
3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)
C. Mendoza, I. Navazo (Editors)

Animating Shapes at Arbitrary Resolution
with Non-Uniform Stiffness

Matthieu Nesme1,2, Yohan Payan2 and François Faure1

1GRAVIR/IMAG-INRIA 2TIMC/IMAG - Grenoble, France

Abstract
We present a new method for physically animating deformable shapes usingfinite element models (FEM). Contrary
to commonly used methods based on tetrahedra, our finite elements are thebounding voxels of a given shape at
arbitrary resolution. This alleviates the complexities and limitations of tetrahedral volume meshing and results
in regular, well-conditionned meshes. We show how to build the voxels and how to set the masses and stiffnesses
in order to model the physical properties as accurately as possible at any given resolution. Additionally, we
extend a fast and robust tetrahedron-FEM approach to the case of hexahedral elements. This permits simulation
of arbitrarily complex shapes at interactive rates in a manner that takes intoaccount the distribution of material
within the elements.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling
I.3.7 [Computer Graphics]: Animation

Keywords: physically based animation, finite elements, deformable modeling, real timesimulation

1. Introduction

Physically-based animation has generated a growing interest
over the last twenty years, because it allows a virtual object
to realistically react to external input rather than replay pre-
computed animations. However, it is not yet widely used in
real-time applications such as video games, because physical
models are difficult to tune and their animation is computa-
tionally expensive.

In this paper, we propose a novel approach to tackle these
difficulties in the case of viscoelastic deformable bodies.
Viscoelastic deformation can be used to model a wide range
of real-world objects, including biological tissues, cloth,
and a variety of deformable manufactured objects. They are
modeled as a continuous material subject to physical laws
relating local strain to local stress, and discretized over a fi-
nite number of degrees of freedom to allow numerical sim-
ulation. This has been deeply studied in the domain of me-
chanical engineering [Bat82], and a wide variety of mate-
rial laws and discretization methods has been proposed. In

the computer graphics community, the seminal paper of Ter-
zopoulos [TPBF87] showed how to produce complex and
visually realistic animations, at a high computational price.
Since then, a lot of work has been done to reduce the com-
plexity using alternative material laws, spatial discretization,
and time integration.

Our approach can be summarized as follows. We first build
a high-resolution voxelization of the geometrical object (if
not already available).We then recursively merge the vox-
els up to an arbitrarily coarser mechanical resolution. The
merged voxels are then used as hexahedral finite elements
embedding the detailed geometrical shape and animated us-
ing fast implicit time integration.At each level, the mass and
stiffness of a merged voxel are deduced from its eight chil-
dren, automatically taking into account the non-uniform dis-
tribution of material. The objects can simultaneously include
volumetric parts, surface parts such as wings or ears, and
one-dimensional parts such as tails. The animation is robust
against degenerate configurations such as element inversion.
We believe that these features put together make our ap-

c© The Eurographics Association 2006.

M. Nesme, Y. Payan & F. Faure / Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

proach suitable for interactive virtual environments such as
video games.

Our specific contributions are: the automatic voxelization of
a surface model, the automatic tuning of the FEM parame-
ters based on the distribution of material in each cell, and the
robust animation of hexahedral elements.

The remainder of this paper is organized as follows. Related
work is briefly discussed in section 2. In Section 3, we show
how to construct the voxel mesh and embed the surface in the
deformable voxels. In Section 4, we present a new method
to apply fast dynamic FEM to the voxels and detail how to
interact with the embedded surface. In Section 5, we explain
how to tune the mass and stiffness of the voxels. We discuss
results in Section 6 and conclude in Section 7.

2. Related Work

The complexity of the material laws have a high impact
on computation time. T he most simple viscoelastic law
is the spring model [CEO∗93, BHW94]. However, it has
been shown that it can not accurately model 3D elastic-
ity, and recent work focus on 3D finite elements [Hau04].
Important gains in computation time have been obtained
by replacing the complex Green-Lagrange rotationally in-
variant strain tensor by the product of a rotation with the
linearized Cauchy strain tensor [MDM∗02, EK03, MG04].
This method is commonly referred asstiffness warpingor
co-rotational elements. Robustness in degenerate configu-
rations such as flat or inverted elements has then been im-
proved [ITF04,NPF05].

