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Abstract

Knitting is an ancestral textile manufacturing technique which is still commonly used nowa-
days. This method allows to manufacture textiles possessing high recoverable strains, an
anisotropic mechanical behavior easily tuned by varying the knit loop dimensions, the ability
to obtain general forms (preforms) or internal forms (holes) during the manufacturing process,
and more, making those textiles particularly attractive and cost-efficient. More recently, the use
of Shape Memory Alloys (SMA), notably Nickel-Titanium (Ni-Ti) wires, for producing those tex-
tiles allowed to propose textiles with new functional properties, such as very high recoverable
strains, shape-shifting effects under temperature changes, high damping capacity, etc.

However, such SMA knitted textiles mechanical behavior remains relatively unknown, and
even if a certain number of studies have dealt with the knitted textiles mechanical characterization,
the application to NiTi knitted textiles remains insufficiently done.

In this work, a set of experimental and numerical tools have been developed to study knitted
NiTi textiles deformation, especially to evaluate the influence of material parameters, knit geome-
try, friction, etc., on the mechanical behavior. An experimental setup has been developed to char-
acterize such textiles in biaxial tension. It is inspired by methods developed for soft membranes
aiming at obtaining strain fields as uniform as possible in the sample working area. Furthermore,
its conception as well as a dedicated image processing software allow measuring boundary forces
distributions and knit loops morphology during deformation.

The knitted textile mechanical behavior has been modeled using numerical homogenization
method by performing finite elements numerical simulation of a representative knit loop under pe-
riodic conditions. Simulations predictions are validated in regard to experimental results obtained
on knitted NiTi textiles, in simple tension and biaxial tension in course and wale directions. They
are then used to analyze the importance of different deformation mechanisms depending on the
the loading case studied.
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CHAPTER

I
General Introduction and Objectives

1 Context

Textiles are presents in a large number of industrial applications, from composites materials
industry to individual protection equipment, including the biomedical field (prostheses, ortheses,
sensors, etc.). Knitting textiles in particular have seen their applications field widen due to their
particular mechanical properties and their easy manufacturing.

Common woven textiles possess, schematically, the same mechanical behavior as their con-
stitutive wires when loaded along their weaving axis (weft and warp). Knitted textiles, however,
show a mechanical behavior drastically different to the constitutive wire due to the undulating
shape of the wire and the high mobility of the latter within the textile. This induces large recover-
able strains for small local strains, allowing to use slightly elastic material such as stainless steel,
for example. Furthermore, this high mobility induces friction between knit loops which confer
the textile with significatn damping capacity. Finally, the internal knitted morphology provide the
textile with anisotropic mechanical behavior which can be finely tuned by adapting the knit loop
geometry. The knitted textiles mechanical properties allow to consider knitted textiles as excellent
candidates for biomimetic materials production.

Recently, Shape Memory Alloys (SMA) wires have been used to produce textiles possess-
ing enhanced or new mechanical properties and capacities. Thus, knitted textiles produced from
Nickel-Titanium (NiTi) wires have been created to propose textiles possessing large recoverable
strains (greater than 50%). The NiTi alloy also possesses an intrinsic damping capacity, which
adds to the natural damping capacity of the knitted textile. The NiTi mechanical behavior de-
pendence on temperature confers this textile the capacity to ajust its mechanical behavior to the
temperature it is subjected to, or even to change shape to create an actuator.

2 Thesis objectives

In order to develop industrial applications for knitted NiTi textiles, it is inevitable to fully
understand and to be able to analyze numerical this textile mechanical behavior. Many studies
have been performed on the NiTi alloy to propose several material behavior model, which are
commonly used nowadays. Knitted textiles, in a general way, have also been studied in a certain
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number of studies, which propose experimental or analytical and numerical approaches to study
their mechanical behavior.

However, too few studies dealt with knitted NiTi textiles. Few methods mixing experimental
analysis and numerical have been proposed, and those methods are usually limited to study the
textile macroscopic mechanical behavior.

In order to deal with this particular textile mechanical behavior comprehension in depth, and
to provide means to determine a knitted NiTi textiles properties depending on the application
desired, a complete characterization method is proposed.

3 Content

In a first time, the shape memory alloy Nickel-Titanium is presented to provide the reader
the base knowledge linked to this alloy specific material behavior. A summary regarding knitted
textiles, their specific properties as well as the state of the art about SMA textiles is drawn. The
chapter is concluded by the state of the art on the experimental and analytical and numerical
characterization techniques for knitted textiles.

Chapter III presents the experimental characterization method developed to study knitted NiTi
textiles and a jersey-type loop point. The method is composed of an image processing software,
allowing to measure kinematic fields within the sample zone of interest, as well as computing at
each time the knitted textile loop morphology. A wire-to-wire friction coefficient measurement
method is then presented in order to characterize the impact of friction on the textile mechanical
behavior. Finally, a biaxial testing setup is presented, providing a strain field as uniform as possible
within the sample, together with the ability to perform direct boundary conditions measurement
applied to the sample. The system ability to provide uniform strain field is studied on soft isotropic
membranes, and the boundary conditions measurement precision are discussed.

The numerical analysis method for knitted NiTi textiles is then presented in Chapter IV. This
method is inspired by different methods present in literature. Beam elements are used to model
the thin wire, and periodic boundary condition are used to simulate the uniform strain field within
the sample zone of interest. Difficulties and care required to realize this model are discussed at
the chapter end.

In Chapter V, the methodology previously presented is applied to a knitted NiTi textile sample.
The wire mechanical behavior is first studied alone, then the textile knit loop representative geom-
etry is computed in the initial state to feed the numerical model. The textile is then experimentally
characterized in uniaxial and biaxial tension, and the knit loop representative geometry dimen-
sions are studied during loading thanks to the dedicated image processing software. The loading
case performed experimentally are numerically modeled and the macroscopic behavior obtained
is opposed to experimental results to validate the method. The model is finally used to study the
influence of various material parameters on the textile macroscopic behavior. Critics are ventured
afterward regarding the results obtained and errors related to the characterization method.
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CHAPTER

II
Literature review

1 General presentation of SMA

In the first half of the 20th century, Swedish chemist Arne Oländer discovered that the gold-
cadmium (Au-Cd) alloy possesses the particularity to be able to recover its original shape after
permanent deformation by heating the material above a characteristic temperature Tc. Later on,
other alloys have been discovered to present the same shape recovery property. This shape recov-
ery property gave the name Shape Memory Alloys (SMA) to this class of metallic alloys.

