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Abstract

A surgical simulator for plastic and maxillofacial
surgery, that gathers the dental analysis (orthodontia)
and the maxillofacial analysis (cephalometry) into a
single computer assisted procedure, has been recently
developed. This simulator proposes a semi-automatic
diagnosis for facial bone structure repositioning.

This paper presents the next step of this work, i.e.
predicting the consequences of the simulated bone
structures  displacements onto the patient face
appearance and functionality. A generic Finite Element
model of the face integrating skin layers and muscles is
presented. This model is then automatically conformed
to patient data using elastic registration. Finally, a mesh
correction algorithm is used to correct the mesh
irregularities resulting from the registration, so that
Finite Element analysis can be computed with the
patient model.

1. Introduction

Orthognathic ~ surgery  deals  with  face
dysmorphosis arising from congenital malformations or
accidents. For example, in the case of mandibular
prognathism (dento-facial deformity of the lower third
of the face resulting from excess mandibular growth),
orthognathic surgical treatment is required to correct
the occlusion (dental position) with an osteotomy of the
mandible [Bel92]. Several Computer-Aided systems
have been developed to assist surgeons in the definition
of the surgical pre-operative planning [Cut86, Mar86,
Udu91, Lo94, Van96]. They are based on a 3D
reconstruction of the patient skull out of Computer
Tomography (CT) images. The surgeon can simulate
skull osteotomies in a way that reflect actual surgical
procedure. Bone segments can therefore be mobilized
with six degrees of freedom. In this framework, our
research group has developed a surgical simulator for

plastic and maxillofacial surgery, that gathers the dental
analysis (orthodontia) and the maxillofacial analysis
(cephalometry) into a single computer assisted
procedure [Bet00].

In order to evaluate the consequences of the bone
repositioning onto patient face appearance, physical
models of facial soft tissues have been developed. The
first ones focused on computer animation and were
motivated by a need for external realism [Lee95]. Their
modeling was mainly based on discrete mass-spring
structures, regularly assembled inside facial tissue.

These kind of discrete models were introduced in
the framework of computer assisted maxillofacial
surgery [Wat96, Kee96, Koc98, Tes99, Bar00]. Then,
arguing that a precise modeling of soft tissues
deformation requires a continuous description, Finite
Element (FE) models were developed [Kee98, Rot98,
Sch00, Zac00].

From our point of view, these models suffer from
shortcomings in terms of a numerical, mechanical and
modeling point of view. This paper addresses these
shortcomings and introduces our methodology. This
methodology is based on the definition of a generic 3D
Finite Element model of the patient face, integrating
different anatomical structures. A model adapted to the
patient morphology is then obtained by elastically
deforming this generic model to patient data.

2. Methods

Once the surgeon has defined a bone repositioning
planning, the consequences of this planning on the
facial soft tissues have to be evaluated. A very
important point is to predict the aesthetic face
appearance after surgery. Another issue consists in
evaluating the functional consequences of the
intervention, i.e. the way bones repositioning affect the
facial mimics of the patient, its mastication and speech
production. The latter issue, not addressed so far in the
literature, is very challenging and requires an accurate
modeling of the facial muscular structures. To address
these two issues, an accurate biomechanical face model
integrating muscles must be defined for each patient.
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The first subsection gives some information about
face anatomy. Then, the shortcomings of the Finite
Element face models proposed for computer-aided
surgery are addressed. Finally, we introduce our
methodology based on the development of a “generic”
Finite Element face model, automatically adapted to the
patient morphology.

2.1. Face anatomy

Facial skin has a layered structure composed of
epidermis, dermis and hypodermis. Many facial
muscles, involved in speech production and face
expression, are inserted between these skin layers and
the underlying bones (figure 1). More than ten muscles
are involved in the deformations of the lower part of the
face. Their organization is complex, with specific
insertion points and orientations, and fibers
interweaving. Moreover, their mechanical properties
differ from skin layers ones. As a consequence, face
tissues are highly anisotropic.
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Figure 1. Face anatomy (from [Bou72]).

2.2. Previous works

In the framework of computer-assisted
maxillofacial surgery, a 3D mesh adapted to each
patient morphology must be defined. Therefore, Finite
Element face models proposed in the literature [Kee98,
Rot98, Sch00, Zac00] are built from patient CT or MRI
images using automatic meshing methods. It is well
known in the biomechanical community that for very
complex shapes, such as the face skin tissues between
the skull and skin surfaces, the generated mesh can
present singular regions, that is to say with an
extremely high density of elements. Besides increasing
the number of degrees of freedom (hence the
computation time), these singular regions can lead to
artificial anisotropy inside the mesh and over-stressed
areas [Cra96]. In addition, such automatically generated

meshes are composed of unorganized tetrahedral
elements that make difficult the identification of facial
anatomical structures (skin layers or muscles) within
the mesh. As a consequence, the existing Finite
Element models are isotropic, as the face anisotropy
due to muscle fibers orientation cannot be taken into
account. Moreover, as muscular structures are not
modeled, functional consequences of the bone
repositioning cannot be evaluated.

2.3. Methodology

In biomechanics, a response traditionally given to
these shortcomings consists in manually building a
mesh. This enables to arrange the elements inside the
mesh so that they can be associated to specific
anatomical entities (dermis layers, fat, muscles,
mucosa...). Moreover, hexahedral and wedges
elements can be used. These types of elements have
better numerical properties (convergence, error
estimation and computation time) than tetrahedral ones
[Zie89, Cra96].

However, such manual elaboration of the model is
extremely complex, long and tedious. Hence, it cannot
be considered for each patient in a Computer-Assisted
clinical protocol.

