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3D statistical models for tooth surface reconstruction
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Abstract

This paper presents a method to reconstruct the 3D surface of a tooth given partial information about its shape. A statistical model comprising
a mean shape and a series of deformation modes is obtained offline using a set of specimens. During reconstruction, rigid registration is
performed to align the mean shape with the target. The mean shape is then deformed to approximate the target by minimizing the sum of
squared distances between the two surfaces according to the deformation modes. The method is shown to be efficient for the recovery of tooth
shape given crown information.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The application of visualization techniques to dentistry has
experienced a rapid growth and now includes educational dis-
plays, training for delicate procedures, treatment simulations
and even communication tools with patients. Presurgery sim-
ulation systems have proven to be useful in the treatment of
malocclusion [1,2], identifying the optimal cutting plane for
an implant [3] and selecting an optimal operative method [4].
Visualization is an important component in devices for
computed-aided surgery [5]. Finally, computerized video imag-
ing techniques are now widely used by dentists to discuss the
outcome of orthognathic surgery with their patients [6].

Many dental and maxillofacial surgery applications such as
endodontic procedures, treatment of malocclusion problems,
and treatment simulations require an accurate knowledge of
the 3D shape of teeth and the positions of the tooth roots.
For example, orthodontists can reposition the teeth in cases of
malocclusion (improper positioning of the teeth and jaws) by
using brackets. In this situation, knowing the exact location,
orientation and 3D shape of the teeth would assist the clinician
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in planning appropriate movements during treatment. Having a
good knowledge of the shape of a given tooth is also extremely
helpful in creating implants. Currently, the shape of a tooth in
the mouth is represented in two dimensions in an X-ray film.
Since teeth are 3D structures with complex shapes, an accurate
3D representation of tooth shape is vital in facilitating clinical
treatment. Teeth are also commonly used in forensic medicine
for identification purposes [7]. They are the most durable parts
of the body but, often, only fragments are available and the
missing part needs to be estimated.

Computer tomography (CT) is effective in obtaining 3D
data for the applications mentioned above. However, CT imag-
ing of dental patients is usually not indicated, as this imag-
ing modality is radiologically invasive and of relatively low
resolution. Consequently, rather than working with CT data,
orthodontists regularly employ plaster casts of the patient’s den-
tition, also known as study models. These plaster models are
used to prepare treatment plans and for making accurate mea-
surements. However, they only provide information about the
crowns of the teeth but none of the roots, which are hidden in
the gums. A solution is to fit a tooth virtually onto the dental cast
to obtain an estimate of root position and orientation (Fig. 1).

To overcome the lack of original 3D data, alternative meth-
ods are necessary to obtain tooth shape when the information
is simply missing, or to avoid using radiologically invasive
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Fig. 1. Fitting of tooth on to the dental cast in order to obtain the position
of the root.

methods that are not clinically justified. Different methods exist
for reconstructing 3D shape using 2D information [8]. Enciso et
al. [9], for example, propose a 3D reconstruction based on a pa-
tient’s 2D radiograph, producing a “best fit” patient-specific 3D
geometric polygonal mesh of a tooth using thin-plate splines.
A significant limitation of this method is that it does not take
into account the possible shape variations of a given tooth and
uses only 2D data. Other methods exploit sparse 3D data [10]
to represent fine details.

The above approaches require a good knowledge of the
global 3D shape of the object of interest, which we do not pos-
sess. Given only partial 3D information (e.g., the tooth crown
or the tooth root), our objective is to obtain a good estimate
of the entire tooth shape without the use of X-ray or any other
imaging modality. The technique developed by Fleute et al. [11]
provides the basic idea for such a reconstruction but in its orig-
inal form is not suitable for high-resolution data. In our appli-
cation, significant improvements in the accuracy and speed of
shape recovery are possible through the use of high-resolution
models, better control on the input volume and a more effi-
cient optimization method. High-resolution crown models may
be obtained, for example, by means of a laser scan of a den-
tal study model and performing a segmentation, as described
by Kondo et al. [12]. Once a 3D crown model has been built,
we would still require a method to reconstruct the root in or-
der to obtain a better knowledge of tooth shape and orientation,
which would consequently facilitate treatment and improve the
quality of the clinical outcome.