SMAs possess a second particular property, namely superelastic behavior. Those two proper-
ties are consequences of the material phase transformation at solid state between two stable phases,
called the martensitic transformation. The first phase is the austenite phase α, stable above the
characteristic temperature Tc. The second phase is the martensite phase β, stable below Tc.

To trigger such transformation, temperature or stress changes are required. The transformation
from martensite to austenite is performed by heating the material from an initial temperature
T0 ≤ Tc to a final temperature Tf ≥ Tc. This transformation triggers the shape memory effect.

The transformation from austenite to martensite is obtained in two ways, when starting with
the material with an initial temperature above Tc: upon cooling the material to a final temperature
lower than Tc, or upon applying stress to the material. In the second case, the martensitic phase
created is called Stress Induced Martensite (SIM), and is a variant conveniently oriented compared
to the applied stress. During such loading, the superelastic mechanical response of the alloy is
observed.

2 Nickel-Titanium Alloys

2.1 Phase Transformation in NiTi alloys

In this paragraph, phase transformation mechanism will be explained in a simple way. For
more detailed lectures about SMA and phase transformation, the reader is invited to refer to liter-
ature [10–14].

The most used SMA is the near equiatomic Nickel-Titanium alloy (NiTi). In NiTi, the austen-
ite phase is a cubic centered crystalline structure of high symmetry, while the martensite is a mono-
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Figure II.1. Crystal structure of austenite, martensite, and R-phase for NiTi SMA.

clinic phase of lower symmetry (Figure II.1). Given that atoms move in an highly coordinated and
cooperative way and without diffusion, a particular atom always retains its neighborhood. This
neighborhood is also conserved when martensite transforms back to the parent phase. Each atom
returns back exactly where it was before the first transformation, and the shape is thus retained.
This deformation is a change in lattice shape, thus the maximum strain can be calculated for each
transformation in ideal single crystals. In polycrystals, texture comes into play for maximum
strain in a particular direction. In tension, reversible strains of up to 10% are usually reachable for
NiTi SMA.

Figure II.2 represents schematically the two phases and their respective atomic structures,
depending on the thermomechanical loading applied. The phase transformation can be triggered
either by temperature or stress changes. During thermal cycling, the transformation from austenite
to martensite (A-M) starts at Ms and ends at Mf . Similarly, the transformation from martensite
to austenite (M-A) starts at As and ends at Af .

At a temperature below Mf , the material presents a ferro-elastic mechanical behavior, and
if heated above Af after releasing the load, the material presents the shape memory effect (Fig-
ure II.2, bottom i) ). When a mechanical loading is applied at a temperature over Af , the transfor-
mation A-M starts at a critical stress σMs < σp, and the superelasticity is observed (Figure II.2,
bottom ii) ). The temperature Tp corresponds to the temperature at which the transformation stress
σMs equals the yield stress σp. At such temperature and above, the plastic flow of austenite occurs
before transformation, and an elastoplastic mechanical behavior is observed (Figure II.2, bottom
iii) ).

Those three mechanical behaviors and their respective mechanisms are briefly described in
following paragraphs 2.2, 2.3, and 2.4.

2.2 Shape Memory Effects

There are two categories of shape memory effect:

• One-way shape memory effect

• Two-way shape memory effect
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Figure II.2. Crystal structure of austenite and martensite (top) and corresponding stress-strain curves (bot-
tom) [1].

Figure II.3. Typical σ versus T diagram of nitinol with stress-temperature loading path to obtain the shape-
memory effect or the superelasticity.

DRAFT 2016-07-18 18:48



6

2.2.1 One-way shape memory effect

This effect can be observed after a particular loading on the alloy decomposed in three se-
quences (Figure II.3):

• A-B: Zero stress cooling (σ = 0) from an initial temperature Ti > AF to a final temperature
Tf < MF

• B-C-B: Loading and unloading involving residual strain at constant temperature Tf < MF

• B-A: Heating back to a temperature T > AF at zero stress (σ = 0)

During the mechanical loading of the material in the second step, the SMA behaves like a
standard metallic alloy, with mechanical characteristics corresponding to those of the martensite
alone. The loading is composed of a linear part up to the yield stress (σe). Hardening then happens,
and a residual strain is observed upon removing the load.

The one-way shape memory effect is observed for a thermomechanical loading corresponding
to the previous sequence A-B + B-C-B + B-A (Figure II.3). During the first sequence, martensite
is formed, but the transformation strain is null. During the second sequence, no transformation
is observed but a reorientation of martensite variants formed during cooling, going along with a
residual strain. In the last sequence, the crystalline network returns to the associated austenitic
state, and as no slip of atomic plane occurs during twinning of martensite, the parent shape is
recovered.

The term one-way shape memory effect comes from the fact that a mechanical loading is
necessary to induce the residual strain in the martensitic state, to be recovered later upon heating.

2.2.2 Two-way shape memory effect

Unlike the one-way shape memory effect which requires the application of an external me-
chanical loading to induce residual strain on the sample in the martensitic state, the two-way shape
memory only requires a thermal loading, namely heating/cooling, from a temperature T0 < Mf to
a temperature Tf > Af . During heating, the martensite initially present in the sample transforms
into austenite and the parent shape is recovered, exactly as for the one-way shape memory effect.
However, the difference between the two effects happens during cooling, when the martensite
variants formed are not random variants of martensite.

To obtain such effect, the material must first suffer training in its martensitic phase. Training
is performed by continuously repeating the same thermodynamical cycle until the residual strain
reaches saturation. The training produces residual stress fields within the material, inducing the
growth of martensite variants conveniently oriented to such stress field over other variants. During
cooling, friction happening during various martensite variants prevent the growth of variants found
prior to the training process and therefore, only variants created after training are growing and the
overall shape of the sample in such state is recovered [15].