Spatial discretization directly impacts the number of degrees
of freedom, and thus, the complexity of the system. Tradi-
tional FEM analysis requires an accurate mesh of the en-
tire volume of the object. This is hardly applicable to visu-
ally pleasing detailed shapes. Moreover, most available com-
puter graphics models are surface meshes, and it is hard to
mesh the interior of such models with a controllable num-
ber of tetrahedra without creating nearly singular elements
which result in unstable simulations, especially for small
parts like the ears of the bunny or the tail of the mouse pre-
sented on the teaser. Moreover, it is difficult to animate sur-
faces (like clothes or dragon’s wings) using a volume mesh.
Some approaches try to separate rendering detail from the
(possibly hierarchical) mechanical model, using an exter-
nal [DDCB01] or embedded [CGC∗02b, CGC∗02a, MG04]
rendering layer. Nevertheless, the tetrahedrization stage re-
mains far from trivial. To avoid this volume meshing stage
and control the number and shape of elements, some meth-
ods build automatically an optimized mechanical mesh using
a 3D grid [MTG04, JBT04] or an octree [DMG05, NFP06].
However, the resulting mechanical properties are simplified
and the meshes have to be very fine to model the objects ac-
curately. Alternatively, it is possible to reduce the number
of degrees of freedom of detailed shapes using modal anal-

ysis [BJ05] or global shape matching [MHTG05], however
these methods fail to capture local deformation. Recently,
meshless methods have been proposed [DC95, MKN∗04,
PKA∗05] in order to more easily model fracture and tear-
ing, however they are quite slow and not the best adequate
for real-time animation of non-pasty soft bodies.

Time integration is an important issue when dealing with
stiff objects, which need very small time steps to avoid in-
stabilities when explicit schemes are used [PTVF92]. Baraff
and Witkin [BW98] showed how to efficiently apply im-
plicit time integration which allows large time steps. Col-
lision detection and response is also a difficult topic related
to time integration. A lot of detection methods have been
proposed [TKH∗05] and response strategies have been dis-
cussed [BMF03].

3. Deformable Bounding Voxels

Contrary to the traditional finite elements, in our approach,
the volume mesh does not fit exactly the object, and all the
nodes are not exactly under the surface, like in [CGC∗02b,
CGC∗02a, MG04]. Some elements include the surface. Sur-
face points are linearly interpolated within the cells. In the
following, this cells are calledbounding elements.
The first step consists in building the mesh and computing
the mechanical properties. Then the mechanical simulation
can be performed. The global algorithm is presented in Al-
gorithm 1.

Algorithm 1 PREPROCESSING

in: (surface, Young modulus, Poisson ratio, max depth, mechanical depth)

out: (elements,masses,stiffnesses,interpolation weights)

Build the octree at maximal resolution
Detect boundary/outside/inside cells
Compute the mass and stiffness of the leaves
Pop up the mass and stiffness at desired mechanical level

3.1. Building the Voxels

The first step consists of a voxelization of the object. Start-
ing from the bounding box of the object, an octree decom-
position is employed up to a given fine maximal resolution
(see Figure 1). Only non-empty cells are considered. To de-
tect the outside/inside/boundary cells, the bounding box is
inflated a little in order to ensure that its vertices and edges
are outside the object (in our implementation, an arbitrary in-
flation of 1% is used). All the boundary cells contain surface
points or intersect surface polygons. All the non-boundary
cells on the borders are outside. This outside state is prop-
agated to all their neighbours until a boundary cell is met.
All others cells are inside. This algorithm (illustrated in Fig-
ure 2) works well for volumes without holes inside, but the
animation can be nevertheless interesting for them. It could
be easily extended to more complex geometries, and gener-
alized to non-hexahedral cells, like in [CGC∗02b]. Note that

c© The Eurographics Association 2006.

M. Nesme, Y. Payan & F. Faure / Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

Figure 1: The original shape. The entire maximal depth octree. All finest non-empty cells used to precompute mechanical
properties. The animated mechanical depth.

Figure 2: Algorithm to detect outside/inside/boundary cells.
First step consists of detecting boundary cell (grey)i.e.,con-
taining surface points and/or intersecting surface triangles
(red). Then, outside border cells (white) are propagated to
their neighborhood (blue arrows). Remaining cells are in-
side (black).

it also automatically handles open surfaces, seen as object
boundaries and animated like non-full cells.

