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ABSTRACT

We describe a novel approach to obtain a good estimate
of the complete 3D representation of a tooth given only
the crown. The technique is based on the use of statisti-
cal model derived from 3D-images of teeth constructed by
microtomography. The root is constructed by matching the
respective crowns of the two models, defining the optimal
registration, and optimizing the statistical model parame-
ters. This method allows us to generate the root efficiently
due to the small number of parameters to adjust, and re-
quires none or little interaction from the user. The resultant
3D model is smooth and provides a good approximation of
the root shape.

1. INTRODUCTION

Accurate knowledge of the 3D shape of teeth and the po-
sitions of the roots is very important in many maxillofacial
surgical applications, endodontic procedures, and treatment
simulations. For example, a dental implant can be inserted
into the jawbone when a tooth is missing to act as a substi-
tute for the root. Using the mirror image of the correspond-
ing tooth on the other side of the jaw to define a 3D rep-
resentation of the missing tooth could result in an implant
of better quality. Simulation of tooth displacement within
the jaw bone when trying to correct forms of malocclusion
or bite irregularities requires 3D shapes. Among image ac-
quisition modalities, computer tomography (CT) is the most
efficient way of generating 3D objects. However, CT imag-
ing of dental patients is not always available and is radio-
logically invasive. Therefore, to overcome this problem, al-
ternative methods have been developed to approximate the
root shape.

Enciso et al. [1] have suggested a 3D reconstruction
based on 2D radiographs, resulting in a “best fit” patient-
specific 3D geometric polygonal mesh of a tooth using thin-
plate splines. However, this method does not consider the
possible shape variations of a given tooth and uses only 2D
image data.

In this paper, we describe a novel approach for obtain-
ing the shape of a tooth using only 3D crown information
and without the use of X-rays, CT or MRI. Various methods
may be employed to acquire highly accurate crown models,
e.g., direct imaging with an intra-oral camera (OraScanner
from OraMetrix GmbH) or laser scanning of a plaster cast
of the patient’s dentition. Once the three-dimensional crown
model has been built, we still need a method to reconstruct
the root. Section 2 presents the construction of a statistical
shape model whose variations describe how the shape of a
particular tooth can vary. Section 3 describes the registra-
tion problem and explains how the statistical model can be
fitted to the patient’s crown to produce a good estimate of
the shape and size of the reconstructed tooth. Finally, in
section 4, experimental results are presented to demonstrate
the capabilities of this approach.

2. CONSTRUCTION OF A STATISTICAL MODEL

2.1. Data Collection

Twenty-two 3D tooth samples of the second upper-right pre-
molar were imaged with a SkyScan-1076 microCT scan-
ner at a resolution of 35µm. The contour of each tooth
was manually defined on each CT slice and the resulting
surface model was decimated (giving a new resolution of
105 µm) before further processing. Each tooth was then
matched with a generic tooth model using the procedure de-
scribed by Szeliski and Lavallée [2], resulting in a collection
of N = 22 3D training shapes of the same tooth. This ap-
proach requires aligning manually each training tooth witha
generic one that is represented by anM -point 3D triangular
mesh. Non-rigid registration [2] using free-form deforma-
tion [3] and splines is then performed to deform the generic
model to match each training tooth. Each resulting example
is finally represented by a vector

m = (x0, y0, z0, . . . , xM−1, yM−1, zM−1)

Fig. 1(a) shows the generic tooth model used for match-
ing. An example of the 3D tooth models reconstructed from



microtomography is seen in Fig. 1(b). Fig. 1(c) shows the
same tooth after non-rigid registration. For different speci-
mens, the mean distance between the surface of the 3D tooth
models reconstructed from microtomography and the sur-
face of the generic model after matching lies in the range
0.12 mm to 1.07 mm (0.24 mm for the specimen of Fig. 1(b)).

(a) (b) (c)

Fig. 1. Generic model and elastic registration onto a tooth exem-
plar. (a) Generic model. (b) Tooth exemplar reconstructed from
microtomography. (c) Generic model matched onto the exemplar.