2.3 Superelasticity

The second remarkable property of SMA after shape memory effect is the superelasticity.
Unlike other metallic alloys, SMA exhibits a large recoverable strain of up to 10% in tension,
i.e. 40 times greater than most steel based alloys. This effect comes, like the shape memory
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effect, from the phase transformation between martensite and austenite. This property may yet be
observed only during mechanical loading at high temperature, i.e. at T > AF , while for shape
memory effect, the alloy must be mechanically loaded at low temperature (T < MF ).

To observe such mechanical behavior, the material must first be heated to a temperature
T > AF at zero stress. While keeping constant temperature, a loading/unloading mechanical
cycle can be applied to the material. The relation between stress and strain will present three re-
markable sequences corresponding to the following sequences of the stress-temperature diagram
(Figure II.3):

• A-1 : austenitic phase elasticity

• 1-2 : transformation from austenite to martensite

• 2-D : martensitic phase elasticity and plasticity (after reaching point D)

And three similar sequences are found upon unloading, namely sequence D-3 (martensite elastic-
ity), sequence 3-4 (reverse phase transformation), and sequence 4-A (austenite elasticity).

A schematic representation of SMA superelastic mechanical response, depicting the three
steps presented above, is given in Figure II.4. From such mechanical behavior, it is possible to
calculate a set of parameters that defines the superelastic behavior, namely:

• σMs: stress at which the austenite to martensite transformation starts

• σMf : stress at which the austenite to martensite transformation finishes

• σAs: stress at which the martensite to austenite transformation starts

• σAf : stress at which the martensite to austenite transformation finishes

• EA: Young’s modulus of austenite

• EM : Young’s modulus of martensite

• εt: transformation strain

• H: mechanical hysteresis, computed as σMs − σAs (or σMf − σAf )

During unloading, the curve is similar to that of loading, noting only a mechanical hysteresis
H, generally with a magnitude about 300 MPa for nickel-titanium alloys. It is worth noting that
the transformation from austenite to martensite and the reverse transformation happens under the
effect of applied stresses. The martensitic phase induced in that case is known as Stress Induced
Martensite (SIM).

2.4 Elasto-Plasticity

When the alloy is mechanically loaded at an initial temperature Ti > Tp, the material is in
the austenitic phase. As the loading carried, the normal stress first reaches the yield stress σe
before the transformation stress σMs. Hence, the plastic flow of the austenite occurs before the
transformation A-M, and a typical elasto-plastic behavior is observed (Figure II.5).

After releasing the load on the material, permanent strain remains and can not be recovered
by heating.
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Figure II.4. Typical stress-strain superelastic behavior of nitinol showing the different phases and charac-
teristic physical quantities.

Figure II.5. Typical elasto-plastic mechanical behavior observed in NiTi when T > Tp in the a) Stress-
Strain plane, b) Stress-Temperature plane.

2.5 R-Phase

A third phase may be observed in NiTi alloys during a mechanical loading involving phase
transformation as presented in paragraph 2.3. This phase is called the R-phase as it was initially
thought to have a rhomboedric crystalline structure. This phase is, in fact, triclinic and originates
from a distortion of the austenite along a diagonal (Figure II.1) [16].

This phase is observed in certain alloys depending on its chemical composition and the tem-
perature of the test.

In such state, the mechanical behavior is very similar to that presented in paragraph 2.3, with
however a first transformation plateau of small strain amplitude which appears during the elastic
deformation of austenite (Figure II.6). Hence, a first elastic slope is observed, with an elastic
module corresponding to that of the austenite (EA, Figure II.6 green dash line). Then, the austenite
is transformed into the R-phase at low stresses. A second elastic slope is then observed after
complete transformation of the austenite with an elastic modulus of the R-phase (ER, Figure II.6
blue dash line) corresponding to the elastic deformation of the R-phase. Once the transformation
stress σMs is reached, the R-phase transforms into martensite, and the material then behaves as
described in the previous paragraph.
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Figure II.6. Tensile test on NiTi wire (Fort Wayne Metals, NiTi#1) showing A-R transformation. Horizontal
axis is expanded before 2% to improve visibility.

During unloading, the martensite phase may, in some cases, transform back into R-phase, or
simply transform to austenite, completely skipping the R-phase. This transformation path during
unloading depends on the chemical composition and material heat-treatment.

3 Knitted textiles

Knitted textiles are obtained with a unique wire interlocking with itself in a looping manner,
opposing woven textiles which are obtained by a large amount of yarn bundles running from
one side to another and cut. In this section, knitting techniques, general properties and a few
SMA textiles applications will be reviewed. For a detailed lecture on knitted textiles and relative
technologies, the reader is invited to refer to books from Horrocks A. & Anand S. (2000) [17] and
D. Spencer (2001) [2].

3.1 Knitting techniques

There exists a wide variety of interlocking pattern to create a knitted textile, from the most
simple loop structure (“jersey” type) to more complex shapes (laid-in structure, interlocked warp
knit, etc.) (Figure II.7) [2, 17, 18]. Complex three-dimensional shapes can also be obtain from
specialized knitting patterns [19]. There are two directions in knitted textiles, namely course and
wale.

To obtain such textiles, there exist three main knitting techniques, from the most ancient to
most recent: i) manual needle knitting, ii) knitting bench, and iii) automatized knitting machine.

The first technique is the most basic and most commonly known (Figure II.8a). Two needles
(the sinker and the jack) are manually handled to intertwine wires and to form loops. This tech-
nique allows obtaining easily simple loop shapes, but may also produce complex shapes, such
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Figure II.7. Several knit patterns, from simple (left) to complex (right) for both weft knitting (top) and wale
knitting (bottom) directions.

as 3D volumes (clothes). Yet, this technique prevents the access to complete three-dimensional
loops.

Knitting bench uses the manual needles technique semi-automatized (Figure II.8b). A succes-
sion of hooks and needles placed face to face on each side of the machine allows to grasp the wire
as it passes by in the trolley. This technique is referred as semi-automatic as the trolley is moved
back and forth manually by the operator. Each time the trolley completes a length, a row (course)
is completed, and the next row will be one step above (wale).

