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a b s t r a c t

Finite Element mesh generation remains an important issue for patient specific biomechanical modeling.
While some techniques make automatic mesh generation possible, in most cases, manual mesh genera-
tion is preferred for better control over the sub-domain representation, element type, layout and refine-
ment that it provides. Yet, this option is time consuming and not suited for intraoperative situations
where model generation and computation time is critical. To overcome this problem we propose a fast
and automatic mesh generation technique based on the elastic registration of a generic mesh to the spe-
cific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-
Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing
capabilities, even in situations where only partial organ geometry is available. The technique was suc-
cessfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads
partially digitized at intraoperative stage, and 50 CT volumes of patients’ heads. In the latter case, both
skin and bone surfaces were taken into account by the mesh registration process in order to model the
face muscles and fat layers. The MMRep algorithm succeeded in all 60 cases, yielding for each patient
a hex-dominant, Atlas based, Finite Element mesh with submillimetric surface representation accuracy,
directly exploitable within a commercial FE software.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Physically based models are now widely used in the field of bio-
medical engineering to represent human organs’ geometrical and
mechanical behaviors. Among them, numerical models based on
the Finite Element Method (Hughes, 1987) became very popular
because of their ability to address the complex geometries, the
anisotropic material properties and the specific boundary condi-
tions associated with living tissues.

In the field of medical imaging, the first Finite Element (FE)
models were mostly used to better understand and validate a given
surgical treatment, to model physiological behaviors or to provide
virtual simulators for clinicians. In these frameworks, models were
limited to a single generic model for each study (the terminology
‘‘Atlas” was often used).

More recently, applications in the domain of Computer Assisted
Planning and Computer Aided Surgery sparked the need for pa-
tient-specific FE models representing the modeled organ geometry
reconstructed from patient medical image data, such as computed

tomography (CT) or magnetic resonance imaging (MRI). In most
cases, organs are identified in these data sets by means of manual,
semi-automatic or automatic segmentation tools that extract
shape information (3D points, contours and/or surfaces) necessary
for the generation of the Finite Element mesh representing the vol-
ume of the organ.

For both segmentation and FE mesh generation phases, manual
intervention is often required which can make this procedure long
and tedious. This is especially true in situations where the pre- or
intraoperative time window or clinician availability to perform
these delicate tasks is limited.

This paper addresses the second phase, namely the FE mesh
generation, with the introduction of a procedure – the Mesh-
Match-and-Repair (MMRep) algorithm – that allows a fast and
fully-automatic patient-specific FE mesh generation.

Although FE models were already used in the field of biomedical
engineering at the beginning of the 1980s (Jaspers et al., 1980;
Huiskes, 1980), researchers only began focusing on automatic
mesh generation in the early 2005 (Couteau et al., 2000; Gibson
et al., 2003; Viceconti et al., 2004; Taddei et al., 2004; Luboz
et al., 2005; Liao et al., 2005; Shim et al., 2007; Sigal et al., 2008;
Grosland et al., 2009). The primary motivation for automatic mesh
generation algorithms was that patient specific FE models could be
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routinely used by the clinicians. In that domain, the vast majority
of automatic mesh generators for living tissues produce tetrahedral
meshes (Molino et al., 2003; George et al., 2002; Alliez et al., 2005;
Si and Gaertner, 2005). Based on a 3D surface representing the
external geometry of the organ, these algorithms produce a volume
made of high quality 3D tetrahedra and sometimes allow for adap-
tive mesh refinement (Si, 2006, Tetgen1).

Some researchers in biomechanics continue to propose hand-
made FE meshes (Chabanas and Payan, 2000; Luboz et al., 2004;
Wittek et al., 2007), mainly for two reasons. Firstly, they argue that
it is important to be able to identify sub-regions associated to ana-
tomical sub-structures inside the 3D FE mesh (e.g. the ventricles,
the tumor and the hemispheres of the brain FE mesh proposed
by Wittek et al. (2007)). These sub-regions, corresponding to sets
of elements, are labeled and associated with specific constitutive
behaviors and boundary conditions. Secondly, they tend to prefer
hexahedra over tetrahedra, based on numerical considerations
(Benzley et al., 1995) as well as the fact that for incompressible
and/or nearly incompressible materials, 4-noded tetrahedra with
linear shape functions tend to lock and become overly stiff
(Hughes, 1987). Despite some improvements to this method of cre-
ating FE meshes this work still requires an excessive amount of
manual effort to achieve satisfactory results.

In order to still benefit from this manual design while providing
automatic FE mesh generation, techniques termed ‘‘registration
methods” or ‘‘morphing methods” were recently proposed (Cou-
teau et al., 2000; Castellano-Smith et al., 2001; Sigal et al., 2008;
Grosland et al., 2009). The main premise is to start with a prede-
fined ‘‘generic” (or ‘‘template”) FE mesh that represents the organ.
This mesh is manually designed to include any necessary sub-re-
gions and hexahedra, and to preserve element quality, orientation
and density in regions that require it for numerical simulation. This
template is then automatically morphed onto the patient data (3D
landmark points, contours and/or surfaces) that was extracted
from the segmentation of the medical images. This process gener-
ates a patient-specific mesh adapted to the geometries of the ana-
tomical structures extracted from patient data, with a mesh
topology that is similar to that of the template (same nodes and
elements organization).

Our group was the first to initiate this principle of mesh morp-
hing with the introduction of the Mesh-Matching algorithm (Cou-
teau et al., 2000). Since then, we encountered two strong
limitations with our mesh morphing principle. Both are due to
the fact that the template mesh quality after registration can be
strongly decreased when the morphing algorithm induces exces-
sive spatial distortions. Therefore, the first consequence is the
inability to maintain the regularity of some elements, which dis-
ables FE analysis from being carried out. This concern was partially
discussed in Luboz et al. (2005). The second consequence of the
morphing method is that the elements shape qualities are de-
creased in some regions of the template mesh, which leads to low-
er accuracy in the numerical simulation (Field, 2000; Kwok and
Chen, 2000; Shewchuk, 2002).

This paper aims at introducing our latest algorithms concerning
(1) the elastic registration method that guarantees a C1-diffeomor-
phic transform; and (2) the mesh repair technique that ensures
that the produced mesh complies with both regularity and quality
criteria. The MMRep approach was applied and evaluated on 60
clinical cases, which is, to our knowledge, the largest database ever
tested in the literature for a patient-specific FE mesh registration
method.

The MMRep algorithm is a two-step sequential procedure.
Firstly, the patient data and the Atlas mesh surface nodes are

registered using the elastic deformation procedure described in
Section 2. This deformation is then applied to the inner Atlas nodes
yielding a FE mesh that represents the modeled domain with suf-
ficient accuracy. As a consequence of this deformation, the Atlas
elements may suffer distortions and become either ‘‘irregular ele-
ments” which make FE analysis impossible, or ‘‘poor quality ele-
ments” in which case the computation, although feasible, can
exhibit numerical instabilities. To recover mesh regularity and
reach an acceptable quality level, the mesh repair procedure de-
scribed in Section 3 is carried out on the deformed mesh.

2. Elastic registration

2.1. Registration overview

We define an elastic registration function as a mapping
R : R3 ! R3 that superimposes a source point cloud S onto a target,
or ‘‘destination”, data set D, which can either be a point cloud or a
surface mesh. The computed elastic registration procedure com-
plies with continuum mechanics conditions on motion (Belytschko
et al., 2006) as R defines a C1-diffeomorphic, non-folding and
one-to-one correspondence between geometric data sets, as dem-
onstrated, respectively, in Sections 2.2–2.4.

The input source points set is initially embedded in a deform-
able ‘‘virtual elastic grid”. We arbitrarily set the shape of the grid
to be the bounding box of the points, extended by a 10% margin.
The considered deformation R is formed by successive elementary
grid deformations noted r, all having the desired regularity proper-
ties, much in the same way as proposed in Rueckert et al. (2006).