2.2. Construction of a Point Distribution Model

A statistical shape model, the point distribution model (PDM)
[4], can be used to describe the average shape and shape
variations of a set of sample models. The mean shapem̄ is
defined using

m̄ =
1

N

N−1∑

i=0

mi (1)

The modes of variation , symbolizing the ways in which the
points tends to move together, can be found by computing
the eigenvectorsei of the covariance matrixRac:

Rac =
1

N − 1

N−1∑

i=0

(mi − m̄)(mi − m̄)T (2)

Given the high resolution of the 3D models used, a direct
estimate of the eigenvectors ofRac is not feasible. Instead
of working in the variable (tooth points) spaceIR3×M (di-
mension3 × M ), the eigenvectors are defined in training
sample spaceIRN (dimensionN < 3×M ). Simple mathe-
matical considerations [5] give us an immediate correspon-
dence between the eigenvectors and eigenvalues in these
two spaces. The eigenvalues inIR3×M and IRN are iden-
tical, and if (λα,uα) are associated variables (eigenvec-
tor, associated eigenvalue) inIR3×M , then(λα,vα) are the
corresponding associated variables (eigenvector, associated
eigenvalue) inIR3×N where

vα =
1√
λα

Xuα

and the rows of theN × 3M matrix X correspond to the
tooth data points .

The proportion of the total variance explained by each
vector is equal to the corresponding eigenvalues. Conse-
quently, the eigenvectorsei associated with the maximum
eigenvaluesλi correspond to the major deformation modes.
Fig. 2 shows the cumulative percentage of variability given
the number of components. Seven components can explain
95% of the variability, while thirteen components explain
more than 99% of the variability between the different sam-
ples.

Any shape belonging to the training set can be approxi-
mated as a sum of the mean model and a linear combination
of the firstpc modes, i.e.,

m = m̄ +

pc−1∑

i=0

ωiei (3)

whereωi are the weights associated with the eigenvectors
ei. By constraining everyωi such that−λi ≤ ωi ≤ λi we
can limit the amount of deviation from the mean model.
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Fig. 2. Cumulative percentage of variability given the number of
components.

2.3. 3D Mesh Model

The mean model consists of an unorganized cloud of points.
In order to obtain a mesh boundary representation of the pa-
tient’s tooth after reconstruction, a 3D reconstruction isper-
formed using a marching cube algorithm [6] after extraction
of the isosurface.

3. TOOTH RECONSTRUCTION

Once the statistical model has been defined, the patient’s
tooth shape is computed from the optimal rigid and elas-
tic transformations of the mean model following Fleute et
al.[7]. We aim to match the patient’s crown with the corre-
sponding region of our statistical model by determining the
contribution of the different modes of the statistical model.
The crown shape variations with respect to the mean model
are then used to infer the root shape.



3.1. Initial Registration

In order to reconstruct the target tooth, an intermediate step
can be included between between principal component anal-
ysis (PCA) (Section 2.2)and the final deformation. The it-
erative closest point (ICP) algorithm [8] can be used to per-
form the best possible alignment between the two models.
This step is implemented with manual rigid registration and,
if necessary, scaling. Although not mandatory, it can greatly
decrease the running time of the reconstruction and improve
the final results.

3.2. Non-Rigid Deformation of the Statistical Model

The optimum parameters can be computed through the min-
imization of a merit function to measure the goodness-of-
fit. The merit function used here (Equation 4) is the simple
mean-squared distance (the Euclidean distance) between the
crowns of the two volumes:

E(p) =

Mc−1∑

i=0

min(‖dj − mi‖2)1≤j≤K (4)

with m = R(m̄ +

Npc−1∑

l=0

ωlel) + T (5)

wherep is a vector representing the different parameters to
adjust,Mc the number of crown points of the PDM,K the
number of points of the target tooth,d the vector represent-
ing the target (dimension3× K), T a translation vector,R
a rotation matrix, andel the principal components obtained
in part 2.2 (pc corresponds to the number of principal com-
ponents selected).

We need to estimate the six components that define the
rigid-body transformation between the two volumes (three
parameters each forT andR) as well as the optimum weights
for theNpc principal components, i.e., we have to solve an
optimization problem having only6 + Npc parameters.

The optimization ofE(p) was performed using the Lev-
enberg-Marquardt algorithm [9]. To compute the minimum
distances, two different options were tested, with and with-
out the use of a pre-computed distance map.

Computing the minimum distances is the most computa-
tionally expensive part of the minimization. In the first case,
distances are approximated using an octree-splines distance
map [2]. The two volumes (target and deformable models)
are enclosed in a bounding box and a classical octree de-
composition is realized based on the points of the patient’s
tooth. For each corner of the terminal octants, the mini-
mum distance to the patient’s tooth is computed and stored.
Given a new pointP , determining the minimum distance
only requires that we find the octant the point belongs to
and realizing a trilinear interpolation over the 8 corners of
this octant. This method allows us to get a good approxima-
tion of the required distances. As for the partial derivatives

with respect to every component, they can be computed by
Ridder’s method of polynomial extrapolation.

