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Abstract 
     Many applications in biomedical engineering and 

surgical simulators require effective modeling methods 
for dynamic interactive simulations. Due to its high 
computation time, the standard Finite Element Method 
(FEM) cannot be used in such cases. A FEM-based 
method is first presented, which rely on the 
decomposition of the deformation of each element into 
a rigid motion and a pure deformation, and a fast 
implicit   dynamic integration without assembling a global 
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stiffness matrix. A second physically-based discrete method is also proposed, 
derived from computer graphics modeling. These methods are finally 
compared, in terms of accuracy and speed, to theoretical problems, FEM 
results and experimental data. 
 

1. Introduction 
 Modeling the human soft tissues is of growing interest in biomedical and 
biomechanical engineering, and computer aided surgery. The range of 
applications is very large, with examples in physiological analysis, 
biomechanical studies, surgery planning, or interactive simulation for training 
and learning purpose [7]. 
 
1.1 Goals 
 Depending on the application, different requirements and  performance 
criteria are more or less relevant: accuracy, computation time and robustness.  
 Accuracy is of course required in virtually all applications. It depends on 
several factors: space and time discretization, accuracy of the material model 
and boundary conditions, numerical methods. Notice, however, that typical 
biological tissues are heterogeneous, anisotropic, nonlinear and can 
additionally depend on external values such as blood pressure or pathology. 
Consequently, the rheological parameters of the models are extremely diffi- 
cult to evaluate [10]. Discussing sophisticated numerical methods may thus be 
pointless until we are able to set the parameters with reliable values. In this 
paper we address the question of enforcing the most basic laws that a simulator 
should implement, namely the two basic principles of dynamics: Newton’s law 
on linear accelerations and Euler’s law on angular accelerations. This simple 
issue has not been extensively discussed in the literature. 
 Computation time is essential for interactive applications such as real-
time simulators for education and intraoperative surgical planning, as well as 
for massive simulations. Linear elasticity is often used for its computational 
efficiency. However its basic version generates infiltration artefacts when large 
displacements or large deformations occur, which is often the case with the 
highly deformable biological tissues. In this paper we address the question of 
performing linear elasticity with large rotations as efficiently as possible, while 
strictly obeying the two basic principles of dynamics. 
 The robustness of a simulator is its ability to handle degenerate cases such 
as element inversions. This is likely to occur when the boundary conditions 
vary too fast compared with time discretization, especially when a user 
interactively applies displacement constraints such as pushing, pulling, tearing 
objects apart. In this case, accuracy is no more an issue because the model is 
not in a consistent state. However, it is important that the application does not 
"crash" due to a numerical problem such as division by zero or square root of a 



short title 3 

negative number. This is true for an interactive simulator as well as for a 
massive off-line simulation running for a long time. It is of course possible to 
implement the detection and ad-hoc handling of all possible degeneracies in a 
given process, but this is time-consuming, thus an inherently robust 
computation method is desirable. 
 