The regular grid is progressively refined in order to increase reg-
istration accuracy and the expression of the compound registration
function is:

R ¼ rNJ
J � � � � � r1

J|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
GJ

� � � � � rN1
1 � � � � � r1

1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
G1

where Gj; j ¼ 1; . . . ; J are successive grid refinements, and
ri

j; i ¼ 1; . . . ;Nj, elementary deformations performed at grid level j.
As level indications are irrelevant in the following demonstrations,
the deformation R is simply written as:

R ¼ rN � � � � � r1 ð1Þ

where N ¼
PJ

j¼1Nj.
If required, the inverse registration, R�1, can be computed by

combining the elementary inverses in the reverse order of the di-
rect registration, thus: R�1 ¼ r�1

1 � � � � � r�1
N .

At each step n, the choice of the elementary deformation rn to
be applied to the source data is driven by the minimization of a
‘‘registration energy” E which measures the similarity between
the deformed source points set and the destination data set D. As
geometrical shape similarity is sought, E is defined as the sum of
Euclidean distances between S and D:

Eðrn � Rn�1Þ ¼
X
s2S

dðrnðRn�1ðsÞÞ;DÞ ð2Þ

where Rn�1 ¼ rn�1 � � � � � r1 represents the registration function
assembled at step n� 1, and the operator dð�; �Þ can either be a
point-to-point or a point-to-surface distance measure, depending
on the nature of D.

In order to speed up the computations of energy E, a distance
map is generated from the destination data set D prior to registra-
tion (Saito and Toriwaki, 1994). Distance map voxel dimensions
are 1� 1� 1 mm in order to achieve submillimetric surface repre-1 http://tetgen.berlios.de.
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sentation. The sampled space region covers the bounding box of
the considered destination data, extended by a 5% margin.

Point-to-surface registrations are performed in all three use
cases discussed in Section 4. For each destination Atlas mesh,
signed point-to-surface distances are measured using surface
orientation information. A positive distance is recorded in the dis-
tance map for points lying outside the closed destination surface,
and a negative distance is recorded for points lying inside. The dis-
tance map computations can take several minutes, which is not a
limitation to our approach, even in the intraoperative context illus-
trated in Section 4.2, as the Atlas meshes are processed pre-opera-
tively. At registration time, source-to-destination distance
evaluations are done by trilinear interpolation within the signed
distance map and the absolute value of the result is retained.

The rn functions are successively chosen so that E decreases
optimally at each step. To this end the virtual grid is subdivided
into a number of regular hexahedrons called ‘‘cells”. Each node of
the grid is considered separately and the gradient of the registra-
tion energy is computed as function of the node’s position. The
opposite of this vector defines the node’s preferred displacement,
that is, the one that will lead to the greatest registration energy de-
crease achievable by moving the considered node.

Let S0 :¼ S be the initial source points set, and let Si be the
source points set at iteration i. Of all nodes, the one leading to
the highest energy decrease is chosen and its preferred displace-
ment is applied while all the other nodes remain fixed. This nodal
displacement is propagated throughout the neighboring grid cells
and the affected source points are moved accordingly to generate
Siþ1, the new set of deformed source points.

Once this basis deformation step applied, the virtual grid re-
turns to its initial regular configuration and the source points set
Siþ1 is embedded within it. A new iteration can be computed by
taking the new configuration Siþ1 as input. This Eulerian strategy
allows large deformations of S to be achieved without having to
maintain large-strain consistency of the virtual mesh, as would
be the case if the virtual grid strictly followed the deformation with
each iteration.

The regularity of the grid before each iteration also saves com-
putational time by allowing the interpolation of a node displace-
ment throughout its neighboring cells to be computed using a
template unitary cell. The iterations stop when no significant en-
ergy decrease can be achieved by moving any grid nodes at the cur-
rent grid refinement level. In our implementation, we have set this
stop threshold TE to 1%, and the registration iterations continue as
long as energy E can be reduced by more than 1%, i.e.
ðEi � Eiþ1Þ=Ei > TE. Thus, the number of iterations performed at
each refinement step is variable.

The above iterative loop describes the procedure at a given grid
refinement level. In order to maintain the spatial consistency of S
during the assembly of the registration transformation, a top-down
hierarchical approach has been implemented. The iterative assem-
bly of the registration function R starts at the coarsest grid level.

Once the deformation search at the current level has been ex-
hausted, the grid is refined by subdividing each cell into eight
smaller ones in an octree method.

Fig. 1 illustrates in 2D the multi-grid iterative registration tech-
nique. The source points S are represented by the grey dots; for
clarity D is not shown. In (a) the initial set S0 :¼ S is embedded
within the virtual square grid discretized at the coarsest level 1,
and the energy gradients are computed at the 4 mesh nodes. In
(b) the optimal node displacement is applied to the grid and the
source points move producing a new source set S1. If no significant
energy decrease can be generated at level 1, the grid is refined at
level 2, (c), S1 is embedded within it, and the energy gradients
are computed at the 9 nodes of the mesh. In (d) the best nodal dis-
placement is applied and the resulting source points set S2 is
computed.

At each grid refinement level, the size of the registered source
features is approximately that of the current grid cell. The virtual
grid nodal displacement is only applied if the resulting grid defor-
mation leads to a registration energy decrease. As all the source
points located in the grid cells surrounding the displaced node
are altered, the source features significantly smaller than the cur-
rent cell size have limited impact on the registration sequence.
The dimensions of the smallest cell reached during the top-down
refinement descent thus roughly define the size of the specific fea-
tures present in S that may not be registered if the corresponding
feature is absent from D.

By primarily focusing on larger source features, this hierarchical
approach also reduces the influence of noise usually found in pa-
tient data gathered from pre-operative medical image segmenta-
tion (see Section 4.1) or from intraoperative acquisitions (see
Section 4.2). During the evaluation of the MMRep technique the
smallest cell size was set to 1 mm, which required about 8 or 9 grid
subdivision levels as the typical model size was about 25 cm and
250 mm=28 � 1 mm.

Furthermore, the mechanical regularization strategy described
in Section 2.6 limits excessive space distortions due to the presence
of noise by monitoring the magnitude of potential elastic energy in
the source space throughout the deformation process. Accurate
registration of outliers has indeed a prohibitive mechanical cost
which, in our procedure, discards elementary deformations
attempting to register them.

The optimization procedure is done by a gradient descent tech-
nique (Press et al., 1992). The energy gradients are evaluated at
each node by the Finite Differences method. The line search in
the direction of the gradient descent is performed by approximat-
ing the energy curve by a parabola PðtÞ ¼ at2 þ bt þ c. The param-
eters a; b and c are deduced from: the current value of E at the
considered node, corresponding to Pð0Þ; the slope of E in the des-
cent direction, defining P0ð0Þ; and the value of E at the maximally
displaced node position (see Section 2.3), yielding Pð1Þ. Finally,
the optimal descent step in the current direction is given by
tmin ¼ �b=ð2aÞ.

(a) (b) (c) (d)
Fig. 1. Elastic registration overview. (a) S0 at refinement level 1. (b) S1 after deformation at level 1. (c) S1 at refinement level 2. (d) S2 after deformation at level 2.
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2.2. C1-differentiability of the deformation

At each registration step, the displacement applied to a given
grid node n is propagated to the source points located in cells sur-
rounding n by means of a ‘‘weight” function wn : R3 ! ½0;1�.

Let u! be the displacement applied to node n, and s be a source
point found in a cell affected by the movement of n. The displace-
ment propagated to s is wnðsÞ u!. Similarly to the shape functions in
the Finite Element Method, the support of the weight function wn

is the union of the cells neighboring n. The deformation consis-
tency is further ensured by the two following conditions:
wnðnÞ ¼ 1 and wn ¼ 0 at the boundary of its support.