3.2. Embedding the Shape

In order to link the surface with bounding elements, surfaces
verticesu(p) are trilinearly interpolated using the eight val-
uesu(q) defined at the nodes of the bounding element as
illustrated in 2D in Figure 3:

u(p) = Hu(q) (1)

where the (3×24) interpolation matrixH of the considering
element is the concatenation of the influences of the element
vertices on a given vertex:

Hi =

hi 0 0
0 hi 0
0 0 hi

 , hi(r,s, t) =
1
8
(1± r)(1±s)(1± t)

To simplify the computations, the interpolations are done in
natural coordinates in a local frame(r,s, t) ∈ [−1,1]3. The
Jacobian operatorJ relating the world coordinates to the lo-
cal coordinate is needed for consistency:∂h

∂ r = J ∂h
∂x .

In regular elements,

J =

2
length 0 0

0 2
width 0

0 0 2
height

Large triangles remain flat even if they belong to several de-
formable voxels, so they have to be splitted where they cross
voxel faces.

y

x
q0 q1-1

-1
r

1

s
q2 q3

1

p

Figure 3: Interpolation of a surface vertex p inside a bound-
ary element.

4. Mechanical Animation

When the collection of cells is built, mechanical laws can be
applied to bounding elements in order to animate cells and
the interpolated shape.

4.1. Force Computation

The linear Finite Element Method on hexahedral elements
is used to compute internal forces [Bat82]. In this paper, we
consider only isotropic linear elastic materials. According
to Hooke’s law, the material properties are only defined by
the Young’s Modulus and the Poisson’s ratio. As explained
in [MDM ∗02], a great advantage of the linear formulation is
that all stiffness matrices can be precomputed, because they
do not evolve too much during the animation.

Since the standard linear approach is inaccurate for large ro-
tation of the elements, stiffness warping has to be employed

c© The Eurographics Association 2006.

M. Nesme, Y. Payan & F. Faure / Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

to avoid artificial inflating. The main idea is to compute the
forces in an element’s local rotated frame by decomposing
the displacement into a rigid rotation combined with a de-
formation. The force applied by a deformed element to its
sampling points is given then by

f = RTK(Rx−x0)

whereK is the stiffness matrix,x andx0 are the current and
the initial positions, and matrixR, which encodes the rota-
tion of a local frame with respect to its initial orientation, is
updated at each frame.

Since the first approach proposed [MDM∗02], several meth-
ods have been proposed to computeR. Methods using eigen-
vectors and eigenvalues [EKS03, MG04, ITF04] give the
smallest deformations for most accurate results. A signifi-
cantly faster method has been proposed in [NPF05]. How-
ever, the latter introduces some vertex ordering-dependent
anisotropy and the evaluated strain is a slightly higher. How-
ever, in our case, a perfect application of the laws of physics
is not necessary that is why we prefer the speed of this ap-
proach than the accuracy. An another important point of this
approach is its robustness in degenerate configurations such
as flat or inverted elements. An elegant treatment has been
presented in [ITF04] but it is not aimed at real-time appli-
cations. Using [NPF05], the inversion of an element is de-
tected for free, and modeled as a high compression. Stability
is maintained and the elements can recover their initial shape
without visible artifact. This is the essential and the desired
effect in the case of non-physical situations, which can occur
in real applications.

We extend to hexahedra the method [NPF05] initially de-
signed for tetrahedra. For each hexahedron, three arbitrary
edges could be selected in order to extract the rotation the
same way as done for a tetrahedra. However, it is preferable
to involve all the vertices in the computation to obtain a ro-
tation that results in smaller measured deformations. To do
this, we compute the average of four edges in the three direc-
tions, as illustrated Figure 4. Extreme element twisting can
result unrealistic stable configurations, however this is un-
likely to occur when several elements are used, and it does
not impact stability.

e10 e11
e5

e9

e2

e8

e6

e4

e0

e3

e7

e1

x = 1
4(e0+e1+e2+e3)

y = 1
4(e4+e5+e6+e7)

z = 1
4(e8+e9+e10+e11)

z

y

x

Figure 4: Deformed local frame of an hexahedron.

4.2. Time integration

The stable Euler implicit solver is employed to solve the
ODE. The filtered conjugate gradient presented in [BW98]
gives the advantage to not necessary need an assem-
bling stiffness matrix, since it only requires a product ma-
trix/vector. It is well adapted to the stiffness warping formu-
lation for which the assembling matrix should vary at each
time step because of rotations. It is possible to process the
elements one after another. Implicit integration is very well-
suited to our approach, where all elements are regular, with
the same size. The corresponding equation system is well-
conditioned and can be solved iteratively. As usual, a large
number of iterations can be necessary to accurately model
materials with high stiffness. However, a reduced number of
iterations (near 5 to 10) is generally acceptable. This allows
trade-offs between accuracy and computation speed.