1.2 Related work 
 Mechanical simulators are increasingly used in biomedical engineering 
[1]. Given a discretized object and mechanical laws, they numerically compute 
forces, displacements, strains and stresses corresponding to a static equilibrium 
or to a dynamic simulation. Static solutions are used to compute the final shape 
or the internal constraints of a body subject to given boundary conditions and 
topological changes. Dynamic solutions are used to compute the evolution of 
shape and forces over time, taking inertia and damping into account. The 
dynamic simulation of an object which undergoes damping and constant 
boundary conditions converges to the static solution.  
 In biomechanics, most of the models traditionally rely on the equations of 
the mechanics of a continuous medium, that are numerically solved using the 
Finite Element Method (FEM) [24]. This extensively used method is well-
studied, and presents numerous advantages like numerical accuracy, direct link 
with the underlying mechanical equations and direct parameters setting with 
rheological values. However, the FEM is numerically time-consuming, 
especially for dynamic simulations or in the case of large displacements/ 
deformations, and is therefore inadequate for most interactive applications 
such as intra-operative surgical planning or educational simulators. 
 On the other hand, physically-based animation has became essential in the 
field of computer graphics, with the objective of real-time "realistic" 
simulators. This problematic is now changing, with the development of 
efficient numerical methods that not only produce realistic simulations but also 
lead to a reasonable accuracy of the deformations. Working in collaboration 
between these two communities, namely biomechanics and computer graphics, 
could lead to the development of simulation methods that combine both 
accuracy and numerical efficiency. 
 Different methods, often derived for computer graphics, were recently 
developed for interactive biological and medical simulation. A physically-based 
discrete model will be presented in section 4, with specific constraints like 
volume preserving. In parallel, numerous FEM-based methods were developed. 
 Because of the need for speed, most interactive methods are based on 
linear computation of the deformations, such as matrix pre-inversion [5] or the 
mass-tensors systems [4, 18]. Unfortunately these models are only valid for 
small displacements, which is why Pincinbonno and Debunne used a nonlinear 
computation of the deformations [6, 19]. 
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 Recently proposed methods favor a new approach based on the 
decomposition of the displacement of each element into a rigid motion and a 
pure deformation tractable linearly in the local frame. Muller et al. [15] 
proposed a simple and efficient method to carry out such a decomposition. 
Etzmuss et al [9], followed by other authors [17, 16], presented a method based 
on a more complex decomposition which avoids some artifacts of the former 
approach such as ghost forces. Based on this, Irving et al [13] pointed out the 
importance of robustness with respect to large element displacements and 
inversions, and proposed an even more sophisticated decomposition to solve 
this problem. 
 Despite their realism and numerical effiiency, the accuracy of these 
methods is often limited by numerically-created artificial forces and torques. 
As it will be demonstrated in section 2, this can be explained by the non-
respect of the Euler law. The FEM-based method presented in this paper 
combines the simplicity and efficiency of Muller et al.’s early approach with 
the robustness of Irving et al.’s method. Moreover, the respect of both Newton 
and Euler’s laws is ensured, which make it well suited for real-time direct 
interaction with a physically sound viscoelastic model. 
 
1.3 Contribution and organization 
 The specific contributions of this paper are the following: 
 

•  after presenting the theoretical background of FEM-based methods 
(section 2), we show that precomputed element stiffness matrices generate 
nonphysical torques which can lead to obvious artifacts; 

• we then derive the fastest FEM-based method, both on tetrahedra and 
hexahedra elements, meeting our criteria of accuracy and robustness while 
ensuring Newton and Euler laws are respected. The limitations of our 
method are then discussed. (section 3); 

• a second method, a physically-based discrete model, is then presented in 
section 4 to show that non FEM-based model can also be used for 
biological simulations providing additional constraints like volume 
preserving are added. 

• finally, we compare different numerical methods: the two methods 
presented in this paper, the FEM-based and the discrete one, and the 
standard FEM. They are compared, in terms of accuracy and speed, to both 
theoretical problems and real data (section 5). 

 

2. Background 
2.1 Finite elements 
 We consider the standard finite element method (FEM) used to simulate 
viscoelastic solids with tetrahedra elements. Background can be found in 
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standard texts such as [24, 11]. A solid is discretized using n sample points 
 1..n. Each point has fixed coordinates  with respect to the object and 

moving coordinates uj with respect to the world coordinate system, along with 
mass  velocity  and acceleration  The object space is partitioned in 
finite elements (cells) based on the sampling points. Each element applies 
forces to its sampling points according to their positions and velocities and the 
properties of the medium. 
 Hooke’s law σ = Dε is used to model linear elasticity, where vector σ 
models the local constraints (nonisotropic internal pressures) within the 
medium, vector ε models the local deformation (compression and shear in all 
directions) and the 6 × 6 matrix D models the stiffness and incompressibility of 
the medium. 
 The deformation ε of an element is related to the coordinates u of its 
sampling points by relation ∆ε = B∆u where vector ∆u represents the 
displacement of the vertices of an element and the 12 × 6 matrix B, called 
strain-displacement matrix, encodes the geometry of the element. 
 The force applied by the deformed element to its sampling points is given 
by f = BT σ. 
 Putting it all together, we obtain a linear relationship between force and 
displacement: 
 

               (1) 
 
Matrix K = BTDB is called the stiffness matrix of the element. The mesh force 
fj applied to a sampling point pj is computed by summing the forces applied by 
all elements the point belongs to. A similar relation on velocities can be used 
to model damping. 
 