The second method uses kd-trees [10] that can be built
in O(M log M). A kd-tree is a binary tree used to represent
data of dimensiond (hered = 3). Each node of the binary
tree represents a subset of the data record and a partitioning
of that subset. The particular structure of a kd-tree makes
it very easy to compute the required distances. This second
method requires the construction of a new kd-tree after each
iteration of the Levenberg-Marquardt algorithm. We can
access the true distances and a closed-form expression for
the gradient ofE(p) becomes available.

The minimization can lead to a local minimum instead
of the global minimum expected. To get round this diffi-
culty, the number of modes can be increased successively
during the minimization (beginning with the more signif-
icant ones until theNpc modes are included in the mini-
mization or a sufficient precision is reached).

4. RESULTS

Two types of tests were performed to check the validity of
the method described in this paper, the first using extracted
teeth and the second patient data.

4.1. Leave-one-out Test

A leave-one-out test was realized using the 22 specimens
for the two approaches described (with or without a dis-
tance map). Distances between the original specimensTi

and their reconstructed shapeTRi were estimated using the
Hausdorff distance (HD) [11]. Table 1 summarizes the re-
sults obtained without precomputed distance map and Fig-
ure 3 represents an example of reconstruction in the general
case.

(a) (b) (c)

Fig. 3. (a) Crown information used for the reconstruction. (b) and
(c) show the mesial and buccal views of the original toothT and
its reconstructed shapeTR. The 3D mesh representsTR and the
surfaceT .

HD (mm) HD (% teeth height)
Max Mean RMS Max Mean RMS

Minimum 0.96 0.11 0.16 5.07 0.56 0.84

Maximum 5.30 0.51 0.86 28.19 2.56 4.59

Mean 2.42 0.29 0.49 12.44 1.50 2.50

Variance 0.80 0.01 0.03 22.27 0.20 0.72

Table 1. Leave-one-test results: reconstruction based on crown
information, without precomputed distance map (Npc = 7).



For all the teeth of the test set, the reconstruction pro-
cess lead to a perfect match between the crowns ofTRi and
Ti. For the majority of the reconstructions, the method gave
a very good approximation of the teeth height and width.
Only one particular tooth in the training set lead to results
far from those expected. Indeed, the reconstruction being
based on a statistical representation, outliers will lead to er-
roneous results. For this particular specimen, the correlation
usually observed between the height and width of a tooth,
and the size of the crown (e.g., shape or width) was not re-
spected and consequently produced a reconstructed model
much higher than the original one.

4.2. Test using patient data

A second test was then realized using real data. A study
model was digitized using a laser scanner Cyberware Rapid
3D Digitizer Model 3030R-HIREZ. The upper right second
premolar was extracted using Kondoet al. ’s method of seg-
mentation [12] (Fig. 4a) and the 3D shape of the tooth deter-
mined (Fig. 4b). Despite the important loss of information
introduced by the segmentation, the reconstruction lead to
an excellent match between the original crown and those of
the tooth computed. The reconstructed tooth was then com-
bined with the orthopantomogram1 of the same patient to
test the validity of the shape reconstruction. As shown by
Fig. 4c, the method proposed lead to a very good estimation
of the tooth shape and size.

(a) (b) (c)

Fig. 4. Process of fitting a tooth on a dental cast. (a) Crown of the
tooth after segmentation. (b) Tooth after reconstruction (grey sur-
face) and original crown (blue surface). (c) X-ray of the patient’s
tooth matched with the tooth reconstructed (blue).

5. CONCLUSION

The method described in this paper proved to be effective to
reconstruct a tooth given only crown information. Though it
was realized using a particular kind of tooth, it could easily
be extended to all single-rooted teeth. Furthermore, gen-
erating a new PDM per tooth is not absolutely necessary:
mirror teeth can be reconstructed using the same training
set, since the mirror PDM could be created using the mirror
view of the mean shape and those of the different modes.

1panoramic X-Ray of the jaw and all the teeth

Teeth whose shapes differ only in size (e.g., first and second
premolar) could also use the same database (simple scal-
ing of the mean shape and different modes of the PDM). To
conclude, this method presents two major advantages: it ex-
ploits the entire prior information available for a given tooth
and it requires little or no interaction from the user.
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