4.3. Boundary Conditions

Applying classic boundary conditions to the cell nodes is
trivial but is not always sufficient. To directly manipulate
the surface, or to accurately handle contact constraints, the
boundary conditions must be applied to the surface, and dis-
patched over the lattice vertices.

Penalty forces

In case of penalty forces, forcesf(p) are applied to points of
the surface. We dispatch these forces over the lattice vertices.
The principle of virtual work implies that

f(q) = HT f(p)

whereH is the interpolation matrix at pointp.

Hard constraints

When a displacement is imposed at the surface, the cor-
responding lattice displacements have to be computed.
We compute the smallest displacements of the control
points in least-squares sense, as in direct manipulation of
FFD [HHK92].
A displacement constraint is writtenu(p) = c ⇔ Hu(q) = c
wherec the constraint value. When several constraints are
applied, we build a system containing all constrained sur-
face pointsp and all influenced control pointsq. The re-
sulting system can be solved using a pseudo-inverse of the
assembled matrixH:

u(q) = H+c

with

{

H+ = (HTH)−1HT
, dim(p) ≤ dim(q)

H+ = HT(HHT)−1 , dim(p) > dim(q)
.

When there are more constraints than control points, the best
compromise (in the least-square sense) is computed. Note
that in the specific case of at most one constraint applied to
each lattice vertex,HT

i Hi is a scalar, and the solution of the
system is efficient.

c© The Eurographics Association 2006.

M. Nesme, Y. Payan & F. Faure / Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

5. Accurate Physical Parameters

To adapt the stiffness of a cell according to its content, it
is necessary to refine the octree mesh more precisely than
desired for the animation. The main idea is to pop up the
information from fine cells to coarser cells.

5.1. Weighted Stiffness

In order to improve an approximation of the stiffness of an
element, the amount of matter contained in a cell is taken
into account, as a material stiffness factor:

Dc = αcD

αc is the filling ratio of the mechanical cellc and D is
the stress-strain matrix relating the material properties. The
finest depth is considered close enough to the surface to
chose a filling rate equal to 50% for boundary cells. In-
side cells have a filling ratio equal to 100% and outside
cells to 0%. Using the octree hierarchy, these ratios are av-
eraged until the desired mechanical level, such asαparent =
1
8 ∑7

i=0 αchildi
. Thus, almost empty cells are softer than full

cells. Figure 5 shows the poping up of filling ratios, from the
finest depth to the mechanical level.

Figure 5: Red cells are boundary and green are inside. Fill-
ing rates are shown in red transparency. From the maximal
depth to the mechanical resolution

5.2. Weighted Masses

The given total mass of the objectmtotal is distributed to
each cell. To do this, the masses of the finest leavesmlea f
are computed by subdividing the total mass by the number
of leaves, taking into account the filling ratio.

mlea f =
mtotal

2×#insideLeaves+#boundaryLeaves

The factor 2 comes from the filling ratio,i.e.,an internal cell
is twice heavier, sominternal = 2×mlea f and mboundary=
mlea f. The masses are then summed up from the finest level
to the mechanical level.

Figure 6: 2D stiffness in level of gray. From left to right: a)
four original cells, three empty, one full. b) the correspond-
ing cell with uniform weighted behavior presented in section
5.1. c) the corresponding non-uniform cell presented in sec-
tion 5.3, stiffness varies along the axes

5.3. Precomputed Non-Uniform Stiffness

Let us consider the child cells as interpolations of their par-
ent cell. In this context, it is possible to deduce the stiffness
influence of a child cellKchild on its parentKparent, and to
deduce the stiffness of each parent cell based on its eight
children. In this section, we take into account the distribu-
tion of the material over the child cells. Differences with the
uniform stiffness are illustrated in Figure 6.