2.2 Newton’s and Euler’s laws 
 Newton’s law on linear acceleration relates the acceleration of a system to 
the external forces applied to it:  where  is the 
external force applied to sampling point pj. It applies to a single particle, to an 
element as well as to the whole object. The violation of this law would allow 
an isolated object to linearly accelerate. 
 Euler’s law on angular acceleration relates the angular acceleration of a 
system to the net torque applied to it:      
The violation of this law would allow an isolated object to angularly 
accelerate. 
 The violation of Newton’s and Euler’s laws can lead to obvious artefacts, 
even for nonspecialists. A model respecting these elementary laws will be 
called "physically realistic" thereafter. 
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2.3 Implicit time integration 
 To dynamically interact with a FEM-based system, we solve a second 
order differential equation, globally, on the whole of the elements vertices: 
 

 
 

where matrix M models mass, C models damping (C = αK + βId is a classical 
approximation) and K models stiffness, u corresponds to displacements 
between initial position x0 and actual position x, and f corresponds to forces, 
for all the vertices. In this paper bold letters denote global matrices and 
vectors, as opposed to single elements. The global matrices can be computed 
by summing up the contributions of each element to its vertices. This operation 
is called the assembly. 
 Baraff [2] has shown how to solve this differential equation efficiently 
even in the case of stiff materials. A modified conjugate gradient algorithm 
is used to iteratively solve a sparse linear equation system modeling a 
constrained elastic system. The main computational task consists in 
evaluating  for each element, where matrix  is the stiffness 
matrix K. In this case the matrices are addressed only through their products 
with a vector, and assembly is not necessary because these products can be 
computed by summing up the contribution of each element. On the one hand, 
the product with assembled matrices is computationally more efficient. On 
the other hand, the overhead due to assembly cancels the benefit when the 
number of products performed at each iteration is small. We discuss this 
issue later on. 
 
2.4 Rotational invariance 
 The linear equation 1 is insensitive to translations but inaccurate for large 
rotations of the elements, and this results in so-called “ghost forces” which 
make the element artificially in ate. To solve this problem we have to 
decompose the displacement in one rigid rotation combined with a 
deformation. Equation 1 becomes 
 

              (2) 
 
and the "right part" of the integration for one element becomes f = RT BT D 
B(Rx − x0), where matrix R encodes the rotation of a local frame attached to the 
element with respect to its initial orientation. This decomposition is not unique 
and several approaches have been proposed. An alternative approach is to use 
Green’s strain tensor which is rotationally invariant. However this nonlinear 
tensor is not able to linearly relate deformation to displacement except 
asymptotically for small displacements. 
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 A simple method [15] to eliminate rotation processes one node after 
another and evaluates local frame rotations based on the adjacent edges. It does 
not always give satisfactory results because it can create ghost forces. Hence, 
methods processing one element after another [9, 16, 13, 12] are usually 
preferred. 
 Three edges of each element are used to compute their 3 × 3 transformation 
matrix: 
 

 
 
with respect to its initial state, where the  are the initial edge vectors and the 
ei are the current ones. Matrix J is then decomposed in order to extract 
separately a rigid rotation R applied to the element and a deformation E as 
shown fig. 1. This decomposition is not unique, as explained below. 
 
Polar decomposition 
 The polar decomposition of a square matrix computes the nearest 
orthogonal frame to the given column axes [16, 12]. As such it provides the 
ideal decomposition of the displacement matrix J. The strain values can be 
derived as shown in the following formula. 
 

 
 
A related SVD-based approach has been used to handle element inversions [13]. 
 

