DEVELOPMENT OF A FINITE ELEMENT MODEL FOR THE HETEROGENEOUS STRUCTURE OF THE
CALCANEAL FAT PAD TO STUDY ITS LOADING DISTRIBUTION. INSIGHTS FOR STRESS-RELATED INJURIES
Alessio Trebbi,1, Antoine Perrier1, Mathieu Bailet2, Yohan Payan1

1 Laboratoire TIMC-IMAG - University Grenoble Alpes, La Tronche, France
2 Texisense, Grenoble, France

Introduction

The calcaneal heel pad is a heterogeneous structure composed of fat clusters separated by an elastic
fibrous septa. Fat clusters are composed by fully grown adipocytes that bounded together form fat
cambers arranged in a honeycomb structure [1]. The fibrous septa is crucial to maintain the structural
integrity and separate the fat clusters. The role of the heel pad is fundamental in the absorption of impact
forces during ambulation. Its complex structure is used to distribute the mechanical loads in such a way
that the single fat cells can sustain the pressure without permanent damage. A good understanding on the
mechanical properties and the loading distribution of the calcaneal fat pad could give insight in stress-
related injuries as diabetic ulceration and plantar fasciitis [2].

Methods

The objective of the present study is to develop a three-dimensional subject-specific heel pad Finite
Element (FE) model that considers the honeycomb structure composed by fat clusters and fibrous septa
and their biomechanical properties. In order to gain insight on the stress propagation inside the fat pad
structure an MRI-compatible device was built in order to apply displacements on the human heel sole and
measure the corresponding force. The device is capable of applying compression and shear forces
independently to analyze the mechanical response for both types of loads. MRI data were acquired in five
different scenarios, including a rest position and two loading configurations for the compression and shear
respectively (Figure 1). The MRI data were then processed in order to generate a FE model of the heel and
estimate the soft tissue elasticity parameters by comparison with the different loading situations (Figure
2).

Results

The heel tissues showed a hyperelastic material behaviour. Under compression and shear loading the
calcaneal pad initially has low stiffness, subsequently, increasing the load, the fibrous septa and the fat
clusters come under tension and compression respectively, limiting the deformation.

Conclusion

The numerical model developed in this study can be used to define a protocol to establish a set of
parameters to describe patient specific material properties of the calcaneal fat pad. This will allow to
analyze with multiscale models the amount of load distributed to the single fat cells which is not possible
with experimental tests. Finally, this would lead to an optimization in the design of orthotics and shoes to
avoid dangerous strains that could generate pressure injuries.

Acknowledgment

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 811965.
Figure 1. The deformation of the internal soft tissues of the calcaneal pad, a comparison between (A) relaxed and (B) vertically loaded configuration.

Figure 2. Comparison between the segmented surfaces of the heel in relaxed and vertically loaded configuration.

References