If only the large cells are considered, that returns to remove
degrees of freedom to child nodes. To some extent child
nodes are dependent from their parents and can be deduced
as an interpolation (child nodes are constrained to stay "in
the middle"). In this case, we can define eight matricesLchild
which represent the interpolated child nodesuchild based on
their parent cell nodesuparent: uchild = Lchilduparent. Re-
ciprocally, forces applied to child nodes can be popped up
to the parent nodes using the transpose of the interpola-
tion: fparent = LT

childfchild. Howeverfchild = Kchilduchild, so
fparent = LT

childKchildLchilduparent. Summing the influence
of the eight children of a parent cell, we obtain:

Kparent =
7

∑
i=0

LT
i KiLi

We do the same for the masses:Mparent = ∑7
i=0 LT

i MiLi ,
whereM is the mass matrix of a cell. At the mechanical
level, we finally lump the mass matrix to obtain a diagonal
matrix, which allows faster matrix products and easy weight
computation.

MatricesLchild only depend on the shape of the elements,
so they can be defined once for all. Matrices for hexahedral
subdivision are given in Appendix A.

6. Results

6.1. Non-Uniform Stiffness

Taking into account the contents of bounding elements
improves animation quality without adding complexity.
This allows us to perform plausible animations using a
reduced number of elements. An extreme case is presented

c© The Eurographics Association 2006.

M. Nesme, Y. Payan & F. Faure / Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

model bunny dino fox dragon

points 453 2151 8564 21507
triangles 901 4299 16777 42391

elements 8 33 30 125
particles 27 87 79 292

resolution max 5 5 5 6
animated resolution 1 2 2 3
preprocess time (s) 1.5 2 3 7

animation time (ms) 1 2 3 7
update time (ms) 1 2 7 9

FPS 270 60 18 7

Table 1: Results.

in Figure 7 where an object in form of ’c’ is animated using
one single boundary element. As expected, using a classical
uniform stiffness, both parts of the object have the same
properties, and the empty part is as stiff as the full part.
Another example is presented Figure 8 for a more complex
object. In contrast, using our precomputed non-uniform law,
stiffness takes into account where the matter is, resulting in
more realistic behaviors.

Figure 7: Two similar objects are simulated by one single
cell and subject to gravity. The left one is simulated using a
basic uniform law and the right one, using the precomputed
non-uniform law.

Figure 8: Two similar bunnies with the same mechanical
mesh (left) are subject to gravity. The middle one is animated
using a uniform stiffness, while the right one uses a non-
uniform stiffness. Note the difference of ears behavior.

6.2. Performance

Table 1 gives results for several simulations that were run on
a laptop Pentium M 2 GHz with 2 GB of RAM and a nVidia
Quadro FX Go1400. Performances depend linearly on the
numbers of surface points and the number of bounding ele-
ments since number of iterations is fixed. It is a great advan-
tage, since it is possible to keep a fast frame rate even when
a high detailed mesh is animated, by reducing the number of
cells.
In our implementation, a large time is used to update sur-
face vertices. It is possible to accelerate this by performing
the interpolations on the GPU using a vertex shader. Prelim-
inary results show that a very simple shader that only com-
pute final interpolations for rendering, without reading back
the results for collision management, accelerates the dragon
animation by a factor of two.

6.3. Robustness

Thanks to the used Finite Element Method, our simulator is
robust face to degenerated configuration (Figure 9).

Figure 9: Robustness face to degenerated configurations
(top: element inversions, bottom: flat elements recover their
rest form by increasing their stiffness).

c© The Eurographics Association 2006.

M. Nesme, Y. Payan & F. Faure / Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

6.4. Surfaces and Lines

An important contribution of our approach is to handle sur-
faces, like the dragon’s wings and T-shirt (Figure 10), as
well as lines, the same way as volume. A nice feature of
our method applied to this kind of objects is that their rest
shape can be straightforwardly chosen as the most familiar
form. For example, the T-shirt tends to recover the shape of
a worn cloth.

Figure 10: Animate surfaces like volumes.

7. Conclusion

Our approach disconnects mechanical complexity from ge-
ometrical detail. The mechanical resolution is independent
from the rendering model, allowing to adjust the mechani-
cal precision in order to interactively animate very detailed
objects. Additional data computed in a preprocessing stage
(grid points, interpolation weights and stiffness matrices) al-
lows to apply fast and robust finite element dynamics. It does
not add complexity compared with traditional FEM.
Moreover, we have presented novel hexahedral elements
with stiffness warping and robust to inversion.
A nice feature of our method is its ability to animate ob-
jects including both volumes (closed surfaces) and surfaces,
since voxels can be built automatically inside the object and
around the surfaces.
Our approach is adaptable to more classic finite element
meshes, like tetrahedra. It only needs to build meshes at dif-
ferent scales and the interpolation schemes to convert from
one level to the other, which is available in all subdivision
schemes.
Currently, a linear interpolation of the surface inside cell is
performed, which can introduce discontinuities of normals
in case of large deformations. More continuous interpolation
would be an improvement, for example by using Berstein
polynomials. Moreover, in order to improve computational
speed, interpolation could be performed by the GPU using a
vertex shader.
All our examples are limited to a single mechanical level,
but the precomputed non-uniform stiffness idea could be ex-
tended to meshes with non-uniform resolution, such as de-
formable octrees.