 
 
Figure 1. An initial tetrahedron is deformed by the transformation J, composed of a 
rigid motion R and local deformations contained in E. 
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QR decomposition1

 The QR decomposition [20] is an alternative to the polar approach. The 
first axis of the local frame is constrained to be aligned with the first column of 
the given matrix. Then the second axis is constrained on the plane spanned by 
the two first columns, and so on. We compute it by performing a Gram-
Schmidt orthogonalization, to guarantee that we obtain a right-handed frame. 
The strain can then be computed by projecting the columns of J to the axes of 
the local frame, or equivalently by the following decomposition: 
 

 
 
This approach is significantly faster than polar or SVD, however it depends on 
vertex ordering because all edges do not have the same influence, as illustrated in 
fig. 2. Consequently some ordering-dependent anisotropy is introduced, contrary 
to polar or svd. Moreover, the evaluated strain is a bit higher. However, its 
computational efficiency can allow one to use more refined meshes. 
 

 
 

Figure 2. The local frames. 
 

3. Efficient physically realistic linear FEM-based method 
3.1 Updating the Strain-Displacement matrix 
 We now show that if the geometric matrix B of an element accurately 
relates (at degree one) its deformation to the displacement of its control 
                                                 
1Consistently with our notations, Q corresponds to the rotation Rqr and R corresponds to 
Et
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points, then Newton’s law is necessarily satisfied. The properties of B are 
discussed, rather than its expression. Let εi be as entry of a deformation 
vector ε. This scalar value corresponds either to a compression along a given 
axis or to a shear between two given axes. Entry  encodes 
the gradient of deformation εi with respect to the 3d world coordinates of 
point pj. The variation of εi due to a displacement ∆u of the element is 

 Since the variation is null for any uniform translation we 
necessarily have Σj Bij = 0. The net force generated by an arbitrary constraint 
vector σ is thus Σjfj = ΣjΣiBijσi = ΣiσiΣjBij = 0. The net force due to elastic 
forces is thus null by construction of matrix B. Note that this remains true 
even if B is obsolete due to a change of the shape of the element. This 
implies that accumulating the forces by looping over the elements 
necessarily satisfies Newton’s law, even if we use a constant precomputed B 
for each element. 
 We now show that if matrix B is up-to-date then Euler’s law is necessarily 
satisfied. A pure rotation ω generates displacements ∆uj = ω × uj but no 
deformation. This implies that  for any, thus Σjuj × Bij = 
0. The net torque due to an arbitrary constraint σ is thus Σjuj × fj = Σjuj × ΣiBijσi 
= ΣiσiΣjuj × Bij = 0. The net torque due to elastic forces is thus null by 
construction of matrix B. However, this is no more true when B is obsolete due 
to a change of shape because the original uj are replaced by new values in the 
last relation. Consequently, it is necessary to re-computed each element’s 
matrix B at each time step if we want to avoid artificial torques. An example of 
artificial torque is given fig. 3. Note, however, that multiplying matrix B with a 
scalar uniformly scales the net torque, and thus modifies the material, but does 
not induce artificial torques. 
 

 
 
Figure 3. An artificial torque. Applied to the original geometry (solid lines) a 
given displacement (not shown) results in a torque-free set of forces (solid arrows). 
Applied to a modified geometry (dotted lines), the same forces generates an artificial 
torque d × f. 
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3.2 Strain-Displacement matrix computation 
 The classic computation of the Strain-Displacement matrix B is given in 
appendix A. For a tetrahedron, it takes 72 multiplications and 60 additions, and 
the computation of ∆f using this matrix in equation 2 takes 6660 
multiplications and 2760 additions. 
 
Simplifications for QR decomposition 
 In the particular case of QR decomposition, a lot of terms are null. The 
coordinates of the first vertex a are null in the local frame. Moreover, by 
construction of our frame, the second vertex b is on the axis  and the third 
point c is in the plane  For a tetrahedron (a,b,c,d), the coefficients of 
the shape functions Ni = αi + βix + γiy + δiz are thus: 
 

 
 
 Thanks to these many null terms, the calculation of the strain-displacement 
matrix is simplified. It is thus possible to recompute it at each time step for a 
low cost, with only 14 multiplications and 5 additions, and perform an 
optimized computation of ∆f in equation 2 using 4554 multiplications and 
1707 additions. 
 
Volume term 
 As shown in appendix A, matrix B is factored by 1=6V where V is the 
volume of the element. It is shown in section 3.1 that it remains physically 
realistic when multiplied by a scalar. We can exploit this opportunity to use 
each element’s initial volume instead of recomputing it. The advantages are a 
faster computation, with small error in case of small deformations, and an 
increased robustness when large deformations result in flat elements with null 
volume. 
 
