor commands (Wolpert, et al., 2001). 

The top panel in Fig. 1 schematizes this general concept of motor control adapted to speech 
production, based on the assumption that speech movements are planned in an acoustic/ 
auditory reference space (see also: Perkell, et al., 2000). A comparator measures the difference 
between the estimated current position and the desired target in acoustic/auditory space. This 
information is then sent to an adaptive inverse model responsible for generating the correct 
motor command. The forward models in Fig. 1 are state estimators based on sensory feedback 
and internally generated predictions of articulatory position (efference copy). The forward 
models transform vocal tract configurations (in muscle space) into corresponding acoustic 
parameters: a many-to-one mapping. Learning these mappings depends on acoustic and 
orosensory feedback, and on the efference copy of the motor commands. An alternative view is 
schematized in the bottom panel, in which a plan of speech motor control is based on 
transformations in muscle (motor) space. A comparator measures the difference between the 
current estimated and the desired target muscle lengths. This information is then used by an 
adaptive inverse model to generate the correct motor commands. This approach also employs 
both forward and inverse models to carry out the plan (Kawato, 1989). 

Perkell et al. (2000) proposed three hierarchical levels for planning speech production, based 
upon solving the inverse kinematics and the inverse dynamics of the speech production system. 
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Several competing solutions to the inverse dynamic 
problem have been proposed in the arm movement control 
literature; two of them are considered here. According to 
the equilibrium point hypothesis, EPH (Feldman, 1986), the 
brain does not explicitly compute the necessary forces, but 
instead, controls the movement by shifting (in time) an 
“equilibrium point” at which all muscles and external forces 
are balanced, utilizing the spring-like properties of muscles 
and feedback loops. Another hypothesis postulates that the 
brain creates and adaptively updates internal models of the 
body dynamics and the environment (Wolpert, et al., 1998).  

Computational models can be used to simulate and explore 
the implications of different control hypotheses, which can 
then be compared with experimental observations. The 
main objective of this research is to explore the coordinate 
space in which speech movements are planned. Using a 
model of the vocal tract based on a two-dimensional 
biomechanical tongue model (Perrier et al., 2003), the 
formant (F1, F2, and F3) trajectories of vowel-vowel (V-V) 
sequences are generated and then compared to data from 
one subject. If the planning in acoustic space results in a 
motor space trajectory comparable to that of the subject’s 
data (simulated by the subject’s vocal tract model), then 
speech movement planning may occur in acoustic space. 
On the other hand, if planning in motor space results in a 
formant trajectory like that in the subject’s data, then 
speech movement planning may occur in motor space. 
Alternatively, if both methods produce V-V trajectories 
similar to the subject’s data and exhibit a smooth 
progression of muscle lengths, then neither planning 
hypothesies can be rejected.  

METHODS 

The Model 

The biomechanical tongue model (Perrier, et al., 2003) has 221 nodes 
(17 x 13) defining 192 quadrilateral elements in the midsagittal view 
(Fig. 2). Seven muscle synergies were modeled within this finite 
element (FE) mesh. Models of jaw opening (rotation and translation), 
lip opening, and lip protrusion were added to the biomechanical 
tongue model in order to simulate utterances in a more natural way. 
To identify vowel-specific values of λ (the static threshold length for 
force generation) for each tongue muscle, x-ray images for each of the 
vowels /i/, /a/, /u/, /e/, and /o/ at steady state were compared to their 
simulation of the vocal tract at steady-state (Fig. 2). Electromyography 
(EMG) data presented by Alfonso et al. (1982) from a speaker of 

Figure 1: Schematic of speech pro-
duction based in acoustic (top) and 
motoric space (bottom panel). 

Figure 2: Vocal tract 
shapes from x-ray 
tracing (black) and the 
model (red) for /i/. 
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American English were used to determine the muscle activation for each vowel. To obtain the 
acoustic transfer function of the shape of the vocal tract, a model described by Beautemps et al. 
(1995) was employed, and its parameters were optimized such that the values of formants (F1, 
F2, and F3) were within ±10% (max error) of those from the subject’s data. 