This paper is organized as follows. Section 2 presents the
construction of a statistical shape model whose variations de-
scribe the main ways in which a particular tooth can vary.
Section 3 is devoted to the registration problem and explains
how the statistical model can be fitted to the patient’s crown
to provide a good estimate of the shape and size of the recon-
structed tooth. In Section 4, experimental results are presented
to demonstrate the capabilities of this approach. The paper ends
with the conclusion in Section 5.

2. Construction of a generic surface model

2.1. Data collection

Twenty-two exemplars of the second upper right premolar
were scanned with a SkyScan-1076 micro-CT scanner at a

resolution of 35 �m to give reconstructed specimens with up
to 72,000 points and 150,000 triangles. The external surface
of each tooth was automatically extracted from the micro-CT
images (using the software package Analyse for reconstruc-
tion) and the resulting teeth subsampled to a new resolution of
105 �m. A generic tooth model was then matched to each 3D
exemplar model (using the procedure described by Szeliski and
Lavallée [13]) to obtain a point-to-point correspondence be-
tween the different specimens, resulting in a collection of N=22
3D training shapes of the same tooth. This approach requires
aligning manually each training tooth with a generic tooth that
is in the format of a 3D triangular mesh of M points. Nonrigid
registration [13] using free-form deformation [14] and splines
is performed hierarchically to deform the generic tooth to match
each training tooth. Each resulting example is finally repre-
sented by a vector m = (x0, y0, z0, . . . , xM−1, yM−1, zM−1).

Fig. 2(a) shows the generic tooth model used for matching.
One of the exemplar models reconstructed from microtomog-
raphy is seen in Fig. 2(b). Fig. 2(c) shows the result of the
nonrigid registration of the generic tooth model to this exem-
plar. The minimum, maximum and root-mean-squared (RMS)
Hausdorff distance (HD) between the 3D tooth model recon-
structed from microtomography and the model after matching
was computed to evaluate the performance of the point-to-point
correspondence process. The results, in Table 1, show that the
matching process leads globally to highly satisfactory results.

2.2. Construction of a point distribution model

A statistical shape model, the point distribution model (PDM)
[15], computed from principal component analysis (PCA) can
be used to describe the average shape and shape variations of
a set of sample models. The mean shape m̄ is defined using

m̄ = 1

N

N−1∑
i=0

mi . (1)

The modes of variation, representing the ways in which the
points tend to move together, can be found by computing the
eigenvectors ei of the covariance matrix Rac:

Rac = 1

N − 1

N−1∑
i=0

(mi − m̄)(mi − m̄)T. (2)

Given the high resolution of the 3D models, a direct esti-
mation of the eigenvectors of Rac is not feasible. Instead of
working in the variable (tooth point) space R3×M (dimension
3×M), the eigenvectors are defined in training-exemplar space
RN (dimension N < 3 × M). Simple mathematical considera-
tions [16] give us an immediate correspondence between the
eigenvectors and eigenvalues in these two spaces. The eigenval-
ues in R3×M and RN are identical, and if (��, u�) is a 2-tuple
(an eigenvector and its associated eigenvalue) in R3×M , then
(��,v�) is also a similar 2-tuple in R3×N , where

v� = 1√
��

Xu�, (3)
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Fig. 2. Generic model and elastic registration onto a tooth exemplar. (a) Generic model. (b) Tooth exemplar reconstructed for microtomography. (c) Generic
model matched onto the exemplar. The mean HD between (b) and (c) equals 0.15 mm.

Table 1
Hausdorff distance of the point-to-point correspondence matching process

HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS

Minimum 0.55 0.06 0.08 2.76 0.30 0.39
Maximum 2.61 0.26 0.39 13.00 1.33 2.03
Mean 1.07 0.12 0.18 5.48 0.61 0.91
Variance 0.2493 0.0032 0.0080 6.3548 0.0902 0.2188

and the rows of the matrix X correspond to the tooth points
(N × 3M matrix).

The proportion of the total variance accounted for by each
vector is equal to the corresponding eigenvalues. Conse-
quently, the eigenvectors ei associated with the maximum
eigenvalues �i correspond to the major deformation modes.

Fig. 3(a) shows the eigenvalues of the autocorrelation ma-
trix and Fig. 3(b) the cumulative percentage of variability
given the number of components. Seven components can
account for 95% of the variability, while 13 components ex-
plain more than 99% of the variability between the different
samples.
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Fig. 3. (a) Eigenvalues of the autocorrelation matrix in decreasing order. (b)
Cumulative percentage of variability given the number of components.