3.3 Assembly 
 When the stiffness matrix is precomputed, the calculation of the net forces 
(right term of the integration) can be optimized in precomputing f0, with f = 
RTK (Rx − x0) = RT K Rx − f0 and f0 = RT Kx0 as dhown in [16]. In this case, the 
computation of f and ∆f = RTKR∆u use the same product by the stiffness matrix 
R−1 KR, so it is interesting to assembly all the individual stiffness matrices of 
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all the elements, to limit the calculation by a single force computation by 
vertex. However, as was shown in section 3.1 we think the stiffness matrix 
update is required. In this case, f0 can’t be precomputed. Two different 
products are therefore required : one by RT KR and another by RT K. In 
practice, it is more efficient not to build an assembled stiffness matrix; its 
heavy construction could be amortized by a lighter computation of the 
conjugate gradient iterations, but in the case of interactive animations, the 
number of iterations is too limited. It is preferable to keep separately R, B and 
D and to work independently on each element. For each element, we start 
computing R × ∆u, then B × R∆u... until RT × BT DR∆u. 
 Fig. 4 shows that at least 50 iterations are necessary to justify the cost of 
the assembly, which is definitively too large in the case of interactive methods. 
 

 
 
Figure 4. Computation time with or without assembling, on 3430 tetrahedra and 512 
particles. 
 
3.4 Extension to hexahedra 
 Large displacements can be applied to hexahedra, provided that we are 
able to model element rotation. For each hexahedron we could select three 
arbitrary edges and extract the rotation as we did for tetrahedra. However, we 
think it is preferable to involve all the vertices in the computation; we 
propose therefore to use the average of the four edges in the three directions. 
Computation times are almost the same using the polar decomposition or the 
QR decomposition because the axes of the local frame computed using the 
QR decomposition are not aligned with edges of the element, preventing us 
from simplifying matrix B. In this case the polar decomposition should 
probably be used since it avoids the vertex ordering artefacts discussed in 
section 2.4. 
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4. Physically-based discrete model 
 In parallel to the FEM-based method, we developed a physically-based 
discrete model, called Phymul. Different kinds of living structures (tissues, 
bones) can be modeled by using simple interactions of individual object with 
defined mechanical identity. More precisely, living structures are defined as 
3D physical object with characteristic sizes, in which mechanic features are 
based on force balance equations. 
 Discrete models such as mass-spring networks are often used to model 3D 
physical object dynamics. The discrete model presented in this paper is based 
on computer graphics modeling [23, 8]. Natural motions and realistic-looking 
flexible and elastic objects are efficiently modeled and simulated by means of 
physically-based computer graphics models. These models use a small amount 
of data (object geometries and relations between objects). From this, an 
animation motor (using forces, energies, or direct displacements) integrates 
movement and deformation laws to compute the evolution of shapes and 
positions. Generally, constraints are added to control movements and 
deformations or to model complex physical properties. 
 Previously Phymul was used in the context of human breathing [22]. We 
modeled the human abdomen using an elastic and incompressible 3D object and 
the human diaphragm using an elastic and contractile membrane. These objects 
were linked together and attached to rigid objects modeling the rib cage. This 
model, allowing for rigid, incompressible elastic or contractile objects is the 
groundwork, here extended to model volumetric deformations. Other properties 
such as incompressibility have also been taken into account, as detailed below. 
 The geometry of an object use the FEM meshes nodes and for each node a 
list of associated nodes, called the node neighborhood. The neighborhood is 
built from the elements: in case of geometric linear element each line linking 
two nodes define a neighborhood relationship. The neighborhood can be 
interpreted as another way of assembling element contribution to each node. 
 To generate forces and dynamic, a mass is assigned to each contour node. 
Forces are exerted on the nodes to generate displacements and deformations. 
Three kinds of forces can be used in our model: force fields (e.g. gravitation 
force), locally applied forces (e.g. user manipulation), and Linear Actuator 
Forces (LAFs). We introduce a LAF when a target position Ptarget is known for 
a given node of position P. To minimize the distance |PPtarget| a simple spring 
is created between P and Ptarget. It generates a force that linearly attracts P 
towards Ptarget. The expression of the LAF is: F = kelas(P − Ptarget), where kelas is 
the elastic modulus of the spring. A LAF can be seen as a potential force that 
tends to minimize a distance. LAFs permit to model any kind of forces that 
could be defined by target positions. Ptarget can depend on geometry or on 
constraints and can dynamically change. 
 Calibration of mass-spring networks are known to be difficult. Therefore, 
to model elasticity, we define a local shape memory [21]. The elastic property 
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of an object is simply defined as its ability to recover its original shape after 
mechanical deformation. To model this property, we construct a local shape 
coordinate system where each contour node position is defined relatively to its 
neighboring nodes. The position of a node is thus defined relatively to its 
neighborhood at rest shape. During the simulation, according to the 
neighboring node positions, a target position is computed for each node under 
consideration. This target position satisfies the local shape and defines a LAF. 
A unique elasticity modulus kelas is used by the corresponding LAF. 
 Forces is often not enough to realistically model complex behaviors of 
physical objects. Constraints are thus added to maintain some additional 
conditions like boundary conditions (non-penetrating area) or incompressibility. 
Our algorithm considers constraints as non-quantified force components. 
Thereby, it is possible to handle the total incompressibility of an object contour 
[21]. This allows the model to verify the incompressibility constraint exactly 
and efficiently for all simulated objects, individually. 
 Simulations in Phymul simply result of the force integration and constraint 
verification between time t to time t + dt by a discrete integration scheme for 
the equation of motion (e.g. Newton-Cotes). 
  