From the above, it follows that the elementary elastic registra-
tion function r created by the displacement u! of node n has the
following expression:

r : R3 ! R3; s#sþwnðsÞ u! ð3Þ

C1-differentiability of the elementary registration function r stems
from the C1-differentiability of the weight function wn and the Jaco-
bian matrix of r is given by:

Jr :¼ @r
@s
¼ Id3�3 þ

ux

uy

uz

0
B@

1
CA @wn

@x
@wn
@y

@wn
@z

� �
ð4Þ

Now, let s0 2 R3 be an arbitrary source point and sn this point trans-
formed after applying n elementary registration steps. Then
fsn;n 2 ½0;N�g is the set of all successive positions of s0 and, accord-
ing to Eq. (1), Rðs0Þ ¼ sN . The Jacobian matrix of R computed at point
s0 is given by the following chain rule:

JRðs0Þ :¼ @R
@s
ðs0Þ ¼

@rN

@s
ðsN�1Þ . . .

@r2

@s
ðs1Þ

@r1

@s
ðs0Þ ð5Þ

All weight functions wn stem from a ‘‘template” weight function
‘‘w” defined on the ½0;1�3 grid cell and associated to node (1,1,1).
Let p be a third degree polynom defined by pðtÞ ¼ t2ð3� 2tÞ, such
as pð0Þ ¼ 0;pð1Þ ¼ 1;p0ð0Þ ¼ 0 and p0ð1Þ ¼ 0. The template weight
function w is defined on ½0;1�3 as:

wðsÞ ¼ wðs1; s2; s3Þ :¼ pðs1Þpðs2Þpðs3Þ ð6Þ

A specific weight function wn is defined on the union of neigh-
boring cells around the displaced node n by variable change and
scaling in order to adapt the canonic ½0;1�3 domain to the cell size
within the actual grid. Fig. 2a illustrates on a 2D grid the variable
changes needed to construct from w the weight function wn, with
n ¼ ð1;1Þ, defined on a 2 � 2 cells neighborhood of n. Fig. 2b shows
the 3D plot of the resulting weight function wn : R2 ! ½0;1�.

The two other regularity properties of the elementary registra-
tion functions r, namely bijection and non-folding, are enforced
by limiting the amplitude of nodal displacements, as described in
the following sections.

2.3. Control over space distortion

Space folding can be mathematically expressed as follows. Con-
sider a positively oriented set of three infinitesimal vectors,
dX1; dX2 and dX3, placed in undeformed space at point s and defin-
ing the volume dV. The signed value of dV can be computed as the
determinant of the matrix formed by the three vectors.

dV ¼ ðdX1 � dX2Þ � dX3 ¼ dX1 dX2 dX3j j

R is said to be locally non-folding if the deformed infinitesimal vol-
ume dv ¼ RðdVÞ defined by the three deformed vectors dx1; dx2

and dx3, remains positive, or, in other words, if R does not change
the orientation of space in the neighborhood of s.

The differential form of R gives us the expression of the de-
formed vectors:

8i ¼ 1;2;3; dxi ¼
@R
@s
ðsÞ dXi

and the relation between dv and dV is:

dv ¼ dx1 dx2 dx3j j ¼ @R
@s
ðsÞ

����
���� dX1 dX2 dX3j j ¼ jJRðsÞj dV

where JRðsÞ :¼ ð@R=@sÞðsÞ is the Jacobian of R given by the chain rule
in Eq. (5). It follows that an application R is non-folding if its Jaco-
bian is strictly positive, i.e.:

8s 2 R3; jJRðsÞj > 0 ð7Þ

If the value of the Jacobian at a given point is greater than 1, the
deformation locally stretches space and if its value is smaller than
1, space is locally compressed.

From Eq. (5) it follows that R is non-folding if and only if all
ri; i ¼ 1; . . . ;N are non-folding, since:

jJRj ¼
@R
@s

����
���� ¼

YN
i¼1

@ri

@s

����
���� ¼

YN

i¼1

jJri
j

Let’s now see how to ensure that each individual elementary regis-
tration function is non-folding. Using Eq. (4), the non-folding condi-
tion on r becomes:

8s 2 R3; jJrðsÞj ¼ 1þ O!wnðsÞ � u! > 0 ð8Þ

Given the above expression of the template weight function w, the
magnitude of the gradient of a specific weight function wn defined

w(x,y)
x

y yWn

1 2

2

1

0

w(2-x,2-y)w(x,2-y)

w(2-x, y)

x

y

1
2

0

1

2

x
1 2

2

1

0

u

a

b

(a) (b) (c)
Fig. 2. (a) Variable changes required in 2D for the assembly of wn on a neighborhood of 4 cells centered on node n ¼ ð1;1Þ. (b) Value of wn plotted over the four 2D cells. (c)
An elementary deformation leaves all segments ½a;b� parallel to the applied nodal displacement unchanged.
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on a ½0; L�3 grid cell has an upper bound of 3
ffiffiffi
3
p

=ð2LÞ. To ensure non-
folding it is thus sufficient to limit the amplitude of nodal
displacements:

k u!k 6 38% L <
2

3
ffiffiffi
3
p L

In our implementation of the algorithm this value has been reduced
to 10% of the current grid cell size, so as to not only achieve non-
folding but also limit space distortion at each elementary registra-
tion step. As k u!k 6 L=10 and kO!wnk 6 3

ffiffiffi
3
p

=ð2LÞ, it follows that:

1� 3
ffiffiffi
3
p

20
6 1þ O

!
wnðsÞ � u

!
6 1þ 3

ffiffiffi
3
p

20
ð9Þ

The above equation gives us, for all cell sizes, approximate2 Jacobian
lower and upper bounds: 0:74 < jJr j < 1:26, and hence 0:74N <

jJRj < 1:26N .

2.4. Registration inversion

In this section we will show that under the non-folding con-
straint, the deformation R is a bijection and discuss how its inverse,
R�1, can be computed with a pre-defined level of accuracy for any
point q 2 R3.

The registration function R is one-to-one if the same is true of
each elementary registration r. To prove that a non-folding ele-
mentary registration function is also a bijection, consider a 2D
deformation r, as defined in Eq. (3), created by applying the dis-
placement u

!
to the central node of the 4 cells group depicted in

Fig. 2c.
Given that all the displacements applied to the source points are

collinear with u
!

, parallel segments such as ½a;b� in Fig. 2c, map
onto themselves. Furthermore, points lying outside or on the
boundary of the 4-cell group are left unchanged. To prove that r
is a bijection it is thus sufficient to show that it defines a one-to-
one application ½a;b� ! ½a;b�, for any segment ½a;b� parallel to u

!
.

As the considered segment is parallel to u
!

, there exists a scalar b
such as b ¼ aþ b u

!
. Moreover, all segment points p 2 ½a;b� can be

written as p ¼ aþ q u
!

, with q 2 ½0; b�, leading to rðpÞ being rewrit-
ten as follows:

rðpÞ ¼ pþwnðpÞ u
!
¼ aþ ðqþwnðaþ q u

!
ÞÞ u
!

The deformation r is thus a bijection ½a;b� ! ½a;b� if and only if
the mapping f : q#qþwnðaþ q u

!
Þ is also a bijection ½0; b� ! ½0; b�,

which we shall prove is true under the non-folding hypothesis.
Deformation r leaves the segment extremities unchanged,

rðaÞ ¼ a and rðbÞ ¼ b, which, using the above expressions, leads
to f ð0Þ ¼ 0 and f ðbÞ ¼ b, respectively. Furthermore, the derivative
of f is f 0 ¼ 1þ O

!
wn � u

!
. As a consequence, if r is non-folding then,

according to Eq. (8), we have f 0 > 0 which implies that the strictly
monotonic function f is a bijection ½0; b� ! ½0; b� and so is
r : ½a;b� ! ½a;b�, which concludes our proof.

Another issue is computing the inverse registration
R�1 ¼ r�1

1 � � � � � r�1
N with a user-defined accuracy �, measured in

undeformed space. The task consists in finding, for a given de-
formed point q 2 R3, an undeformed point p 2 R3, such as
kp� R�1ðqÞk < �. We will first show how to accurately compute
the inverse of an elementary registration function r, and then use
these results to accurately inverse the compound registration R.

Given q 2 ½a;b�;q ¼ aþ l u
!

, finding p ¼ aþ q u
!

such as
p ¼ r�1ðqÞ reduces to solving q ¼ f�1ðlÞ on ½0; b�. The mapping f
is a 9th degree polynomial (see Eq. (6)) and as no analytical expres-
sion of the solution is available, it must be approximated itera-
tively using, for example, a Newton–Raphson procedure.