Fig. 1 schematizes two forward models: one learns the muscle-state-to-acoustic mapping, and 
the other one learns the mapping between the efference copy of the motor command and the 
acoustics. Two neural networks based on Hyperplane Radial Basis Functions (HRBF) were 
trained to acquire these models (see also Guenther et. al 1998). The network is presented with 
a data set containing training pairs, each composed of a vector from the muscle-length/motor 
command space and a desired acoustic target (teaching signal). Each network is composed of 
10 input nodes, representing the 10 dimensions of muscle-length/motor command space, 162 
nodes at the middle (hidden) layer, and 3 output nodes, representing the 3 formants (F1, F2, 
and F3). Both networks converged after 500 iterations. The performance of each network was 
measured by the difference between the actual and obtained values of the formants from a 
different set of simulation results. 

The theoretical detail of directional mapping from the auditory/acoustic space to the motor 
command space, i.e. an inverse model, has been discussed in Guenther, et al. (1998). In this 
study the inverse model is based on the mixture of experts of the n nearest neighbors, in which 
each nearest neighbor expert module learns a localized inverse model (IM) by employing the 
reinforcement learning method. The outputs of IMs are weighted based on the inverse of their 
distances in the muscle-length space; i.e., the further each module in the muscle space is from 
the current position, the less contribution to the total output. The final output is the sum of the 
normalized weighted output from each module (Schaal and Atkeson, 1998). In addition to 
smooth transitions and generalization from one IM to another, the multiple IM system has the 
ability to learn novel mappings, while maintaining the past. Each IM expert is an HRBF neural 
network consisting of 3 input nodes (3 formant trajectories, ∆F), 10 output nodes (10 motor-
command trajectories, ∆λ), and 8 nodes at the hidden layer. A data set containing 500 [∆F ∆λ] 
pairs was collected by randomly perturbing the motor-command λ’s associated with each muscle 
by 1/400 of its total range, and then obtaining the corresponding formants from the Forward 
Model of the vocal tract. Because the objective of the IM was to learn the formant-trajectory-to-
λ-trajectory mapping, and because formants-to-λ is a many-to-one mapping, the error was 
measured by the difference between the desired and approximated formant trajectory vectors. 
The maximum error was set at 2%. All 1907 expert networks converged by the 200th iteration.  

According to the proposed theories of speech motor control, planning a speech sequence 
(concatenation of phonemes) can be accomplished in one of the following ways: 

1. In Motor (muscle) space: By defining the target muscle configurations, and then interpolating 
between the present and desired configurations. This scheme works if and only if the 
system has learned the mapping between motor and acoustic spaces of each phoneme by 
realizing the acoustic consequence of each motor command. To acquire the acoustic 
outcome of this planning scheme, the initial and final configurations (in λ’s) of each vowel 
target were entered into the vocal tract model, and then the formants were calculated from 
the derived area functions of the vocal tract.  
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2. In Acoustic (formant) space: By defining target 
acoustic settings, and then interpolating linearly 
between the present and desired configurations. 
Because the mapping from acoustic-space to motor-
space is one-to-many, finding the correct motor 
command requires calculation of an inverse of the 
Jacobian that maps motor commands to acoustic 
perceptual variables. There are two ways of 
approximating the inverse of the Jacobian: a) by direct 
calculation of the Moore-Penrose pseudoinverse of a 
matrix; or b) by using an artificial neural network to 
approximate the pseudoinverse. 

Simulations 

A set of /i/-V sequences was simulated using the model 
described above, where V was /a/, /e/, or /u/, and the 
results were compared to data from the subject. The 
transition time between the two vowels was set to 200 
milliseconds, comparable to the subject’s data. The model 
produces an acoustic trajectory, muscle lengths, and 
muscle activations, which are presented below. The 
results presented below are from simulations with the 
vocal tract model when planning a V-V sequence in motor 
space (1) or in acoustic space (2a,b), such that: 

1. Vocal Tract only, the beginning and ending vowels’ λ’s 
were interpolated according to the method of the λ-
model (VT condition; tV-V = 200 ms).  

2a. A forward model was trained to learn the mapping 
between the λ values and formants (Forward Model 1 
in Fig. 1, top panel). It was then used to calculate the 
inverse of the Jacobian algorithmically which 
approximates the motor trajectory while planning in 
acoustic space (FMpinv condition: direct calculation of 
pseudo-inverse of the Jacobian using Forward Model). 
This method is based on planning a movement in 
acoustic space, in which at any point in time, a desired 
vector in formant space (∆Fd) (whose length is 130 Hz 
- a value determined in an ad hoc manner) and points 
toward an acoustic target. Hence, theoretically, an 
acoustic trajectory should be a straight line in acoustic 
space because of linear interpolation in that space.  