Our methodology consists, first, in manually
building one generic model of the face, integrating skin
layers and muscles. Then, the mesh of this generic
model is conformed to each patient morphology, using
an elastic registration method. The automatically
generated patient mesh has then to be regularized in
order to perform Finite Element computation.

2.4 Generic Finite Element face model

A multi-layers volumetric mesh (figure 2) is used
to model the fat and dermis layers [Cha0O0].
Biomechanical properties are chosen to replicate
observations made on human skin [Fun93]: quasi-
incompressibility and elasticity set with a Young
modulus equal to 15 kPa. Main face muscles are
defined within this mesh by elements located along the
courses of the muscles. These elements have specific
properties to model the linear transverse elasticity of
the muscles, in the fibers directions. Moreover, as
measured by [Duc90], this elasticity depends on muscle
activation, raising linearly from 6 kPa at rest to 110 kPa
when activated. Figure 5 presents dynamic simulations
of the generic face model deformations under muscles
activation.

Chabanas and Payan

Finite Element face model conformed to patient morphology

-0



Int. Workshop on Deformable Modeling and Soft Tissue Simulation

Bonn, Germany, November 14 - 15, 2001

JARRLCANR

\I‘\r\
LY

Figure 2. The generic 3D face mesh. Highlighted: main
muscles integrated in the model.

2.5 Adaptation to patient morphology

The next step after the complete generation of the
generic model is to adapt it to each patient morphology.
Registration methods have already been proposed in the
literature to adapt a generic face model to patient
anatomy [Lee95, Bar00, Mao00]. These methods rely
on feature-based correspondence techniques, which
require the manual definition of landmarks on patient
data. Although, these algorithms were defined for
mass-springs models and cannot be applied to Finite
Element models. Indeed, the mesh regularity is not
ensured during the registration, which means that some
elements can be geometrically distorted (figure 4). If an
element is too distorted, the “shape function” that maps
it to the reference element in the Finite Element method
cannot be calculated, hence the numerical resolution is
not possible [Tou84, Zie89].

A new conformation method has therefore been
developed by our group. It uses the Mesh-Matching
algorithm [Cou00] to fit the generic mesh to specific
patient data. The resulting deformed mesh is thus
regularised so that Finite Element analysis can be
performed.

2.5.1 Mesh adaptation

The M-M algorithm [Cou00] is based on the
Octree Spline elastic registration method, originally
developed for applications in computer-aided surgery
[Sze96]. A hierarchical and adaptive 3D displacement
grid is used to compute a non-rigid transformation
between two 3D surfaces, based on position and
gradient features.

To adapt the generic model to the patient
morphology, skin and skull surfaces of the patient are
automatically extracted out of CT images. Then, the 3D
mesh of the patient model is generated in two steps
(figure 3) :

1. First, an elastic transformation is computed to
fit the external surface of the generic model to
the patient skin surface. This transformation
is applied to all the nodes of the mesh.

2. Then, another transformation is calculated
between the internal surface of the mesh and
the patient skull surface. This second
transformation is applied to the internal nodes
of the mesh that must be rigidly fixed to the
skull, i.e. not located in the lips and cheeks

arca.

Figure 3. Nodes of the “external” surface of the generic
mesh are elastically matched to the patient skin surface (top).
Then, “internal” nodes are fitted to the patient skull surface
(bottom).

2.5.2 Correction of mesh irregularities

Using this method, a model conformed to patient
morphology is provided, still integrating skin layers and
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muscles and with anisotropic mechanical properties.
However, some elements can be highly distorted (figure
4), disabling one to use the Finite Element method.
Thus, an automatic algorithm was developed to correct
the mesh irregularities [Lub0O1]. Based on a study of the
singularity of the elements jacobian matrix [Zie89],
nodes of the mesh are slightly displaced until every
element is regular. Therefore, a regularized patient
mesh is obtained, which enable Finite Element
computations.

Figure 4. Example of two hexahedral elements after the
mesh is adapted to patient data. If an element is too distorted
(right), Finite Element computation cannot be performed.

3. Results

As main muscles are integrated in the mesh,
muscular activation can be simulated applying
distributed forces in the muscles fibers direction
[Cha00]. Figure 5 presents face deformation under
contraction of Zygomaticus major and Orbicularis oris.

Figure 5. Action of Zygomaticus major and Orbicularis oris
muscles on the generic model.

Once the mesh of the generic model has been
conformed to patient data, a new model of the patient is
available (figure 6). This model incorporates muscles

and skin layers as defined in the generic model.
Although muscles location may vary from person to
person, no further data has been used so far to assess
the actual patient muscles courses and insertion points.
It is assumed that muscles location is still coherent after
the registration based on skin and skull surfaces.
Similarly, mechanical properties of the generic model
are used in the patient model. Further research concerns
integrating MRI or Ultra-Sound data to assess actual
patient specificity.

Figure 6. Face model of a patient after registration of the
generic model (wireframe and rendered).

The automatically generated patient model can
therefore be used to simulate bone repositioning. Figure
7 gives an example of a simulated forward
displacement of the mandible.
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Figure 7. Simulated forward displacement of the mandible
on a patient model.

4. Conclusions

A new Finite Element model of the face has been
introduced. The method consists in manually designing
a generic model integrating skin layers and muscles,
with specific mechanical properties. This generic model
is then automatically conformed to patient morphology
using non-rigid registration and a mesh correction
algorithm. First qualitative simulations are provided.

Ongoing works concern integrating this soft-tissue
model in a computer aided clinical protocol for
maxillofacial surgery. Clinical validation will be
carried out using preoperative and postoperative CT
exams.
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