Thanks to past centuries industrialization and automation, industrial knitting machines have
appeared (Figure II.8c). Some automates simply bench knitting machines seen previously, while
some propose new concepts for particular knitting structures. Thus, machines dedicated to form-
ing tubular knit structures of infinite length and constant diameter have been created. For flat knit
structures, flat bed machines have been created to perform knitting row by row (course), making
it possible to vary each course length to obtain non-square textiles.

3.2 General properties of knitted textiles

Due to their particular inner structure, knitted textiles possess a wide variety of properties spe-
cific to that kind of structure. The first remarkable property is the large recoverable strain during
uniaxial tensile loading. Using standard steel wires to manufacture a jersey knit sample, Heller et
al. [20] shows that such textile exhibits recoverable up to 20%, while the wire possesses only 0.2%
elastic strain. This large recoverable strain arises from the knit loops high mobility against each
other, leading to a ratio of local maximum strain to global maximum strain comprised between 1/5
and 1/50 approximately. Furthermore, from this high internal mobility arises another interesting
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Figure II.8. Knitting techniques: a) manual hand knitting, b) flat bed semi-automatic machine, c) fully
automated flat bed (top) and circular bed (bottom) machines, from [2].

property, namely damping. The large stress hysteresis, added to the natural material hysteresis,
provides energy dissipation during loading/unloading cycles [21]. The movement between course
rows induces wire to wire friction, constraining directly the damping efficiency of the textile.
Finally, the textile internal mobility allows for high formability, i.e. such textile can rely on non-
uniform surfaces such as organs, bones and articulations, composites molds, etc. [22–25]. This
property is particularly interesting for composites where the reinforcement formability is one of
the crucial problems encountered with woven textiles where corners and sharp edges show high
local stresses and shape defects [24, 26–29].

The knit structure is also highly porous, i.e. large air volumes are present within the textile
which provides the textile with low density. The low density allows for light construction panels,
for example [22]. Porosity also improves biomedical applications of knitted textiles as it allows for
cell ingrowth in and around the implant, to increase cohesion between implant and surrounding
tissues and the healing process in the case of scaffold [25, 30], for example. In this context,
porosity also allows for body fluids to flow through the implant as it would in porous bones or
organs, increasing the implant osteointegration [25, 31]. The textile porosity is also primordial
when used as composite reinforcements, as the matrix material is able to flow easily through the
textile. This tends to decrease the risk of air cavity defects often found with woven reinforcements,
notably. Finally, the fabric porosity induces a quasi absence of compression resistance, allowing
such textile to be fitted in small cavities and used as filler if needed.

Another knitted textile characteristic to be mentioned is the mechanical anisotropy, as pre-
sented in Figure II.9. This property refers to the loading curves differences when unaxially loading
the sample in its principal directions, namely course and wale directions.

Further advantage of knitted textiles is the wide range of mechanical behavior available simply
by tuning the knit loop dimensions, or directly changing the knit point. This characteristic allows
for high flexibility of applications field and easily fit the mechanical behavior of surrounding
environment or tissue to replace, in the case of biomedical applications (scaffold for example [25]).
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Figure II.9. Mechanical behavior of a jersey knit textile made of 100% acrylic yarns, with two different
loop shapes (left and right) (courtesy of Eberhardt (1999) [3]), showing anisotropic behavior and strong
dependence to the stitch shape.

Figure II.10. Stitch geometry of a stainless steel knitted textile showing shape defects due to the wire
plasticity during knitting process.

Due to the manufacturing process of knitted textiles, it is also possible to directly preform
specific shapes within the fabric, for example holes can be knitted directly during the fabrication
process, removing unraveling defects when internal shapes are cut inside the fabric, in the case of
woven fabrics for example. This advantage also implies that no secondary fabrication steps are
required to create such cuts, and therefore reduces manufacturing costs.

Yet unraveling is a major drawback to knitted textiles due to the fact that the fabric consists
in a single wire being interlocked with itself. A single cut can completely have the textile lost
integrity.

Furthermore, during knitting process, it has been shown that high local strains are induced
within the wire [32]. This implies loop shape defects and non-uniformity when a low elastic strain
wire is used, such as stainless steel wire (Figure II.10).

Finally, it has been found that knitted textiles porosity may lead to adhesion problems in some
biomedical applications, as in the case of anterior crucial ligament scaffolds [25]. To overcome
such cohesion problems, in this particular case, the wire has been replaced by microfibers yarns
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that, due to the rough surface of the yarn, provides better adhesion with surrounding tissues.

3.3 SMA textiles review

From a general point of view, textiles using shape memory alloys are few and concealed to rel-
atively specific field of applications. Yvonne Chan thesis work [33] has established an exhaustive
list of several SMA usages in textiles, mostly oriented toward interior decoration elements and aes-
thetics aspects those wires can provide [34–36]. Yet often, those textiles are restrained to standard
textiles (polymer yarns, cotton or wool fiber yarns, etc.) with SMA wires inserted in-between
and not directly textiles produced from only SMA wires. SMA wires insertion however bring
improved or directly new properties to the textile, such as increased damping and impact resis-
tance [37–40], shape memory and wrinkle recovery capabilities triggered by temperature change
or SMA superelasticity [35, 41–45], or increased fabric stiffness [20], to name a few.

SMA knitted textiles have yet been proposed or are currently used for few specific applica-
tions, and some of them are presented thereafter. In the biomedical field, knitted nitinol stents have
been produced and studied for external veins reinforcement [46, 47]. A tubular spiral knit can be
easily manufactured with knitting machines presented in Section 3.1 with a SMA wire, and uses
the specific properties of knitted textiles to match the mechanical behavior of the patient artery
(anisotropy, non-linear response, etc.). Furthermore, it is known that every tissue in every patient
behaves differently, and therefore implants may need to be tuned to the desired behavior easily,
without the need of a broad set of stents with distinct dimensions. SMA knitted stents uses the
shape setting capability of knitted SMA textiles to allow preforming stents to the corresponding
behavior and implant size, making it a cost efficient solution. A similar product is proposed for
esophageal closure pathology [48] and is obtained from a tubular knitted stent wrapped in a fabric
cover (Ultraflex stent, Boston Scientific).