Let p ¼ aþ q u
!
¼ r�1ðqÞ be the searched point, and

p ¼ aþ q u
!
� r�1ðqÞ its iteratively computed approximation. The

approximation error in undeformed space can be rewritten as:

kp� r�1ðqÞk ¼ kp� pk ¼ jq� qjk u
!
k ð10Þ

In order to compute the inverse registration with the desired accu-
racy level �, the exact solution q ¼ f�1ðlÞmust be approximated by
q so that:

jq� qj < �

k u
!
k

As the value of q is unknown, the approximation error must be
computed in deformed space. To this end the above expression is
rewritten and, using the finite increments theorem, yields:

jq� qj ¼ jf�1ðf ðqÞÞ � f�1ðlÞj < M jf ðqÞ � lj ð11Þ

The above constant M is computed using the relation
ðf�1Þ0 ¼ ðf 0Þ�1, which in conjunction with Eq. (9), gives
1=1:26 < ðf�1Þ0 < 1=0:74 ¼ M. This leads us to the conclusion that
in order to compute an �-accurate inverse of q in undeformed
space, Newton–Raphson iterations must be carried out until the
approximate parameter q satisfies:

jf ðqÞ � lj < 0:74
�

k u
!
k

Now let us compute the inverse of a compound registration func-
tion R. To control the accumulated error overhead at each elemen-
tary inversion step we will use the fact, demonstrated by combining
Eqs. (10) and (11), that the inverse of any elementary registration
function r is M� Lipschitz continuous, i.e.:

8q;p 2 R3; kr�1ðqÞ � r�1ðpÞk < M kq� pk

For the sake of clarity, let R ¼ r3 � r2 � r1 be the considered registra-
tion function and s3 2 R3 a point in deformed space which inverse,
R�1ðs3Þ, is sought with accuracy �. Adopting the notation convention
used to derive Eq. (5) above, we have:

R�1ðs3Þ ¼ ðr�1
1 � r�1

2 � r�1
3 Þðs3Þ ¼ ðr�1

1 � r�1
2 Þðs2Þ ¼ r�1

1 ðs1Þ ¼ s0

Fig. 3 illustrates the 3-step computation of R�1ðs3Þ along with error
accumulation due to approximations performed at each elementary
inversion step. Undeformed space is represented on the left, and de-
formed space on the right of the figure. Approximation steps are
shown as dashed oblique arrows, and exact inversions as horizontal
arrows.

We shall now establish the relation between �, the selected tol-
erance in undeformed space, and successive elementary approxi-
mation errors �3; �2 and �1.

Inversion of r3. s2 ¼ r�1
3 ðs3Þ is approximated by t2 with accu-

racy �3 in r3-undeformed space: �3 > kt2 � s2k. Using the Lipschitz

s3s2s1s0
r3-1r2-1

t2t1t0

u1u0

v0

ε2

ε1

ε3

r1-1

ε

Fig. 3. Approximation of s0 ¼ R�1ðs3Þ by v0. Horizontal arrows represent exact
inversions and oblique dashed arrows iterative inverse approximations. Left:
undeformed space, right: deformed space.2 3

ffiffiffi
3
p

=20 ’ 0:259.
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constant M, this error propagates to the left as: �3 M > kt1 � s1k,
and �3 M2 > kt0 � s0k.

Inversion of r2. t1 ¼ r�1
2 ðt2Þ is approximated by u1 with accu-

racy �2 in r2-undeformed space: �2 > ku1 � t1k. As in the previous
step, this error propagates to the left as: �2 M > ku0 � t0k.

Inversion of r1. Finally, u0 ¼ r�1
1 ðu1Þ is approximated by v0 with

accuracy �1 in initial undeformed space: �1 > kv0 � u0k.
The final error in undeformed space kv0 � s0k can be upper

bound as:

kv0 � s0k 6 kv0 � u0k þ ku0 � t0k þ kt0 � s0k < �1 þ �2 M þ �3 M2

The above expression can be generalized to any compound registra-
tion function R ¼ rN � � � � � r1. In order to meet the desired accuracy
standard �, the computational effort can be spread among all N ele-
mentary inversions by setting the Newton–Raphson approximation
threshold for each r�1

n ; n ¼ 1; . . . ;N to:

�n ¼
�

N Mn�1

This is a reasonable heuristic as �n is smaller for higher values of
n, corresponding to finer grid levels and hence, smaller nodal dis-
placements (10% of grid cell size – see Section 2.3). Solution search
intervals are thus narrower, and higher inversion accuracy is thus
easier to achieve than at coarser grid levels.

There is a final consideration on registration inversion: if the cu-
bic polynomials p used to define the shape function w in Eq. (6) are
replaced with the identity i : ½0;1� ! ½0;1�; t#t, then f becomes a
3rd degree polynomial and the exact inverse of the registration
function R can be computed in a single iteration by using the
well-known Tartaglia–Cardan formula. Nevertheless, this enhance-
ment comes at a price as the smoothness of the registration func-
tion R is degraded from C1 to C0.

2.5. Asymmetric registration

The ‘‘asymmetric” energy E defined in Eq. (2) handles situations
where the features present in S are present in D but the reciprocal
is not necessarily true. A situation can occur in which the Atlas
mesh only represents a fraction of the organ features available
within the patient data (see Section 4.3), requiring that the elastic
registration R is computed as transforming the Atlas to fit the pa-
tient data. The patient specific mesh is then obtained by applica-
tion of this transform to the generic mesh, i.e. Patient
mesh = R(Atlas).

Conversely, if only partial information about the patient’s organ
is available, its overall shape has to be inferred from the a priori
knowledge carried by the generic Atlas mesh (see Sections 4.1
and 4.2). This is done by taking the patient data as source points,
and computing the registration function R that fits the source
points onto the Atlas. The patient specific mesh is obtained by
inverting the resulting elastic deformation, i.e. Patient mesh ¼
R�1ðAtlasÞ.

2.6. Mechanical regularization

In order to avoid excessive space distortions, a mechanical reg-
ularization term is monitored during the registration process,
thereby upgrading the virtual elastic ‘‘grid” concept to virtual elas-
tic ‘‘solid”. As the elastic registration compensates for inter-indi-
vidual morphological variations and does not model a physical
deformation, the underlying ad-hoc mechanical properties are
not related to the actual rheology of the organ under study.

Using the notation from Eq. (2), we now define the Jacobian ma-
trix of the overall registration function considered at iteration n,
and taken at material point X, as:

JnðXÞ :¼ @Rn

@X
ðXÞ ¼ @ðrn � � � � � r1Þ

@X
ðXÞ

Eq. (5) shows that this matrix can be updated after each ele-
mentary registration step by first multiplying the previous matrix
with the Jacobian matrix of the new elementary deformation rnþ1

taken at the current position of the considered material point,
ðrn � � � � � r1ÞðXÞ.

During the registration assembly, the elastic energy stored in
the virtual solid is measured at a set of material points fXigi, evenly
distributed among the initial source data, and set to ‘‘probe” the
space distortions induced by the accumulated elementary defor-
mations. To do so, at each iteration n the Green-Lagrange strain
tensor �n is derived from the above mentioned Jacobian matrix,
as �n ¼ ðJT

nJn � IÞ=2, and the stress tensor rn is related to the strain
tensor �n by a linear constitutive equation rnij ¼ Dijkl �n kl.

The potential elastic energy generated by the deformation Rn at
control point Xi can be computed using the Total Lagrangian for-
mulation, as:

Wi
n ¼

Z
Vi
�n : rn dX

where Vi is the volume in the initial source configuration associated
to, or ‘‘monitored” by the material point Xi. In order to preserve fast
registration computation, the above integral is approximated as
Wi

n � jV
ij �nðXiÞ : rnðXiÞ, where j Vi j is the measure in the initial

configuration of the volume Vi associated to the material control
point Xi.