Any shape belonging to the training set can be approximated
as a sum of the mean model and a linear combination of the
first Npc modes, i.e.,

m = m̄ +
Npc−1∑
i=0

�iei , (4)

where �i are the weights associated with the eigenvectors ei .
By constraining every �i such that −K1,i�i ��i �K2,i�i (K1,i

and K2,i constant values) we can limit the deviations from the
mean model.

Fig. 4 shows, respectively, the influence of the first and sec-
ond modes of the decomposition. In each figure, the tooth in the
middle represents the mean shape. The tooth on the left shows
the new shape when the first (or second) mode is weighted
by a coefficient −K1,i�i (i = 1 or 2), while the tooth on the
right shows the new shape when the first (or second) mode is
weighted by a coefficient +K2,i�i . The first mode has a huge
influence on the size of the teeth and on the global shape of
the root. The second has a much smaller influence on the tooth

m - K1,1 e1

m - K1,2 e2 m - K2,2 e2

m - K2,1 e1
Mean Shape

Mesial

Buccal

Occlusal

Mean Shape

Mesial

Buccal

Occlusal

Fig. 4. (a) Influence of the first mode of decomposition on the mean shape.
(b) Influence of the second mode of decomposition on the mean shape.

height but a great impact on the width of the root. The other
modes have different influences that cannot always be simply
described.
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2.3. 3D mesh model

The mean model consists of an unorganized cloud of points.
In order to obtain a mesh boundary representation of the pa-
tient’s tooth after reconstruction, a 3D reconstruction is per-
formed using a marching cube algorithm [17] after extraction
of the isosurface.

3. Tooth reconstruction

Once the statistical model has been defined, the patient’s
tooth shape is computed from the optimal rigid and elastic trans-
formations of the mean model following Fleute et al. [11]. We
aim to match the patient’s crown or root with the corresponding
region of our statistical model by determining the contribution
of the different modes of the statistical model. The crown (or
root) shape variations with respect to the mean model are then
used to infer the root (or crown) shape.

3.1. Initial registration

In order to expedite the reconstruction of the target tooth, an
intermediate step can be included between PCA (Section 2.2)
and the final deformation. The iterative closest point (ICP) al-
gorithm [18] can be used to determine the best possible align-
ment between the two models. This step is implemented with
manual rigid registration and, if necessary, scaling. Although
not mandatory, it can greatly decrease the running time of the
reconstruction procedure and improve the final result.

3.2. Nonrigid deformation of the statistical model

The optimum parameter values can be computed through the
minimization of a merit (or energy) function to measure the
goodness-of-fit. The merit function used here (5) is the classical
mean-squared distance between the crowns (or roots) of the
two volumes:

E(p) =
Mc−1∑
i=0

min(‖dj − mi‖2)1� j �k ,

with m = R

⎛
⎝m̄ +

Npc−1∑
l=0

�lel

⎞
⎠ + T, (5)

where p is a vector representing the different parameters to ad-
just, Mc the number of crown (or root) points of the PDM, K

the number of points of the target tooth, d the vector represent-
ing the target (dimension 3×K), T a translation vector, R a ro-
tation matrix, el the principal components obtained in Section
2.2, and Npc the number of principal components selected.

We have to estimate the six components that define the rigid-
body transformation between the two volumes (three parame-
ters for T and three parameters for R) as well as the optimum
weights for the Npc principal components, i.e., we have to
solve an optimization problem having only 6 + Npc pa-
rameters. The optimization of E(p) is performed using the

Fig. 5. Octree decomposition realized on a tooth root using three levels of
decomposition (six levels are used in the implemented algorithm).

Levenberg–Marquardt algorithm [19]. To compute the min-
imum distances, two different options were tested, one with
(Method 1) and the other without (Method 2) the use of a
pre-computed distance map.

Computing the minimum distances is the most computation-
ally expensive part of the minimization. In the first case, dis-
tances are approximated using an octree–spline distance map
[13,20]. The two volumes (target and deformable models) are
enclosed in a bounding box and a classical octree decompo-
sition is realized based on the points of the patient’s tooth.
Fig. 5 shows an example of an octree decomposition based on
the points of a tooth root (cloud of points).

For each corner of the terminal octants, the minimum dis-
tance to the patient’s tooth is computed and stored. Given a
new point P , we only need to find the octant the point belongs
to in order to determine the minimum distance, followed by
realizing a trilinear interpolation over the eight corners of this
octant. This method allows us to obtain a good approximation
of the required distances. The partial derivatives with respect
to every component can be computed by Ridder’s method of
polynomial extrapolation.