5. Results 
 The methods presented in this paper, namely the different options of the 
physically-realistic FEM-based methods and the discrete physically-based 
phymul method, have be evaluated with respect to the criteria of accuracy, ro-
bustness and computation time. 
 Concerning the accuracy, results are also compared with standard Finite 
Element Method results in linear elasticity, with both small and large 
deformations hypothesis. These FEM calculus are obtained using the standard 
commercial application Ansys. The methods (Polar and QA physically realistic 
FEM-based, Phymul, Ansys FEM) are compared, all together, to a theoretical 
result of a fixed beam problem and to experimental data. 
 
5.1 Robustness 
 Large displacements sometimes result in degenerate configurations such as  
at or inverted elements (i.e. when a node crosses its opposite face of the 
tetrahedron). Such cases are not properly speaking "physical", and should 
never occur in a medical context, but it is important to guarantee the behavior 
and the stability of the simulator in such limit cases. 
 Irving et al [13] propose a very elegant, but expensive, solution to this problem. 
They always compute the smallest inversion among all the possible combinations. 
 Using the QR decomposition method, the inversion detection is induced 
and free, because the construction of a direct orthonormal frame is always 
possible. However this method always models an inversion of the fourth 
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vertex, the only one not used in the construction of the local, frame. If the 
inversion actually occurs at this fourth vertex, then the reaction is realistic, but 
in case of another vertex inversion, a large rotation appears. On a single 
tetrahedron, this can lead to a non-intuitive behavior. For a more complex 
model, such as the liver depicted in fig. 5, most elements are not inverted and 
behave correctly. As illustrated in the figure, no visible artifacts were detected: 
in all cases the tetrahedra do not break and recover their initial shape. 
 The polar decomposition applied to an inversed element computes a left-
handed local frame. The element tends to recover its initial shape in this frame, 
converging to an inversed shape. This can be solved by flipping the sign of an 
axis, but this requires the computation of the determinant to detect the change 
of sign resulting from an inversion. 
 Using Phymul, large displacements can also be applied without producing 
unstability, unlike classical massspring models (see fig. 6). 
 
5.2 Speed 
 We compare the different methods computational costs, for a single step of 
the dynamic simulation. 
 Concerning our FEM-based methods, computational cost is measured for 
different decompositions and results are given in fig. 7. The major interest of 
the QR decomposition applied on tetrahedra concerns the computation time, 
which is about 30% faster than the method using the polar decomposition. This 
applies when the basic mecanic laws are respected, and thus that certain 
precalculations are not possible. 
 