The sum of the contributions of all control points fXigi gives an
approximation of the total potential elastic energy stored in the de-
formed source space at iteration n, as Wn ¼

P
iW

i
n. This measure is

taken into account at each deformation step to select, among all
possible elementary deformations, the registration function rn

which offers the best ratio between registration energy decrease
and elastic energy increase.

To this end, at each iteration n and for each candidate deforma-
tions rn the associated registration energy decrease DEn > 0 is com-
puted as DEn ¼ EðRn�1Þ � Eðrn � Rn�1Þ. The change in potential
elastic energy DWn associated to each rn is also computed as
DWn ¼Wn �Wn�1 and the following selection algorithm is
applied.

1. Among all candidate elementary deformations, only the defor-
mations rn leading to a relative registration gain greater than
the stop threshold TE are considered, i.e. the ones for which
DEn=En�1 > TE.

2. Among those, if deformations such as DWn < 0 can be found,
the one yielding the highest registration energy decrease is
chosen.

3. Otherwise, the deformation rn having the highest DEn=DWn

ratio is applied.

Rule 1 merely implements the stop criterion mentioned above.
If no elementary registration function satisfying this condition can
be found, the iterations stop. Rule 2 favors space ‘‘decompression”
if it goes with satisfactory registration enhancement. Finally Rule 3
is applied in the most general case to select the deformation offer-
ing the best trade-off between space distortion and registration
gain.

It is important to emphasize here that although the elastic grid
initial state is restored prior to each elementary registration step
(Eulerian approach), the mechanical energy terms Wn computed
above keep track of all the deformations accumulated in Rn at step
n (Lagrangian formulation). They are therefore appropriate for
measuring space distortion as the registration advances.
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As a relationship between inter-individual shape variations and
mechanical behavior could not be determined, the simple St. Ve-
nant–Kirchoff mechanical framework was selected. An isotropic
soft compressible material using an empirically set Poisson’s ratio
m ¼ 0:2 and a Young’s modulus E ¼ 1 Pa was implemented. The va-
lue of E has no effect on the registration sequence as it is not the
sum but the ratio between registration and elastic energy that con-
ditions each elementary deformation.

Finally, in our implementation, 1000 control points are used.
The fXigi¼1;...;1000 are distributed in the bounding box of the source
data, on a regular 10� 10� 10 grid and all jVij are set to 1/1000 of
the bounding box volume.

2.7. Multiple structures registration

Prior to mesh registration, a subset of the Atlas mesh nodes
needs to be labeled as anatomical features that can be identified
within the patient data.

In the case of the femur models (see Sections 4.1 and 4.2) the
surface mesh nodes are labeled as ‘‘bone surface” as they lie on
the cortical surface of the bone, which can easily be extracted from
a Computed Tomography (CT) volume.

As for the face model, two families of nodes are defined, labeled
‘‘skin” for the exterior surface nodes registered onto the patients’
faces skin, and ‘‘bone” for the interior surface nodes that corre-
spond to the skull features and need to be registered onto seg-
mented patients’ skulls (see Section 4.3). This application
example illustrates the capability of our procedure to capture the
shapes of multiple anatomical structures modeled within a unique
generic FE mesh.

When multiple anatomical structures need to be recovered, the
registration of the FE mesh onto the patient data is driven by the
minimization of an energy term Elab which measures the fit be-
tween the labeled nodes and their corresponding anatomical
structures:

ElabðRÞ ¼
XL

l¼1

X
s2Sl

dðRðsÞ;DlÞ

where l ¼ 1; . . . ; L are the predefined labels and Sl and Dl are the cor-
responding source and destination regions, respectively. When
multiple labels are defined, a distance map is computed for each
Dl subset of the destination data.

The elastic grid deformation is driven by the Elab energy com-
puted over the sets of labeled source nodes and destination sur-
faces. The unlabeled source points, on the other hand, are
embedded within the elastic grid and passively follow the defor-
mation without contributing to the energy term.

3. Mesh repair

Although the elastic registration algorithm described above
strongly limits space distortions, the registered mesh may exhibit
irregular or low quality elements that need to be untangled before
proceeding to FE analysis. Indeed, the non-folding nature of the
registration function is a local property ensuring that space orien-
tation is preserved. While this is locally true at every point in
space, the property does not hold when considering finite struc-
tures such as element edges and, as a consequence, irregular ele-
ments may appear after the application of the smooth and non-
folding elastic deformation to the initially regular Atlas mesh.

Element regularity is assessed by considering the mapping
F : n#x, between the element parent (or reference) coordinates
system ðn1; n2; n3Þ and the actual element coordinates ðx1; x2; x3Þ.
The Jacobian JðnÞ is the determinant of the matrix @F=@n. Its value

represents, at a given reference point n, the local volume transfor-
mation between the parent and actual element configuration.

An element is said to be regular if JðnÞ > 0 for all n in the parent
configuration. Element regularity is usually assessed by consider-
ing the value of J at specific points such as the integration points
or the element nodes (Hughes, 1987). We call a node n ‘‘irregular”
if it has a negative Jacobian Je

n, computed in element e. A mesh is
said ‘‘regular” if all the elements, and hence all nodes, are regular.
An irregular mesh is not suitable for Finite Element analysis as the
singularity of the mapping F leads to modeling inconsistency.

Element quality, on the other hand, is a measure of the confor-
mity of its shape, which reflects the evenness of the discretization
of the modeled domain. There is a great variety of quality measures
and their relevance is dependent on the considered element type
and computations to be carried out (Field, 2000; Shewchuk, 2002).

Given the fact that fast and robust tetrahedral discretization
solutions are already available, such as the widely used TetGen
software, or have been proposed in the literature (Molino et al.,
2003; Frey, 2004; Alliez et al., 2005), we focus our work on hexa-
hedral-dominant meshes and demonstrate our mesh generation
technique using a popular quality measure, well suited for hexahe-
drons and wedges: the Jacobian ratio (JR) (Knupp, 2000).

The JR is defined for a given node n considered within element
e. Its value is the ratio between the Jacobian at node n in e, and the
maximal nodal Jacobian value in element e, Je

max ¼Maxm2efJe
mg,

thus:

JRe
n ¼

Je
n

Je
max

By comparing, the Jacobian value of each node with the maxi-
mal value within the considered element, the JR gives an indication
of the contribution of a node to the overall element distortion, as
opposed to local nodal distortion between the parent and actual
configuration measured by the Jacobian alone. Element quality
with respect to parent configuration is proportional to the JR value,
ranging from 0 to 1.

Mesh repair is a twofold process: first all the elements in the
mesh are inspected and, if necessary, their nodes’ positions are
adapted so as to recover regularity; then a second relaxation pro-
cedure is carried out on the mesh if the achieved quality levels are
unacceptable. Both steps can affect the nodes positions and alter
the organ surface representation achieved after the elastic registra-
tion step.

In the absence of a formal proof that an acceptable mesh config-
uration exists and can be found by the relaxation procedure in all
situations, the aim of this study is to evaluate the performance of
MMRep on a database of diverse organ shapes and clinical use
cases. The results described in Sections 4.1–4.3 suggest that the
smoothness of the elastic registration strongly limits spatial distor-
tion making it possible to recover both mesh regularity and quality
without interfering with the prior surface registration, by applying
small displacements to a limited subset of the surface nodes.

A large number of nodes in a mesh can make the repair proce-
dure computationally prohibitive. This complexity can be greatly
reduced using a local relaxation strategy, i.e. grouping all irregular
or poor quality nodes into ‘‘regions” defined in such a way that no-
dal corrections applied inside a region leave the outside mesh con-
figuration unchanged. This local repair strategy makes it possible
to perform all relaxation procedures independently on each repair
region identified within the mesh. It also decreases significantly
the computational complexity as the number of degrees of free-
dom to be considered in a region is usually small.

The untangling of an irregular region R consists in finding a con-
figuration where all the Jacobians in R, fJjgj2R, are positive. This no-
dal relaxation can be formulated as a maximization procedure
driven by a ‘‘regularity energy” ER. ER is expressed as the sum of
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all Jacobians within R affected by a penalty function uk, of strength
controlled by an index k, giving:

ER ¼
X
j2R

ukðJjÞ

where ukðtÞ ¼ 1� expð�ktÞ. As the parameter k is increased during
the optimization process, the influence of negative values overbal-
ances the positive ones thus favoring a solution where all Jacobians
in the sum are positive.