The second method uses kd-trees [21] that can be built in
O(M log M). A kd-tree is a binary tree used to represent data of
dimension d (here d=3). Each node of the binary tree represents
a subset of the data record and a partitioning of that subset. The
structure of a kd-tree makes it very easy to compute the required
distances. This second method requires the construction of a
new kd-tree after each iteration of the Levenberg–Marquardt
algorithm. We can obtain the true distances and a closed-form
expression for the gradient of E(p) becomes available.

The optimization process can lead to a local minimum
instead of the expected global minimum. To overcome this
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difficulty, the number of modes can be increased successively
during the minimization process, beginning with the more
significant ones until the Npc modes are included in the mini-
mization or sufficient precision is reached.

4. Experimental results and discussion

4.1. Reconstruction based on crown information

4.1.1. Leave-one-out test
Different experiments were conducted to investigate the va-

lidity of the method described in this paper. Here we present
the results obtained using crown information only and Npc = 7
modes of deformation for the statistical model. A leave-one-out
test was performed as described below. For each of the N teeth
belonging to the training set, the following test is realized:

• PCA is first performed on the N − 1 other teeth (excluding
tooth Ti) and new modes are defined.

• The crown of tooth Ti is extracted.
• The crown of the mean shape model is extracted as well as

the corresponding deformation modes.
• The new modes are then used to reconstruct Ti .
• The distance between the tooth Ti before (root included) and

after reconstruction (T̂i) is then found.

To estimate the distance between two volumes represented
by triangular meshes, we use the main Hausdorff distance de-
scribed by Garland et al. in [22]. Tables 2 and 3 present, respec-
tively, the results obtained with and without a distance map to
compute the minimum distances between the mean shape and
the target. Fig. 6 shows some examples of shape recovery for
three different specimens.

For all the teeth of the test set, the reconstruction processes
lead to a perfect match between the crowns of Ti and T̂i and in

Table 2
Leave-one-test results: reconstruction based on crown information (Method 1)

HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS

Minimum 1.21 0.17 0.25 6.21 0.87 1.28
Maximum 4.22 0.50 0.91 21.66 2.57 4.67
Mean 2.10 0.29 0.49 10.77 1.49 2.51
Variance 0.7057 0.0103 0.0306 18.5841 0.2712 0.8058

Table 3
Leave-one-test results: reconstruction based on crown information (Method 2)

HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS

Minimum 0.84 0.09 0.12 4.47 0.48 0.64
Maximum 3.76 0.46 0.81 19.99 2.44 4.31
Mean 2.02 0.25 0.43 10.74 1.33 2.29
Variance 0.7018 0.0085 0.0291 19.8542 0.2405 0.8232

the majority of the reconstructions, a very good approximation
of the tooth heights and widths (Fig. 6(a) and (b)).

Only one tooth in the training set (Fig. 6(c)) produced results
far from those expected using any one of the two methods. In-
deed, since the reconstruction is based on a statistical represen-
tation, outliers will lead to erroneous results. For this particular
specimen, the correlation usually observed between the height
and width of a tooth and the size (i.e., the shape and width) of
the crown is not followed in that the crown is extremely large
compared to its height; this gave rise to a reconstructed model
that was much longer than the original one.

4.1.2. Reconstruction using patient data
A second test was then realized using real data. Though the

test realized above is realistic in forensic medicine, the data
used by orthodontists usually present losses at the interstices
as shown in Fig. 7, whatever the segmentation method used to
extract the crown.

A study model was digitized using the Cyberware Rapid
3D Digitizer Model 3030R-HIREZ laser scanner. The upper
right second premolar was then extracted using Kondo et al.’s
method of segmentation [12] (Fig. 8(a)) and the 3D shape of
the tooth determined (Fig. 8(b)). Despite the important loss
of information introduced by the segmentation, reconstruction
results in an excellent match between the original crown and
those of the tooth. The reconstructed tooth was then combined
with the orthopantomogram (a panoramic X-ray of the jaw and
the teeth) of the same patient (Fig. 8(c)) to test the validity of
the shape reconstruction. As shown in Fig. 8(d), the method
proposed led to a very good estimate of the tooth shape and size.