 
 
Figure 5. Simple method for inversion robustness : a liver model (597 tetrahedra, 182 
particles) is fixed in four points (red balls) (picture 1). A user imposes a strong 
displacement (blue ball) which reverses elements (picture 2 to 3). The system remains 
stable (picture 4) until constraints are released (picture 4 to 5), where the liver regains 
its initial shape (picture 6). 
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Figure 6. Phymul simulation. The same displacement is imposed on the liver (picture 
2). The displacement is applied until the system remains stable (picture 3) and recovers 
its initial shape (picture 4-6). 
 

 
 
Figure 7. Computation time per time step against number of tetrahedra for several 
methods (with stiffness matrix update, without assembling). Time step = 0.4ms     
and five iterations of the conjugate gradient solution are performed in the implicit 
integration. 
 
 On the other hand, in the case of hexahedra, since no simplification is 
possible, decomposition QR strongly loses its interest, because its computing 
times are the same than the polar one. The polar decomposition would thus be 
prefered in the case of hexahedral meshes. In our simulator, hexahedra are 20 
times slower than tetrahedra. 
 Concerning Phymul, computational cost is linear in number of nodes. On a 
Pentium 4 2.4 GHz, it takes 0.017 ms per node for one iteration. The number 
of iterations depends on the integration scheme. 
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 The FEM results obtained with Ansys cannot be directly compared with these 
values, since a single step computational cost cannot be determined. Indeed, 
simulation time strongly depends on the hypothesis (nonlinearity for example). 
 
5.3 Accuracy 
 In some fields, such as surgical planning and simulation, accuracy and 
precision are essential. The models have then been quantitatively evaluated, by 
comparison with the analytical solution of a fixed beam problem, and with the 
experimental results of a compression indentation of a real object. 
 
Fixed beam 
 Following the theory of deformable beams, the deviation of a  xed beam 
subject to gravity (fig. 8) is: 
 

 
 
where E is the Young’s modulus and I is the moment of inertia, which depends 
on the geometry of the beam. 
 The physically realistic FEM-based approaches were compared with this 
analytical result, modeling a beam of 40 m in length, 4 m in width and 2 m in 
height, with a 20 kPa Young modulus, a density of 1 and several values of 
Poisson’s ratios. 
 It is known that analytically, the curve of inflection follows a polynomial 
of degree 4. Logarithmic scales are used to compare this degree. fig. 9 provides 
results obtained with three different values for Poisson's ratio. For a given 
Poisson's ratio value, all physically realistic FEM-based methods provide the 
same result. The curves being quasi-parallels, we can claim that the numerical 
approach follows a law of degree 4. Moreover, the simulations converge to the 
analytical result when Poisson’s ratio tends to zero, meeting the fact that 
incompressibility is not taken into account by the classical theory of beams. 
 
Truth cube 
 New approaches to model soft tissues can be more easily experimented 
with   phantoms than with living tissues, especially in-vivo. In a recent study, 
 

 
 

Figure 8. Notations used for the fixed beam problem. 
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Kerdok et al. [14] validated their finite element model using a cube made of silicon 
containing very small metal beads used to measure the effective deformations 
during an indentation experiment. The beads displacements, due to the 
indentation process, are tracked by MRI. Material properties of the silicon cube 
are known, i.e. a Poisson's ratio of 0:499 and a Young Modulus of 14:9 kPa. 
 To evaluate our methods, we model this cube using a grid of 10 × 10 × 10 
hexahedra, which corners positions correspond to the spheres locations. These 
spheres are small enough to be ignored in the simulation, which therefore 
assumes an isotropic behaviour of the cube. Three displacements of the cube 
top face are simulated (respectively 5%, 12.5% and 18.25% of compression). 
 To test tetrahedra, we cut out each hexahedra isotropically into ten 
tetrahedra by superimposing the two single ways of cutting out a hexahedron 
into five tetrahedra (as detailled in appendix B). The material being duplicated, 
the Young modulus is divided by two. For the dynamic simulations, 
compression is applied gradually, and measurements are taken after a certain 
time in order to reach convergence. In term of parameter setting, a time step of 
0.4 ms and 5 iterations in dynamic implicit integration are used, as well as a 
gravity of 9.81 and no damping. 
 Results of the simulations are given in tables 1, 2, 3. Different methods were 
tested: first the pure linear geometric tensor, then using rotational invariance 
method with polar and QR decompositions, with or without updating the strain-
displacement matrix at each time step, and with or without updating the volume 
term of the strain-displacement matrix. The results of a standard static linear 
FEM analysis (computed using the Ansys FEM software) are also presented, 
using the Green-Lagrange tensor in small and large deformation hypotheses 
(namely with and without neglecting the second order term of the tensor). 
 The comparison criterion between simulations and measured data is based 
on the relative deviation: 
 