The aim of the quality maximization, on the other hand, is to
find a configuration where all the JRs in a region R are above a pre-
defined level JRmin. The associated ‘‘quality energy” EQ is defined as
the sum of the JRs within R weighted by a penalty function wk,
thus:

EQ ¼
X

j2R;e2R

wkðJRe
j Þ

where wkðtÞ ¼ 1� expðkðJRmin � tÞÞ. Similarly to the regularization
process, the penalty parameter k is used to find a solution where
all JRs contributing to the sum EQ are above the quality threshold
JRmin. The value of JRmin was chosen in accordance with the quality
standard requested by the commercial FE analysis software ANSYS
Workbench (ANSYS Inc., USA), i.e. JRmin ¼ 1=30 (Kelly, 1998).

The initial value of k for both penalty functions uk and wk must
be carefully chosen. Indeed, given the formulation of the penalty
functions, an excessive penalization level may induce strong
numerical instabilities in the optimization process. To avoid this is-
sue, the starting value of k is determined by considering the slope
of the penalty function at the most penalized energy term (mini-
mal Jacobian during regularization phase; minimal JR during qual-
ity optimization phase) and ensuring that it does not exceed a
predefined threshold.

Both regularity and quality optimizations are carried out by gra-
dient ascent. Gradients of both ER and EQ energies are computed
using the centered differences scheme. Assuming unimodality of
the local energy function, the maximum search in the direction
of ascent is done using the golden section technique (Press et al.,
1992) between the current nodal configuration and the configura-
tion obtained after applying the maximal amplitude correction.

The amplitude and number of iterations for each mesh region
are limited so as to restrict loss of surface representation accuracy.
Our implementation allows a maximum of 50 iterations, and nodal
displacements at each step have a maximal amplitude of 0.1 mm.
The 50 �0:1 ¼ 5 mm maximal displacement can only be achieved
by moving a unique node in a constant direction throughout the
repair procedure, which seldom occurs. During the experimental
validation discussed in Section 4, nodal corrections with mean
amplitude less than 1.2 mm and applied to less than 1% of the
nodes were sufficient to repair the 60 registered meshes.

The value of maximal nodal correction used here is not univer-
sal and must be determined for each field of application according
to the dimensions of the modeled domain and maximal tolerance
on the representation of its geometry. In our case, the results were
consistent with the desired submillimetric mean surface represen-
tation accuracy, as shown in Tables 1, 3 and 5.

4. Experimental evaluation

The MMRep technique was evaluated in three different situa-
tions where:

– complete organ geometry can be retrieved from the available
data, as discussed in Section 4.1;

– only partial organ geometry is accessible, as illustrated in Sec-
tion 4.2;

– distinct organ features need to be taken into account by the
generated model, as shown in Section 4.3.

The mesh adaptation technique alone is presented here and the
discussion about the biomechanical simulations illustrating the
three following ‘‘use cases” falls out of the scope of this article.

4.1. Complete pre-operative femora CT scans

In this section, we demonstrate our technique in the context of
total knee arthroplasty (TKA). The prosthesis placement can be
optimized to avoid unsealing or femur fracture using biomechani-
cal modeling and FE analysis of the stresses within the tissues.
These tissues are modeled based on the bone mechanical proper-
ties, geometry and prescribed loads inferred from the patient mor-
phology and gait (Zalzal et al., 2008).

4.1.1. Mesh registration procedure
The manually assembled right femur Atlas mesh (Couteau et al.,

1998) used in this part of the study is composed of 4052 nodes,
forming 3018 elements: 2960 hexahedrons and 58 wedges (6
nodes prisms). The elements are organized so as to reflect the bony
structure such as the femoral diaphysis cortex which is discretized
by a single layer of elements. The principal mesh features are illus-
trated in Fig. 4.

For the five considered patients a CT scan of the right leg was
pre-operatively acquired and a semi-automatic threshold-based

Table 1
Registration (s): elastic registration times, in seconds; CT points: quantity of
segmented points in CT volumes; Mean, Max, r (mm): surface representation mean
and maximal error, standard deviation, in millimeters.

Patient 1 2 3 4 5

Registration (s) 25 36 42 26 32
CT points 10,930 25,980 22,924 20,065 17,886

Mean err. (mm) 0.3 0.4 0.3 0.4 0.3
Max err. (mm) 5.4 6.6 5.2 6.0 5.5
r (mm) 0.5 0.5 0.4 0.5 0.4

Table 2
Regularity, quality (s): mesh repair times for both phases, in seconds; % nodes, nodes/
4052: fraction and number of nodes moved by the repair procedure; Mean, Max, r
(mm): mean and maximal nodal displacements, standard deviation, in millimeters.

Patient 1 2 3 4 5

Regularity (s) 2.2 0.6 0.4 0.9 0.5
Quality (s) 3.6 2.6 6.8 0.9 0.7

% nodes 1.0 0.3 0.6 0.5 0.4
Nodes/4052 39 27 23 22 17

Mean disp. (mm) 1.0 0.3 0.2 0.5 0.2
Max disp. (mm) 3.4 2.5 1.1 1.9 0.6
r (mm) 1.0 0.5 0.2 0.5 0.2

Table 3
Registration (s): elastic registration times, in seconds; points: number of intraoper-
atively digitized points; Mean, Max, r (mm): surface representation mean and
maximal error, standard deviation, in millimeters.

Patient 1 2 3 4 5

Registration (s) 15 17 20 11 23
Points 1204 1433 1421 1450 1437

Mean err. (mm) 0.3 0.4 0.4 0.3 0.3
Max err. (mm) 2.1 3.4 4.2 2.2 2.7
r (mm) 0.3 0.4 0.4 0.3 0.3
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segmentation procedure was performed by a clinician in order to
identify the femur cortical surface. Then the resulting points cloud
was rigidly registered onto the Atlas bone surface using an Iterative
Closest Point algorithm (Besl and McKay, 1992).

Each elastic mesh registration was carried out as described in
Section 2 by taking the source points set S as Si, the segmented cor-
tical points for patient i, and the destination set D as the Atlas mesh
cortex. Once the segmented points were registered onto the sur-
face of the Atlas, the application of the inverse registration function
R�1 to the generic mesh produced the patient specific FE model.
The chosen accuracy level for the inverse computation, as de-
scribed in Section 2.4, was � ¼ 0:1 mm. Mesh regularity and quality
criteria were subsequently analyzed and the mesh repair proce-
dures described in Section 3 were applied to the model.

4.1.2. Results
Table 1 describes the performance of the mesh registration pro-

cedure for the five data sets. The surface representation error is
computed as the distance between the segmented CT points and
the generated patient specific FE mesh surface. The registration
times include the direct registration R computation as well as the
application of the inverse registration function R�1 to the Atlas
mesh nodes.

Table 2 gives the performance of the mesh repair procedure car-
ried out on the five deformed meshes. Repair computation times
and numbers of corrected nodes are given along with nodal dis-
placements statistics.

The MMRep procedure succeeded in generating a quality femur
mesh for all five patients. All computations were carried out in less
than 1 min, which is acceptable even in an intraoperative context.
The surface representation figures remained unchanged after the
application of the mesh repair procedure (see Table 1) as the pro-
portion of displaced nodes did not exceed 1% and most of them
were inner nodes which could be freely moved without affecting
the mesh surface shape. The reported maximal errors are mainly
due to manual segmentation irregularities and lack of local refine-
ment of the Atlas mesh, making it difficult to capture some local
shape variations. If necessary, this issue could be solved by further
refining the generic mesh.

A sample result of the procedure is shown in Fig. 5 with focus on
proximal and distal parts of the automatically generated femur
mesh.

Mesh quality distribution measured on the 3018-element full
femur Atlas mesh is shown in Fig. 6a and b gives the mean quality

distribution in the five generated patient-specific meshes, along
with standard deviations.