4.2. Reconstruction based on root information

In this section, we present the results obtained using root
information only and the seven modes of deformation for the
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Fig. 6. Examples of reconstruction using crown information only, without the use of a distance map. The 3D mesh represents a given tooth after reconstruction
and the surface of the original tooth. (a) and (b) are representative specimens while (c) is one particular case among the 22 exemplars.

Fig. 7. Tooth segmentation from a dental cast affects the crown shape: some
information is lost on the facial view (left image) and distal view (right
image) of the crown extracted.

statistical model. This kind of reconstruction finds applications
mainly in forensic medicine when reconstructing a dentition
for identification. A leave-one-out test using the N specimens
was performed as described in Section 4.1.1.

As shown in Tables 4 and 5 and Fig. 9, the results are far
from reliable. The HD between the original teeth and their re-
constructed versions using root information are smaller than
that previously obtained (reconstruction using crown informa-
tion), but larger with respect to the part being inferred (crown
or root). The main problem comes from the root shape. Its sim-
plicity, in comparison with the complexity of the molar shape,
makes the matching process more difficult. Indeed, when one
tries to minimize the distance between the target Ti (root only)
and the mean shape by summing over the target’s points, the
optimization process may lead to satisfactory results if Ti is
bigger than the mean shape root. In this case, the root extrem-
ities will match and the upper points of Ti will tend toward
the upper points of the mean shape root. On the other hand, if
Ti is smaller, the matching will not work; the upper points of
Ti will tend toward the closer points of the mean shape root,

which do not correspond to the upper part of the mean shape
root. Consequently, the root of the reconstructed tooth will be
much higher than those of the original model.

Fig. 10 shows the Hausdorff distance distribution between
Ti and T̂i for two different teeth (lighter colors corresponding
to larger distances). We notice that even the roots of the target
and the mean shape do not always match correctly (cf. tooth on
the left). Introducing feature points on both the target and the
mean shape can solve this problem. Fig. 11 shows the locations
of the feature points. The left image shows the position of the
three feature points F1, F2 and F3 for a given tooth. The right
image shows a cross-section of a root and the exact location of
F2 and F3.

These feature points are automatically defined for the two
teeth (F1,t , F2,t and F3,t for the target and F1,m, F2,m and F3,m
for the mean shape). In order to enforce a correct match between
the corresponding feature points, a penalty term is then added
to the objective function. Eq. (5) is modified to

E(p) =
Mc−1∑
i=0

min(‖dj − mi‖2)1� j �k

+ W

3∑
j=1

‖Fj,t − Fj,m‖2. (6)

The weight W has to be chosen such that it penalizes the merit
function when the feature points are far apart without exces-
sively minimizing the influence of the first term (i.e., the influ-
ence of the other points of the target).

Fig. 12 shows the effect of adding feature points on the
reconstruction. The top three tooth images show the result of
the reconstruction without the use of feature points. The three
images below correspond to a similar reconstruction process
(same number of modes, same algorithm) except that feature
points are used.

The use of feature points ensures a better correspondence
between the roots of the two teeth (original and reconstructed).
This leads to a better determination of the crown shape. The
different experiments that were carried out showed a slight
improvement in the shape determination (the influence is more
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Fig. 8. Process of fitting a tooth on a dental cast. (a) Crown of the tooth after segmentation. (b) Tooth after reconstruction (gray surface) and original crown
(blue surface). (c) Patient’s OPG. (d) X-ray of the patient’s tooth matched with the tooth reconstructed (blue).

Table 4
Leave-one-test results: reconstruction based on root information (Method 1)

HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS

Minimum 0.76 0.14 0.22 3.63 0.67 1.05
Maximum 2.86 0.82 1.11 13.68 3.92 5.31
Mean 2.01 0.41 0.57 9.61 1.96 2.73
Variance 0.5555 0.0481 0.0901 12.7080 1.1004 2.0612

Table 5
Leave-one-test results: reconstruction based on root information (Method 2)

HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS

Minimum 0.88 0.14 0.19 5.14 0.82 1.11
Maximum 2.58 0.67 0.83 15.09 3.91 4.85
Mean 1.67 0.32 0.45 9.77 1.87 2.63
Variance 0.2469 0.0175 0.0296 8.4452 0.5986 1.0125

or less important among the specimens). However, using feature
points is not always sufficient to obtain a good approximation
of the tooth shape. Modifying Eq. (6) could possibly improve
the results further. We also observe that the use of feature points
has nearly little effect on the time required for reconstruction
of the tooth.