Still in the biomedical field, a multimaterial internal vein stent has been proposed by Tokuda
et al. [49]. The stent is knitted in a spiral tubular motion, as previously presented stents, from two
distinct wires at the same time, alternate one knit row to the other (wale direction, tube axis). The
first material is a nitinol wire, and the second a bioresorbable polyparaphenylene-benzobisoxazole
(PBO) multifilament fiber. The nitinol wire superelasticity allows, as for more standard nitinol
stents, the stent to be contracted dramatically and inserted into a catheter. The catheter is then
introduced through the patient femoral artery usually, up to the delivery point where the stent is
released from the catheter. The superelasticity returns the stent back to its original shape, opening
the previously closed artery. During the artery healing process, the PBO wire degrades, and its
degradation time is tuned to the healing time. This lead to a fully degraded wire after the healing
is complete, leaving only a free nitinol filament to be removed from the patient artery, contrarily
to standard tubular stents which remains permanently within the patient, reducing drastically post-
operative complications.

In another field, knitted NiTi textiles have been proposed as the response for high stroke con-
tractile actuators, yet light, small, simple and cost-efficient [50]. Most hydraulic, magnetic, elec-
tric, etc. common solutions prove efficient for high stroke/hig force solutions, yet are generally
large and heavy, and for certain applications may be prohibitive, or can be even unusuable due
to environment restriction (temperature, pressure, radiations, etc.). Knitted nitinol textiles can be
electrically driven, heated by Joule effect. These textiles provide high stroke/high forces (stroke
up to 100% and forces between tens to hundreds Newtons) with limited size and energy consump-
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tion. Their activation temperature can also be tuned to fit external temperature restrictions thanks
to the wire chemical composition and heat treatment. In addition, the damping capabilities of
knitted nitinol textiles have been studied in vibration damping solutions [21]. A particularity of
knitted textile is the high internal mobility, inducing prominent friction energy dissipation. Yet
this dissipation is constrained by the movement amplitude during textile deformation, itself con-
strained by the wire elasticity. Using nitinol wires not only allows for higher sliding strokes but
also provides with a second source of energy dissipation, namely the superelastic mechanical hys-
teresis. Coupling such two main nitinol properties allows for knitted textiles to be high damping
materials compared to knitted or woven textiles made of stainless steel, carbon-fiber, glass fiber,
etc.

Finally, knitted NiTi textiles have been thought about for spatial counter-pressure suit for
astronaut [51]. This suit aims at providing pressure to the astronaut’s body to counteract outer
space vacuum that tends to inflate indefinitely the astronaut’s body. Yet their use has been rejected
due to difficulties to use recoverable strain to act as counter-pressure. This underlines the lack of
knowledge around knitted nitinol textiles and the lack of tools to fully understand the deformation
mechanisms and mechanical behavior of such textiles. Few analytical and numerical models for
knitted textiles are presented thereafter.

4 Experimental and numerical analysis of knitted textiles

Analysis tools have been proposed to study knitted textiles. They can be divided into ex-
perimental, numerical, and analytical analysis. Experimental tools allow to perform mechanical
tests on textile samples. Numerical and analytical tools provide a way to analyze the mechanical
behavior of a knitted textile depending on the loop and sample geometries and wire properties.

4.1 Experimental analysis

Experimental tools dedicated to knitted textiles allow to apply various loading situations to
specimens, such as uniaxial tension and biaxial tension.

4.1.1 Uniaxial tension

During uniaxial tensile test, a sample is stretched along a principal direction. This test is partic-
ularly useful to characterize isotropic material; those materials require to characterize mechanical
properties in only one direction of space to entirely characterize the material.

A stretch λmax is imposed along a direction of the specimen (Figure II.11). The reaction
force is recorded and allows the stress state inside the sample working area to be computed. The
stress state is usually assumed to be uniform. The relation between stress and strain is analyzed
to provide with parameters depending on the chosen behavior model (elastic-plastic, viscoelastic,
superelastic, etc.). Finally, by measuring the section variations normal to the tensile direction, the
material Poisson’s coefficient can be computed.

In the working area, the following Cauchy stress tensor is expected for any point M in the
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working area:

σ(M) =


σxx 0 0

0 0 0

0 0 0


( ~
x; ~y,~z)

(II.1)

This particular tensor is obtained due to St Venant principle, and free edges in y and z directions.
To obtain such stress tensor, the sample is clamped in a jaw at each end to stretch the sample

in the desired direction. This griping method yet constrains all three displacements at once in the
grips vicinity. To reduce the impact of grips and boundary effects on the stress field distribution,
the working area is generally slender as opposed to the clamping area, drawing a “dog-bone” shape
(Figure II.11). Yet this specimen shape is not obtainable for materials such as knitted textiles due
to unraveling. Furthermore, to have a representative mechanical behavior in the working area
of an architectured materials, the ratio between sample section width and RVE size is a crucial
parameter. For porous metallic foams, a minimal ratio of seven have been defined before the
ultimate stress is significantly modified [52]. In that case, the sample needs either to have a very
long x dimension to keep the aforementioned hypothesis [53], or gripped by a system providing
free y displacement, assuming a plane stress case (z direction neglected) [50].

To allow such free transverse displacement, a system of metallic rings piercing through the
knit loops holes and thread around a stiff rod has been proposed [50] (Figure II.12a). One rod is
fixed while the second is moved out to stretch the specimen. The rings used to attach the specimen
to the rods can slide, allowing the specimen to contract when stretched. However, this system is
highly sensitive to friction between rings and rods. The width reduction is therefore not totally
free and affects the measured mechanical behavior.

Another system of uniaxial tension for knitted textiles uses tubular knit structure [54]. Two
rigid rods are inserted in the inner hollow of the knitted tube, and fixed in grips (Figure II.12b). The
specimen is then stretched and the tube is then equivalent to testing two flat specimens at once.
This prevents most stress field non-uniformities induced by the griping method. Yet transverse
displacements of the textile remain constrained by friction between textile and rods. Furthermore,
only wale direction may be tested as tubular knits can not be performed with the wale direction
aligned with circumferential direction.

For both methods, the textile unraveling imposes to have a closing straight wire on the sample
edges running along the wale direction. This wire is stretched during tensile test on the knitted
structure and stiffens the specimen. This wire can be however removed yet the integrity of the
structure becomes compromised, as seen in Figure II.12a.