References

[Bat82] BATHE K.: Finite Element Procedures in Engineering
Analysis. Prentice-Hall, 1982.

[BHW94] BREEN D. E., HOUSE D. H., WOZNY M. J.: Pre-
dicting the drape of woven cloth using interacting particles. In
Proc SIGGRAPH’94(New York, NY, USA, 1994), ACM Press,
pp. 365–372.

[BJ05] BARBIČ J., JAMES D. L.: Real-time subspace integration
for st.venant-kirchhoff deformable models.ACM Transactions
on Graphics (SIGGRAPH 2005) 24, 3 (Aug. 2005).

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation of
clothing with folds and wrinkles. InSCA(2003).

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In SIGGRAPH ’98(1998).

[CEO∗93] COVER S., EZQUERRA N., O’BRIEN J., ROWE R.,
GADACZ T., PALM E.: Interactively deformable models for
surgery simulation.IEEE Comput. Graph. Appl. 13, 6 (1993),
68–75.

[CGC∗02a] CAPELL S., GREENS., CURLESSB., DUCHAMP T.,
POPOVIĆ Z.: Interactive skeleton-driven dynamic deformations.
In Proc SIGGRAPH’02(2002).

[CGC∗02b] CAPELL S., GREENS., CURLESSB., DUCHAMP T.,
POPOVIĆ Z.: A multiresolution framework for dynamic defor-
mations. InSCA ’02(2002).

[DC95] DESBRUN M., CANI M.-P.: Animating soft substances
with implicit surfaces. InProc SIGGRAPH’95(1995), pp. 287–
290.

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR

A. H.: Dynamic real-time deformations using space and time
adaptive sampling. InSIGGRAPH ’01(2001).

[DMG05] DEQUIDT J., MARCHAL D., GRISONI L.: Time criti-
cal animation of deformable solids.Journal of Computer Anima-
tion and Virtual Worlds 16(2005), 177–187.

[EK03] ETZMUSS O., KECKEISENM.: A Linearised Finite Ele-
ment Model for Cloth Animation. Technical Report WSI-2003-2,
Universität Tübingen, 2003.

[EKS03] ETZMUSS O., KECKEISEN M., STRASSER W.: A
Fast Finite Element Solution for Cloth Modelling.Proc Pacific
Graphics(2003).

[Hau04] HAUTH M.: Visual Simulation of Deformable Models.
Phd thesis, Wilhelm-Schickard-Institut für Informatik, Univer-
sity of Tübingen, Germany, July 2004.

[HHK92] HSU W. M., HUGHES J. F., KAUFMAN H.: Direct
manipulation of free-form deformations. InProc of SIGGRAPH
’92 (New York, NY, USA, 1992), ACM Press, pp. 177–184.

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite el-
ements for robust simulation of large deformation. InProc SCA
(2004).

[JBT04] JAMES D. L., BARBIČ J., TWIGG C. D.: Squashing
cubes: Automating deformable model construction for graphics.
In Proc SIGGRAPH’04 Conference on Sketches & Applications
(2004).

[MDM ∗02] MÜLLER M., DORSEYJ., MCM ILLAN L., JAGNOW

R., CUTLER B.: Stable real-time deformations. InProc SCA
(2002).

c© The Eurographics Association 2006.

M. Nesme, Y. Payan & F. Faure / Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

[MG04] MÜLLER M., GROSSM.: Interactive virtual materials.
In Proc Graphics Interface(2004).

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNERM.,
GROSSM.: Meshless deformations based on shape matching. In
Proc SIGGRAPH’05(july 2005), pp. 471–478.

[MKN ∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M.,
GROSSM., ALEXA M.: Point based animation of elastic, plastic
and melting objects. InProc SCA(2004), pp. 141–151.

[MTG04] MÜLLER M., TESCHNERM., GROSSM.: Physically
based simulation of objects represented by surface meshes. In
Proc SCA(2004).