4.3. Computation time

The algorithm was implemented using MSVC + + and run
on a Pentium IV 2.4 GHz personal computer. The computa-
tion times for the leave-one-out tests described in Sections 4.1
and 4.2 are summarized in Table 6. For a reconstruction using
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Fig. 9. Examples of reconstruction using root information only, without the use of a distance map. The 3D mesh represents a given tooth after reconstruction
and the surface of the original tooth. (a) and (b) are representative specimens while (c) is one particular case among the 22 exemplars.
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Fig. 10. Distribution of the Hausdorff distance on the reconstructed shapes
(reconstruction based on root data). Distances are given in mm.

F1

F2 F3

F2 F3

Fig. 11. Location of the feature points on the root: the image on the left
represents the distal view of the root, and the image on the right a 2D view
of the upper part of the root.

either crown or root information, Method 2 is much faster than
Method 1. Though the distance map allows quick access to the
minimum distances, Method 1 is greatly penalized by the com-
putation time of the gradient. Furthermore, Method 1 is more
affected by an increase in the density of the statistical model
than Method 2 (the running time of Method 1 is proportional
to the number of points of the statistical model).

Fig. 12. Effect of adding feature points on a reconstruction using root infor-
mation. Upper row: reconstruction without feature points. Lower row: same
tooth reconstructed using three feature points.

Table 6
Computing time for the reconstruction (in seconds)

Using crown information Using root information

Method 1 Method 2 Method 1 Method 2

Minimum 213 20 45 7
Maximum 276 33 60 15
Mean 259.0 26.7 51.8 9.6
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Fig. 13. Influence of the number of specimens used to build the statistical
model.

4.4. Number of specimens used

The results presented above were realized using N = 22
specimens. To determine if this number was sufficient, we
evaluated the influence of the number of specimens used on the
reconstruction. Leave-one-out tests (using crown information)
were performed with the number of specimens N between 2
and 22. For each value of N , p (p�8) groups were constituted
randomly. The mean of the mean HD was then evaluated for
each value of N and the results are as shown in Fig. 13. This
experiment indicates that about 12 teeth are sufficient to obtain
a good knowledge about the variability in the tooth type being
considered.

4.5. Number of modes of deformation

Using an optimal or near-optimal number of modes Npc is
important as an insufficient number of modes would limit the
deformations of our mean model and prevent it from taking
on the exact shape of the target, whereas a high number of
deformation modes would slow down the reconstruction and,
above all, introduce undesirable noise. Reconstructions using
increasing values for Npc were realized and the results com-
pared. Though not optimal for every reconstruction, the value
selected (Npc = 7) leads globally to the optimal results.

5. Conclusion

The methods presented here have been proven to be efficient
to reconstruct teeth using only crown information and could
help clinicians to visualize the outcome of a surgery or choosing
between different procedures. Our approach presents two major
advantages: it exploits the whole prior information available for
a given tooth and it requires little or no interaction from the user.

The reconstructions based on the crown gave very good esti-
mates of the tooth height and width, with an average HD around
10% between the specimens and their reconstructed shapes.
However, it gave only a coarse approximation of the teeth shape

when using root information only. We have also shown that this
approach could be quite fast; indeed, despite the high resolu-
tion of our specimens (105 �m), Method 2 requires, on average,
less than 30 s to reconstruct a specimen.

The method described was developed using a particular kind
of tooth. However, it could easily be extended to all single-
rooted teeth. Generating a new PDM per tooth is not absolutely
necessary; mirror teeth can be reconstructed using the same
training set, since the mirror PDM could be created using the
mirror view of the mean shape and those of the different modes.
Teeth whose shapes differ only in size (e.g., first and second
premolar, milk tooth and corresponding adult teeth) could also
use the same database by simple scaling of the mean shape and
different modes of the PDM.

When 2D information is available in the form of an X-ray
and higher accuracy required, combining this information with
the proposed method could lead to a better estimation of the
PDM’s parameters and avoid erroneous reconstructions when
dealing with an outlier specimen.

Finally, on a much longer term perspective, it will be inter-
esting to look at what could be done in terms of automatic re-
construction of tooth volumetric models, such as the 3D finite-
element models used to compute internal strains. In that case, in
contrast to the reconstruction of tooth shapes that only require
polygonal models of the tooth, a regular 3D arrangement of fi-
nite elements inside the tooth would be needed, which would
potentially require a much more complicated matching process
(see [23] for illustration).
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