2b. A forward model was trained to learn the mapping between the λ’s and formants. A motor-
command trajectory (change in λ) while planning in acoustic space was then approximated 
using a network of Mixture of Experts based on HRBF as discussed above (FMLpinv 

Figure 3: Blue lines: muscle 
lengths, jaw opening, lip opening, 
and lip protrusion vs. time for an 
/i-a/ sequence, when simulating in 
VT condition (motor space 
planning; top panel), and in 
FMLpinv condition (acoustic 
space planning; bottom panel). 
Red lines: represent progression 
of the λ target (motor command). 
In the bottom panel, the X-axis 
represents the number of steps 
taken by the pseudo-inverse 
algorithm to interpolate an /i/-/a/. 
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condition: Learned pseudo-inverse of the Jacobian using Forward Model). In this condition 
the ∆F to ∆λ mapping is learned without any explicit knowledge of any Jacobian matrix, 
whereas in FMpinv condition many Jacobian matrices (∆F to ∆λ) and their inverses (∆F to 
∆λ) along each formant trajectory are calculated.  

RESULTS 
Results of V-V planning for /i/-V were similar. Due to page 
limitations, only the results of the /i/-/a/ simulation is presented. 
Figure 3 show the progression of the λ targets (the motor 
commands; red lines), and muscle lengths (blue lines) in time 
for an /i-a/ sequence, when simulating in the VT (motor space 
planning; top panel) and FMLpinv (acoustic space planning; 
bottom panel) conditions. Note that due to interacting forces 
from different tongue muscles on each node of the FE mesh, 
the muscle lengths do not reach their intended targets. In 
addition, the transition of each muscle’s length is a smooth 
curve, which is not necessarily monotonic due to interacting 
forces; e.g. GGa during the /i/. Planning in acoustic space 
(bottom panel) resulted in a smooth evolution of the λ values, 
though not a ramp like that of the λ model. Also, the λ 
progression is mostly monotonic, and any slight non-
monotonicity can be explained by the imperfect nature of the 
forward model; i.e. it is an estimate of the vocal tract model. 
Note that what is different between the λ’s in VT and FMLpinv 
conditions is the shape of the ramp, and importantly, contrary 
to the VT condition, in FMLpinv the λ’s for different muscles are 
not synchronized in time. In addition, the muscle lengths in 
FMLpinv condition progressed smoothly and non-
monotonically, as shown in Fig. 3 (blue line).  

Fig. 4 depicts the comparison of the acoustic trajectories of /i/-/a/ for the subject’s production 
data and the FMLpinv condition, in which the ∆λ was approximated from the desired ∆F using a 
network of Mixture of Experts. The results from the FMpinv and the VT conditions were also 
added to show: a) how the learned inverse model was able to capture effectively the 
pseudoinverse of the Jacobian; b) how the learned forward and inverse model combination can 
produce results similar to the subject; and c) how close the results of these various conditions 
are to each other and to the subject’s data despite different planning strategies.  

Carré et al. (2001) showed that the shape of the trajectory between the two vowel targets was 
perceptually important; however, their data demonstrated a wide range of perceptual tolerance 
of variation in interpolations, synchronization, and transition duration. Hence, it is reasonable to 
conclude that the V-V trajectories in Fig. 4 likely would be perceptually indistinguishable. 

SUMMARY AND DISCUSSION 
It is hypothesized that in speech motor planning, articulator movement is planned within an 
auditory frame of reference to achieve an acoustic goal, or alternatively, planned within a motor 
frame of reference to reach a motor goal corresponding to its acoustic target. The results of the 

Figure 4: Formant 
trajectories of different 
planning scheme in F1-F2 
(top panel) and in F1-F3 
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present study (considering caveats about the vocal tract model) do not reject either of the two 
opposing hypotheses of speech movement planning, which rely on either acoustic or motor 
frames of reference. First, our results show that both schemes produce comparable results. 
Specifically, we have shown that planning a V-V sequence in motor space (as defined by the λ 
model) could produce formant trajectories similar to data. Second, we have also shown that 
planning a V-V sequence in acoustic space (as defined by formant frequencies) could result in 
smooth muscle length transitions between the two vowel targets, when using a vocal tract 
model based on a bio-mechanical tongue. If additional research supports the present results, a 
model of speech production adapted from one proposed by Hikosaka et al. (1999) can provide a 
unified alternative: learning and planning a speech sequence occurs in two parallel cortical 
systems, one using auditory coordinates and the other using motor coordinates. 
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