4.1.2 Biaxial tension

As knitted textiles show high degree of anisotropy and a strong dependence to loading path,
the simple tensile test is not enough to totally characterize their mechanical behavior. Biaxial
tensile tests are thus preferable to characterize such materials as they allow for more complex and
closer to reality loading cases. Several methods to apply biaxial loading to specimens have been
proposed during past decades.

Two main categories of biaxial tension exist: i) out-of-plane biaxial tests, and ii) in-plane
biaxial tests.
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Figure II.11. Theoretical uniaxial tension test (left) and dog-bone specimen (right).

Figure II.12. Knit uniaxial tension test devices, reproduced from a) Abel et al. (2012) and b) Komatsu et
al. (2008).

Figure II.13. Bulge tests methods on disk specimen (left) and tubular specimen (right).

4.1.2.i) Out-of-plane biaxial tests (bulge test) This test is realized by holding a sample between
grips and inflate the sample with a fluid under pressure. This technique can be applied to tubes
[55, 56] or membrane specimens [57–59]. For both specimen shapes, the strain field on the outer
surface is computed thanks to Digital Image Correlation (DIC). The sample respects the membrane
hypothesis (negligible bending in the sample thickness)
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Figure II.14. Bulge test on knitted textile with impermeabilizer, reproduced from Heller et al. (2012).

Flat specimen In this case, the specimen is held between two flanges (Figure II.13). An
hydraulic or pneumatic pressure system is used to inflat the sample, and the pressure is recorded
during the test. Two cameras record the full strain field on the outer surface of the sample. Using
the membrane hypothesis (negligible bending in the sample thickness) and the hypothesis of ax-
isymmetry (isotropic material and circular sample working area) the stress state inside the sample
can be deduced from pressure and sample curvature.

To test knitted textiles in such a way, a waterproof addition has to be used due to the textile
porosity. A soft silicone membrane is usually placed under the knitted textile [20] (Figure II.14).
The silicone stiffness has to be small compared to the knitted textile to lower its impact on the
textile mechanical behavior.

However, the use of such a membrane generates “bubbles” of silicone through the textile
and strongly impacts the system mechanical behavior. Such a test presents drawbacks such as
non-uniform stress distribution induced by clamping method, and the impossibility to control the
loading path which depends on sample geometry and mechanical properties [60]. Eventually, due
to the textile anisotropy, stress state cannot be computed within the sample.

Cylinder specimen For that type of bulge tests, the tubular specimen is held at each
tube ends by dedicated hollow grips (Figure II.13). The sample axial stretch and torsion are
usually controlled. The applied load-case history can therefore be highly complex. Similarly
to the aforementioned disk bulge test, a soft membrane has to be used to overcome the textile
porosity. In this test, the axisymmetry hypothesis is also necessary to compute the stress state
inside the sample. A set of two cameras allows the strain field to be computed on approximately
one third of the tube.

However, as for the first bulge test method presented, “bubbles” appear and impact the me-
chanical behavior of the textile. Furthermore, stress gradients are observed across the tube wall
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Figure II.15. Plane biaxial test - common specimen shapes and grips: a) cruciform [4], b) square with solid
grips [5], c) square with point grips [6], and d) square with point grips and pulleys [7,8]; hatching represents
grips.

unlike in planar biaxial tests preventing computing the exact stress state within the sample [60].

4.1.2.ii) In-plane biaxial tests Regarding the in-plane biaxial tensile test, different experimental
setups have been proposed throughout the years. Several griping methods and corresponding
specimen shapes have thus been developed (Figure II.15, grips represented hatched).

A first common experimental setup uses cruciform specimens griped at the end of each arm
(Figure II.15a). This method is mostly used for massive or metallic plates and is an extension of
dog-bone shaped specimens used in uniaxial tensile tests [60–66]. Specific specimen shapes have
been designed to improve strain uniformity on the specimen zone of interest [62, 67–73].

Some specific materials, such as knitted textiles or living tissues, yet prevent the use of cruci-
form shaped specimen due to the nature of their inner structure. In those cases, square samples are
mandatory, and the mounting setup must be adapted. For such specimens, three main types of se-
tups are used [74] (Figure II.15b-d). The first one uses a single grip along each edge of the square
(Figure II.15b) [5, 75]. For this griping method, displacements transverse to tensile directions are
prevented from the grips, constraining the sample expansion in those directions.

For soft membranes, a derivation of the previous method has been proposed, removing the
constraint on transverse displacements. This method uses multiple attachment points along each
edge instead of a single rigid grip (Figure II.15c-d) [6, 54, 74, 76–81]. The attachment points can
either be directly the fixation points of small grips [71, 82] or the extremities of linkages between
the specimen and grips [6, 76, 80, 81, 83]. For example, the commercial device BioTester 5000
test system (CellScale Biomaterials Testing, Waterloo, Ontario, Canada) uses a set of rigid bars
piercing through the sample; those links allow free rotation of each attachment point in the sample.
As a limitation, forces distributions along the specimen edges are unknown.

Further improvements of previous setup led to the use of pulleys sets to link pairs of attachment
wires in order to balance boundary forces on each edge (Figure II.15d) [7, 8, 84]. Low friction in
pulleys rotation axes implies identical forces at each attachment point. This method yet limits the
number of attachment points.

4.2 Numerical and analytical analysis

The experimental analysis tools described earlier allow existing textiles to be characterized
macroscopically, yet do not provide with local stress state in the wire section. To perform local
wire studies, two methods are available: i) analytical analysis, and ii) numerical analysis.
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Figure II.16. Analytical models for plain weft knitted textiles from Wada et al. (1997) (left) and Araujo et
al. (2003) (right).

4.2.1 Analytical analysis

Analytical analysis applied on a single loop proposes to solve static or dynamic equilibrium
equations in regard to the loop geometry and boundary conditions. Due to the small wire diam-
eter compared to curve length, the approximation of beam theory is commonly used to simplify
models.

The loop geometry can be described by a set of parametric equations proposed by Leaf &
Glaskin (1955) [85]. Several analytical models are found in literature, and three of them have
been selected to illustrate such diversity.