The histograms presented in this article, in Figs. 6, 8 and 12,
classify the elements into five Jacobian ratio categories. The first
interval ½0:03;0:2� lists the elements with a quality level that is
acceptable from the point of view of our target application ANSYS,
but is usually considered to be ‘‘questionable”. Due to the manual
assembly process, a small number of questionable elements is
present in the Atlas meshes used in this study. As shown by the fig-
ures, this proportion only slightly increases after the application of
the elastic deformation and mesh repair procedures.

4.2. Partial intraoperative femora digitizations

In this part of the study, we demonstrate the possibility of intra-
operative FE mesh generation during a total hip arthroplasty (THA)
procedure. As in TKA, FE analysis can be used here to optimize fem-
oral stem placement so as to minimize internal stresses and max-
imize the implant lifetime (Lengsfeld et al., 2005).

4.2.1. Mesh generation procedure
Due to the surgical procedure limitations, the complete shapes

of the patients’ femoral heads were not available pre-operatively
and each bone geometry was acquired intraoperatively by sliding
a calibrated pointer on the cortical surface of the partially exposed
hip. The pointer position was tracked in space by means of an opti-
cal localization system (Polaris, NDI, Canada) and the position of its
tip was recorded continuously.

The initial positions of the recorded points with respect to the
Atlas model were computed using the correspondence between
anatomical landmarks such as the knee center and the piriformis
fossa, localized in patient space using the pointer, and defined in
the Atlas space by an expert operator. Fig. 7 shows the similar
and very localized distributions of the digitized points for all 5 pa-
tients with respect to an approximative surface model of the prox-
imal femur (3 right and 2 left hips were included in this study).

The hip Atlas mesh used here is the upper part of the complete
right femur Atlas presented in Section 4.1. After truncation, the
right hip model was mirrored with respect to the sagittal plane
to produce the left hip generic model. It is composed of 2105
nodes, forming 1738 hexahedrons and 16 wedges organized so as
to reflect the hip principal mechanical structures such as the fem-
oral head and neck.

Mesh registration and repair was carried out as described in
Section 4.1, taking S as Si, the digitized points cloud for patient i,

Fig. 4. Femur Atlas mesh from Couteau et al. (1998). (a) Overview. (b) Femur head and great trochanter. (c) Cut out showing the diaphysis cortex layer of elements. (d) Distal
condyles.
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Fig. 6. Mesh quality statistics for Atlas (a) and patient-specific (b) full femur models.

Fig. 5. Sample patient specific mesh. Proximal epiphysis: (a) segmented patient data (black dots) and Atlas mesh; (b) patient specific mesh fitting the femur head surface.
Distal epiphysis: (c) segmented patient data (black dots) and Atlas mesh; (d) patient specific mesh fitting the condyles.

Fig. 7. Intraoperatively acquired point clouds for the five considered patients (black dots). To localize the intraoperatively accessible bone region, a surface mesh of the
femoral head is showed with each data set (wireframe surface).
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and D as the Atlas hip bony surface. Each patient specific mesh was
created by applying the inverse R�1 of the registration function
computed with an accuracy level � ¼ 0:1 mm, as described in Sec-
tion 2.4.

4.2.2. Results
The two result tables below are similar to those included in Sec-

tion 4.1. Table 3 gives the performance of the mesh registration
procedures carried out on the five data sets, the surface represen-
tation error being, this time, computed by considering the distance
between all digitized points and the generated patient specific hip
surface.

Table 4 presents the performance of the mesh repair procedures
for the five meshes. The repair times are given in seconds. In the
case of patient 4, the patient mesh produced by the elastic registra-
tion was already regular.

Mesh quality distribution measured on the 1754 elements hip
Atlas mesh is shown in Fig. 8a and b gives the mean quality distri-
bution in the five generated patient-specific meshes, along with
standard deviations.

As in the previous illustrative case, the MMRep algorithm suc-
cessfully worked for all five patients. All patient specific meshes
were generated in less than 25 s and had submillimetric surface
representation accuracy which remained unchanged by the repair
procedures affecting less than 0.7% of the nodes. The maximal sur-
face representation errors reported here are due to lack of refine-
ment in the template mesh but also to the presence of noise in
the digitized point clouds. Indeed, if the hand-held digitization
pointer is lifted from the bony surface during the hip surface acqui-
sition process, erroneous points can be recorded. These outliers are
eventually averaged out during the elastic registration process, but
their presence is revealed by the surface representation error
measures.

This second example demonstrates the adequacy of the
MMRep technique in situations where only a fraction of the organ
anatomy is known prior to modeling. The elastic registration pro-
cess, thanks to an a priori knowledge about the organ of interest
carried by the Atlas mesh, makes it possible to generate a FE
model with high surface representation accuracy in the digitized
zones and an approximate yet realistic organ shape in regions
where no data is available. The repair phase ensures that the pro-
duced model meets the required quality standard and is suitable
for FE analysis.

4.3. Skin and bone face modeling

This last use case demonstrates the application of the MMRep
procedure to patient specific FE mesh generation in the context
of orthognathic surgery, where FE analysis helps predict the conse-
quences of the intervention on the patient’s features and facial
expressions by simulating the effects of the repositioning of the
jaw, maxillary or malar bones (Chabanas et al., 2002, 2003; Luboz
et al., 2005).

Table 4
Regularity, quality (s): mesh repair times for both phases, in seconds; % nodes, nodes/
2105: fraction and number of nodes moved by the repair procedure; Mean, Max, r
(mm): mean and maximal nodal displacements, standard deviation, in millimeters.

Patient 1 2 3 4 5

Regularity (s) 0.4 0.1 0.5 0 0.4
Quality (s) 0.5 0.4 0.8 0.4 0.4

% nodes 0.3 0.05 0.7 0.05 0.4
Nodes/2105 6 1 14 1 8

Mean disp. (mm) 1.2 0.06 0.6 0.04 0.7
Max disp. (mm) 3.0 0.06 2.8 0.04 2.6
r (mm) 1.0 0.0 0.9 0.0 0.9

Fig. 8. Mesh quality statistics for Atlas (a) and patient-specific (b) hip models.

Fig. 9. Face Atlas mesh from Nazari et al. (2008). (a) Anterior view. (b) Posterior view. (c) Lateral view.
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4.3.1. Mesh registration procedure
In this application a manually assembled 3-layers mesh devel-

oped by Nazari et al. (2008), shown in Fig. 9, is used to model
the face muscles and fat. It is made of 8746 nodes forming 6030
hexahedrons and 314 wedges. As we wish to model the interaction
between face bones, muscles and features, the patient specific FE
model must fit both the skin and skull reconstructed from each
CT volume. To this end the Atlas outer and inner layer nodes are
labeled ‘‘skin” and ‘‘bone”, respectively, and the multi-labels for-
mulation of the elastic registration discussed in Section 2.7 is used.
The inside Atlas mesh nodes, defining the inner layers of the face
tissues, are unlabeled and follow the overall elastic deformation
driven by the registration of the nodes labeled ‘‘skin” and ‘‘bone”.

For the 50 patients included in this study (data provided by the
MAP5 Laboratory, University of Paris V), the bone and skin layers
were segmented in the CT volumes using the Hounsfield scale
and the resulting surfaces were reconstructed (Tilotta, 2008) and
oriented along the anatomical axes in accordance with the generic
face model. The Atlas mesh was aligned on the patient data using
the nose tip position. Fig. 10 shows sample patient skin and bone
surfaces along with the translated Atlas model before elastic
registration.

The generic face mesh represents a subset of the complete pa-
tient head data, therefore, as discussed in Section 2.5, the com-
puted registration R is the one that fits the labeled Atlas mesh
nodes to their corresponding destination skin or bone surfaces,
producing the transformation that has to be applied to the generic
mesh to specialize it for the specific patient. From the computa-
tional point of view, as a distinct set of distance maps has to be
computed for each patient’s skin and skull destination surfaces,
the mesh generation process requires more time than in the previ-
ously described cases. Yet, in a pre-operative simulation scenario,
computational delays are less critical than in an intraoperative FE
analysis context.