[NFP06] NESME M., FAURE F., PAYAN Y.: Hierarchical multi-
resolution finite element model for soft body simulation. InSym-
posium on Biomedical Simulation(2006).

[NPF05] NESME M., PAYAN Y., FAURE F.: Efficient, physically
plausible finite elements. InEurographics (short papers)(august
2005), pp. 77–80.

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ; P.,
GROSS M., GUIBAS L. J.: Meshless animation of fracturing
solids.ACM Trans. Graph. 24, 3 (2005), 957–964.

[PTVF92] PRESS, TEUKOLSKI, VETTERLING, FLANNERY: Nu-
merical Recipes in C. Cambridge University Press, 1992.

[TKH∗05] TESCHNERM., K IMMERLE S., HEIDELBERGERB.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-
P., FAURE F., MAGNETAT-THALMANN N., STRASSER W.,
VOLINO P.: Collision detection for deformable objects.Com-
puter Graphics Forum 24, 1 (March 2005), 61–81.

[TPBF87] TERZOPOULOSD., PLATT J., BARR A., FLEISCHER

K.: Elastically deformable models. InSIGGRAPH ’87(1987).

Appendix A: Interpolation Matrices for Hexahedral
Subdivision

The following presents the eight interpolation matricesLc

that give values of child cellsc nodes from their parent cell
nodes, according with indices presented in figure 11. They
are very easy to compute. Ifai→c j is the influence of theith

parent point on thejth point of itscth child, then

Lc =

ac00 ... ac07
...

ac70 ... ac77

7

32

0

4

6

1

5

p
2

p
3

p
6 p

7

p
1

p
5p

4

p
0

Figure 11: Indices.

L0 = 1
8

8 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0
4 0 4 0 0 0 0 0
2 2 2 2 0 0 0 0
4 0 0 0 4 0 0 0
2 2 0 0 2 2 0 0
2 0 2 0 2 0 2 0
1 1 1 1 1 1 1 1

L1 = 1
8

4 4 0 0 0 0 0 0
0 8 0 0 0 0 0 0
2 2 2 2 0 0 0 0
0 4 0 4 0 0 0 0
2 2 0 0 2 2 0 0
0 4 0 0 0 4 0 0
1 1 1 1 1 1 1 1
0 2 0 2 0 2 0 2

L2 = 1
8

4 0 4 0 0 0 0 0
2 2 2 2 0 0 0 0
0 0 8 0 0 0 0 0
0 0 4 4 0 0 0 0
2 0 2 0 2 0 2 0
1 1 1 1 1 1 1 1
0 0 4 0 0 0 4 0
0 0 2 2 0 0 2 2

L3 = 1
8

2 2 2 2 0 0 0 0
0 4 0 4 0 0 0 0
0 0 4 4 0 0 0 0
0 0 0 8 0 0 0 0
1 1 1 1 1 1 1 1
0 2 0 2 0 2 0 2
0 0 2 2 0 0 2 2
0 0 0 4 0 0 0 4

L4 = 1
8

4 0 0 0 4 0 0 0
2 2 0 0 2 2 0 0
2 0 2 0 2 0 2 0
1 1 1 1 1 1 1 1
0 0 0 0 8 0 0 0
0 0 0 0 4 4 0 0
0 0 0 0 4 0 4 0
0 0 0 0 2 2 2 2

L5 = 1
8

2 2 0 0 2 2 0 0
0 4 0 0 0 4 0 0
1 1 1 1 1 1 1 1
0 2 0 2 0 2 0 2
0 0 0 0 4 4 0 0
0 0 0 0 0 8 0 0
0 0 0 0 2 2 2 2
0 0 0 0 0 4 0 4

L6 = 1
8

2 0 2 0 2 0 2 0
1 1 1 1 1 1 1 1
0 0 4 0 0 0 4 0
0 0 2 2 0 0 2 2
0 0 0 0 4 0 4 0
0 0 0 0 2 2 2 2
0 0 0 0 0 0 8 0
0 0 0 0 0 0 4 4

L7 = 1
8

1 1 1 1 1 1 1 1
0 2 0 2 0 2 0 2
0 0 2 2 0 0 2 2
0 0 0 4 0 0 0 4
0 0 0 0 2 2 2 2
0 0 0 0 0 4 0 4
0 0 0 0 0 0 4 4
0 0 0 0 0 0 0 8

c© The Eurographics Association 2006.