The first analytical model presented has been proposed by Wada et al. (1997) [86] where a
complete loop is studied. The loop geometry has been chosen so as the contact points in the wale
direction are in the RVE (Representative Volume Element) (Figure II.16). Crossing points A−B
and A′ − B′ are used to define the contact line of action La and L′a. Then, contact points C −D
and C ′ −D′ are defined on each segment A − B and A′ − B′. These points are initially placed
halfway to crossing points. Points C and D are linked by two springs. One is orthogonal to the
line of action (AB) to define the radial stiffness of the contact. The second spring is defined
collinear to (AB) to represent the sliding friction. Forces are then simply applied on the loop
ends to stretch in the knit principal axes. This model has been shown to represent accurately the
mechanical behavior of a knitted textile over small deformations, when the geometry of loops does
not change much. However, this model is limited in terms of maximum deformation and loading
path, restricted to the textile principal axes.

Araujo et al. (2003) [87] considered half a loop and assumed symmetrical boundary condi-
tions along the vertical axis. Then, considering the central symmetry of the loop geometry, the
hypothesis that each yarn presents identical stress state as the other is proposed. The problem is
reduced to one half yarn from the whole loop (Figure II.16). A few hypotheses regarding the yarn
behavior are also necessary (incompressible yarns, no friction between fibers, inextensible yarns,
etc.). This model has been shown to fit accurately the mechanical response of a knitted textile
stretched in the wale direction, but under-estimates the response in the course direction. This
model has also the advantage to fit for maximum strains up to 27% in the wale direction and 65%
in the course direction. However, like the previous model, only loadings in the principal directions
are allowed.

Lastly, Abel et al. (2012) [50] extended the model proposed by Araujo et al. (2003) [87] to
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knitted textiles made of NiTi wires. NiTi material allows the hypothesis regarding yarns incom-
pressibility in the general model to be removed: the superelastic mechanical behavior of the ma-
terial is approximated by a succession of three linear elastic behavior, considering a full austenitic
or martensitic material when appropriate (no mixed state is allowed). This model has been ex-
tended to take into account the possible activation of the NiTi due to the shape memory effect and
the thermomechanical cycle. Therefore, this model is able to take into account the textile loading
history. This model has prove to precisely reproduce the mechanical behavior of a knitted NiTi
textile in fully austenitic and in fully martensitic state during a wale-wise uniaxial tensile loading
after calibration of the friction coefficient of NiTi wires. However, this model has not been tested
on course-wise loading.

Those models have been shown to simulate accurately the behavior of a knitted textile in
specific loading cases. However, limitations exist regarding the loop geometry, the loading path,
etc.: the loop geometry from Leaf & Glaskin (1955) is restrictive since this geometry is centered
symmetric, while textile loops can have arbitrary geometries. These analytical models also do not
aim at analyzing the local behavior of the wire during tests.

Therefore, other analysis tools should be used to study biaxial loading cases and local wire
behavior. This will help to understand the mechanical behavior of knitted textiles.

4.2.2 Numerical analysis

Numerical analysis tools using finite elements allow to study any chosen loop shapes and com-
plex loading cases. They propose to study a large sample by simplifying the textile architecture
or to study a single loop using homogenization method. The single loop models also enable to
study friction influence between wires and provide insight in the local stress state of the wire.
However, calculation times can drastically lower the applicability of such tools. Three different
finite element models are described hereafter.

Araujo et al. (2004) [88] proposed to simplify the knitted textile looping geometry by a regular
hexagons mesh (Figure II.17a). Curved yarn segments are represented by straight truss elements.
Two truss properties are defined, one used for elements aligned in the course direction, and one
used for elements in the wale direction. In that way, a large sample can be modeled. This model
has been shown to reproduce accurately the mechanical behavior of a plain weft knitted textile in
both wale-wise and course-wise uniaxial tensile tests, up to 25% deformation. The formability
over a rigid sphere has also been presented to highlight the high formability of such textiles. As
opposed to its analytical counterpart, this model is reliable in both wale-wise and course-wise
directions. Furthermore, as the whole sample is modeled, boundary conditions impact is less
critical and strain fields non-uniformities are simulated. The use of the simplified structure allows
calculation costs to be reduced drastically. However, this model does not allow to study the local
behavior of the wire, weak spots around contact, and friction gliding phenomena during tests.

In Bekisli et al. (2009) [18], a finite element model dedicated to study plain weft knitted tex-
tiles made of glass fibers yarns composites is proposed (Figure II.17b). The studied loop geometry
is taken from Leaf & Glaskin (1959) presented earlier yet is not restricted to such geometry. The
yarn neutral fiber is modeled using 3D beam elements which drives the yarn mechanical behavior.
The volume occupied by the yarn is modeled using 3D elements and represents the yarn volume
change during loading. Finally, the contact is managed by surface elements on the outer surface of
the yarn volume elements. This complex model is made over a few loops in the course direction

DRAFT 2016-07-18 18:48



21

Figure II.17. Numerical models from a) Araujo et al. (2004), b) Bekisli et al. (2009), and c) Demircan et
al. (2011).

and periodic boundary conditions are applied in the wale direction. This model has been shown to
be able to predict the stretch at which locking occurs for several knit samples. At this point, loops
do not glide anymore, and yarn segments between contact zones extend in their axial direction.
However, this model remains specific to uniaxial loading case in wale-wise direction.

Demircan et al. (2011) [89] studied the mechanical behavior of a composite made of a vinyl
ester resin and a knitted glass fibers textile reinforcement. The interest has been drawn towards
the different Young’s moduli of the composite depending on the loading direction (course and
wale). Beam elements have been used to model the reinforcement, and the remaining volume of
the RVE was filled with 3D elements for the matrix (Figure II.17c). This simplified model allowed
an estimation error of less than 3.1% of the Young’s moduli of two composites made of knitted
textile reinforcement. The failure stress of the studied specimen has also been properly predicted.
However, this model was tested only in uniaxial wale-wise tension.

5 Conclusion

A large number of analysis tools has already been proposed in literature to study knitted tex-
tiles mechanical behavior in an experimental or analytical/numerical way. However, few of them
are able to study the wire internal and contact stresses during textile loading. Furthermore, only
one analytical model propose to study knitted textiles made of nitinol wires.