 
 
Figure 9. Beam deviation given by the theory and by numerical results with different 
Poisson’s ratios. 
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Figure 10. Simulation of the truthcube experiment. 
 

Table 1. Results of truthcube simulations for 5% compression. 
 

 
 

Table 2. Results of truthcube simulations for 12.5% compression. 
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Table 3. Results of truthcube simulations for 18.25% compression. 
 

 
 

 
 
linear vs non-linear. First, results given by the pure linear method and the 
non-linear methods are very close, which shows that the Truth cube is not 
enough discriminant, since elements do not undergo large enough rotations. 
QR B updating vs Polar B updating. As expected, the polar decomposition 
gives better results than QR decomposition by treating the smallest 
deformations. The polar decomposition give results very similar to the non-
linear method, which is very interesting for interactive dynamic methods. 
QR B updating vs QR no B updating. With this comparison, the strain-
displacement matrix updating is not very well emphasized, and do not follow the 
theory. That can be explained by the fact that errors accumulations of QR 
decomposition (discussed in section 2.4) may be compensated by errors of non-
update of B, to seem to offer a good result, but it is true only in the precise case 
of this truthcube experiment, and is of nothing significant. This observation 
somewhat calls into question the use of a single "gold standard" to compare the 
numerical methods, a more complete set of situations is necessary. 
Polar B updating vs Polar no B updating. In the case of the polar 
decomposition the results are better when updating B, as expected. 
Polar V updating vs Polar no V updating. Tests on volume term updating 
seem to validate the fact that always using the initial volume do not decrease 
the precision. On the contrary, it might even improve it a little. 
Tetrahedron vs Hexahedron (Polar B updating). Globally, using hexahedra 
do not provide far more accurate results than with tetrahedra, for a 
computation twice longer (B updating is necessary, and there are less 
numerical simplifications). This result is not in agreement with the conclusions 
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drawn by Benzley et al. [3] claiming that hexahedral elements are more 
accurate than tetrahedral elements in the context of FE analysis. 
Phymul. This method always gives a greater error than the best continuous 
method. However the rather small error is the price to pay for an efficient 
interactive computation time. 
 

6. Conclusion 
 Physically realistic FEM-based methods and a physically-based dicrete 
model were proposed for dynamic interactive simulations. Compared to 
theoretical and experimental data, all these methods prove to be quite relevant. 
 Generally speaking, the results obtained with the standard FEM are 
slightly better, especially under a large deformation hypothesis. However, very 
similar values can be obtained with the polar method and the updating of the B 
matrix, with a far more ef cient computation time. The QR method or Phymul 
would be prefered if the speed criteria is the most relevant to the application, 
with a still excellent accuracy. 
 These methods have now to be extensively tested with more selective data, 
especially when extreme boundary conditions in terms of rotations and deformations 
are applied, as encountered in actual biomedical interactive applications. 
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Appendix 
A. Classical Strain-displacement matrix computation 
 For a tetrahedron (a, b, c, d):  
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 The coefficients of the other shape functions are the same by a cyclic 
change of indices (a becomes b, b becomes c etc, and the signs also change). 
 
B. Cutting a hexahedron in five tetrahedra 
 An hexahedron has only 2 ways of being cut out into 5 tetrahedra. For an 
hexahedron with vertices numbered like in fig. 11, possible cuttings are: 
 

 
 

Figure 11. An hexahedron with indexed vertices. 
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