4.3.2. Results
Unlike the previous use cases, this section does not give the de-

tail of MMRep performance figures for each of the 50 patients. In-
stead, Table 5 summarizes the overall performance of our
technique by presenting the mean registration speed, mesh repair
cost and surface reconstruction accuracy. The surface representa-
tion errors shown here are the final measures performed after
the repair procedure has been applied to the mesh. The nodal dis-
placements amplitudes were evaluated separately for bone and
skin layers.

The impact of the mesh repair procedure is very limited as it
only affects an average of 2% of the 1715 bone nodes and 0.3% of

the 2180 skin nodes in the mesh. As for the surface representation,
submillimetric mean accuracy is achieved for both layers.

The reported maximal errors are located in areas where the At-
las mesh lacks refinement. These regions clearly appear in Fig. 11
where the surface representation mean errors computed over the
50 cases are displayed as error maps on the initial Atlas bone
and skin layers. The lightest areas represent mean errors between
0 and 1 mm and the darkest areas errors above 3 mm.

Fig. 11 shows that the maximal skin layer errors are located
around the ears which are clearly absent from the generic mesh,
as can be seen in Fig. 9c. As for the bone layer, the maximal errors
appear near the sphenoid bone and the zygomatic process as both

Fig. 10. (a) Skin and skull surfaces reconstruction from a sample patient CT volume.
(b) Generic face mesh rigidly registered with the patient data.

Table 5
Elastic mesh registration, regularization and quality optimization times, in seconds.
For both bone and skin layers: final surface representation mean errors, number of
nodes corrected by the repair procedure in each layer and nodal displacements
amplitudes, in millimeters.

Mean Max r

Elastic registration (s) 32 96 19
Regularity (s) 28 50 12
Quality (s) 4 21 2

Bone
Surface err. (mm) 0.6 13.8 0.5
Moved nodes/1715 39.8 105 23.9
Displacements (mm) 0.8 3.8 0.5

Skin
Surface err. (mm) 0.4 23.5 0.4
Moved nodes/2180 7.6 45 10.3
Displacements (mm) 0.3 3.1 0.2

Fig. 11. Face mesh registration mean errors represented as color maps. (a) Error
maps color code in millimeters. Skin layer: (b) anterior view; (c) lateral view. Bone
layer: (d) anterior view; (e) lateral view.
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regions have a very approximative representation in the Atlas
mesh.

Mesh quality distribution measured on the 6344 elements face
Atlas mesh is shown in Fig. 12a and b gives the mean quality dis-
tribution in the 50 generated patient-specific meshes, along with
standard deviations.

In all cases, the MMRep algorithm was able to generate a pa-
tient specific bi-layer mesh suitable for FE analysis within a couple
of minutes. The produced meshes exhibited submillimetric mean
surface representation accuracy on both skin and bone layers, with
larger errors localized around features absent or ill-defined in the
generic mesh.

Fig. 13 shows four examples of meshes fitted onto distinct pa-
tient morphologies. The Atlas face mesh used here was constructed
based on a unique prognathic3 patient, yet it was successfully used
to model both prognathic and retrognathic4 patients, which demon-
strates the versatility of the registration procedure.

Finally, Fig. 14 shows 25 thumbnails of registered face meshes
demonstrating the variety of clinical cases embraced by the study.
The two upper rows show retrognathic cases, the middle row aver-
age patients and the two lower rows prognathic morphologies.

5. Discussion and conclusions

A fast and automatic mesh generation procedure – the MMRep
algorithm – has been presented, based upon the elastic registration
of a generic, or ‘‘Atlas”, mesh towards patient specific structures,
coupled with a robust mesh repair technique which ensures that

element quality standards are met and FE analysis can safely be
carried out on the resulting domain discretization.

To our knowledge this is the first evaluation of a FE mesh regis-
tration technique carried out on a wide range of 60 clinical data
sets, illustrating three distinct use cases, raising both pre- and
intraoperative biomechanical modeling issues and relying on fully
or partially available patient data. In all situations the MMRep
technique automatically generated a patient specific quality mesh
within minutes, which strongly contrasts with time-consuming
manual mesh assembly procedures involving a human expert
operator.

In all studied cases the regularity of the elastic deformation pre-
served the mesh elements from excessive distortions and the re-
pair algorithm was able to find a suitable nodal configuration
while maintaining a satisfactory surface representation accuracy.
Only a small fraction, less than 1%, of the mesh nodes positions
needed to be corrected by submillimetric displacements.

Furthermore, the elastic registration formulation made it possi-
ble to compute a mesh deformation driven by multiple anatomical
structures or sub-structures, as shown in Section 4.3. This feature
could easily be used in the femur model generation scenarii, Sec-
tions 4.1 and 4.2, for example for distinction between cortical
and spongious bone layers, which have distinct mechanical
properties.

This study shows that the proposed elastic registration tech-
nique is well-suited to the addressed meshing problem: computa-
tional times are short and submillimetric surface representation
accuracy is achieved. However the MMRep procedure could be
supported by any elastic registration algorithm (Beg et al., 2005;
Vercauteren et al., 2007; Rueckert et al., 2006), provided that the
following properties are ensured:

Fig. 12. Mesh quality statistics for Atlas (a) and patient-specific (b) face models.

Fig. 13. Four examples of the generated face models. For clarity only the skin surface segmented from the CT volume is shown here although the produced FE models also fit
to the underlying skull surface.

3 Having the jaws projecting beyond the upper part of the face.
4 Having a mandible located posterior to its normal position.
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– A smooth deformation field, ideally C1, can be estimated by the
registration algorithm within reasonable computational times.

– Non-folding and bijection of the registration are ensured.
– Accurate registration inverse can be computed if the patient

data is registered onto the Atlas and the inverse deformation
is applied to the generic mesh in order to make it specific, as
described in Sections 4.1 and 4.2.

– The simultaneous registration of different structures, if required
by the biomechanical modeling, can be computed as shown in
Section 4.3.

The Atlas based approach presented here relies on the definition
of a generic model of the target organ with the desired elements
layout and possibly some identified sub-structures of interest. This
modeling effort only needs to be done once but the resulting Atlas
mesh must be carefully designed so that the anatomical features
of interest can be properly registered to their patient specific
counterparts.

The tests carried out on our database suggest algorithm robust-
ness although no formal proof of convergence could be given. In

extreme cases where strongly distorted pathological organs di-
verge from the average Atlas shape, mesh regularity can be lost
and the repair strategies proposed here may fail. This issue can
be overcome by working with a pool of Atlas meshes that represent
the main deformation classes likely to be encountered. Such Atlas
variations can be easily generated by successfully applying the
MMRep procedure to a representative case and using the resulting
quality mesh as a starting point for subsequent mesh registrations
of similar configurations.

A number of enhancements to the presented MMRep technique
can be foreseen. Breaking the sequential registration-repair
scheme, the algorithm could benefit from the integration of the re-
pair process within the elastic registration computation itself. This
could be implemented either as a new energy term replacing the
ad-hoc mechanical formulation controlling the deformation regu-
larity, or as a per-iteration post-processing callback which,
although more straightforward, would unfortunately raise the is-
sue of the convergence of the elastic registration algorithm.

Future works also include the broadening of our mesh repair
approach by taking into account other element types such as

Fig. 14. Sample of 25 registered face meshes. For each patient, the transparent skin surface mesh is shown along with the registered FE mesh. For clarity the skulls were
omitted.
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pyramids and tetrahedrons, as well as other quality criteria, such
as the face warping factor (Robinson and Haggenmacher, 1982)
that measures each element’s face nodes coplanarity. Stronger con-
straints on the evenness of the generated meshes should enhance
the numerical stability of the FE analysis carried out.

Finally, we can imagine an ideal FE mesh generation algorithm
that performs mesh registration and repair directly in patient 3D
image space. This fully integrated organ modeling tool could be
achieved by replacing the distance based elastic registration for-
mulation used here by an appropriate segmentation energy suit-
able for the considered imaging modality.
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