In order to better understand the mechanical behavior of knitted textiles, a versatile numerical
tool is developed in this work and is inspired of these models. Corresponding experimental results
will also be required to validate such numerical model. The required numerical model should be
able to predict the behavior of the knitted NiTi textile while keeping computational times as low
as possible. The different model hypotheses will be analyzed and confronted to experimental data
one by one.
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CHAPTER

III
Experimental analysis tools

1 Introduction

To experimentally study knitted NiTi textiles, a complete method has been proposed in this
work. This method consists of a knitted textiles dedicated image analysis software, a biaxial
tension setup, and a method to characterize the friction coefficient between two NiTi wires.

2 Kinematic fields measurement

To perform experimental kinematic fields measurement, two options are available: Digital
Image Correlation (DIC), and an in-house developed software. In this section, the DIC principle
is first briefly described and application examples on knitted textiles pictures are presented (Sec-
tion 2.1). Due to limitation of DIC compared to the required data to extract, a software has been
developed in-house specifically for knitted textiles studies (Section 2.2). Lastly, an illustration
example of kinematic fields is given on an experimentally obtained picture (Section 2.3).

2.1 2D Digital Image Correlation

Digital Image Correlation (DIC) is an optical method that employs tracking and image regis-
tration techniques for accurate 2D and 3D measurements of changes in images. This technic is
often used to measure 2D/3D displacements and is widely applied in many areas of science and
engineering 1. Thereafter is presented two-dimensional DIC method used in the study of planar
samples for analysis of displacement and associated strain fields.

A few definitions are required for the following sections (Figure III.1):

Subset: square part of the initial image centered on point Mi to be tracked, size n× npx;

Area of Interest (AOI): zone of the image where tracking points M are of interest;

Step: distance in pixel between centers Mi of two neighbors subsets;

Speckle: random marks realized on the sample surface used to track the subset;
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Figure III.1. Representation of AOI, Subset, and subset Step used in DIC analysis (left) and representation
of subsets center Mi grid

The speckle pattern is usually realized with spray paint of contrasting color. In order to track
each pointMi, the subset speckle is required to be specific (the speckle needs thus to be as random
as possible and contains at least 7 to 9 specks). Each subset will then be tracked in each successive
image. The area of interest is decomposed in a regular grid of subsets, whose centers Mi are
separated by a distance equal to the chosen step. The size of the subset is usually chosen such as
the ratio between step and subset size is equal to 1/3.

Subset and step sizes are important parameters: a small subset size implies a better resolution
as more points Mi displacements will be obtained over the AOI. However, the subset needs to be
large enough so that the subset speckle is unique. The step size ratio with subset size refers to
the overlap of subset and the redundancy of data. A small ratio will prevent loss of data as the
same speck will be contained in many subset. However, the smaller the step size, the longer the
calculation and the smothered the data.

The DIC operational principle can be decomposed in 3 main successive steps:

• Placement of initial subsets in the initial image (img 0)

• Detection of the new position of each subset in next images

• Calculation of various quantities from subsets center Mi position

To perform the image correlation analysis, the pattern of a group of pixels in subset Si is
correlated to the new position of the subset in the following image (Figure III.2). Positions around
the initial coordinates are tested by matching the pixels gray scale value. A correlation factor is
calculated at different possible positions M ′i(x+ u, y + v) as:

C(x, y, u, v) =
(n−1)/2∑

i,j=−(n−1)/2
[I0(x+ i, y + j)− Ip(x+ u+ i, y + v + j)]2 (III.1)

where:
1One very common application is for measuring the motion of an optical mouse.
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Figure III.2. Schematic representation of initial image with initial subset (left) and successive image with
tested subset movement (right)

• I0 is the reference image

• Ip is the current image

• (x,y) are the subset center Mi coordinates in initial image I0

• (u,v) are displacements of the subset center Mi in the actual image I

• n is the width of the subset

• (i,j) are indexes that cover pixels in the subset

The correlation factor C is computed for neighbor possible couple (u, v) in the image I . The
sought displacement corresponds to the lowest value of C (Eq. III.1).

To search for the subset S in successive images, two options are available: initial correlation or
incremental correlation. For initial correlation, the deformed subset Sp in image Ip is correlated
in reference to the initial subset S0 in image I0. During incremental correlation however, the
deformed subset Sp in image Ip is correlated in reference to the subset Sp−1 in image Ip−1. This
method provides with correlation where subsets are largely deformed. However, computation
precision decreases as errors in successive image stack on each other. Furthermore, the loss of a
subset in image Ip induces the loss of the subset in next images.

After the image analysis is complete, grid displacements are obtained from the subsets center
Mi position. Several quantities can be computed, such as interpolated displacement field in the
camera axis. For the deformations computation, the distance variation between subsets center Mi

is used: let a regular grid be indexed with k for row index and l for column index (Figure III.1,
right). Each point Mi of such grid is indexed Mi(k, l) and possesses a set of initial coordinates
(x, y) and deformed coordinates (x+ u, y+ v). A step S is defined as the difference in index k or
l around the point of interest. The variation of distance at a point Mi(k, l) is defined as:

∆x(P (k, l)) = u(Mi(k, l + S))− u(Mi(k, l − S))
∆y(P (k, l)) = v(Mi(k + S, l))− v(Mi(k − S, l))

(III.2)

Then, the calculation of strain components can be performed using the distance variation
(Eq.III.2) and the desired formulation of strain (engineering, Hencky, Lagrange, etc.).
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Figure III.3. Picture of a tested knitted textile with zoom on wire and a typical subset for knitted textiles
(green dash)

To perform DIC analysis on knitted textile pictures, the wire structure itself constitutes the
pattern used as speckle. The subset is defined to include almost 2 knit loops (Figure III.3). This
method coupled with incremental correlation when high loops deformation occurs allowed dis-
placements and associated strain fields to be computed for the textile at the scale of few loops.
Such data does not provide with explicit data about the wire slipping, curvature changes, etc.

2.2 In-house software for knitted textiles image tracking

2.2.1 Displacement field

A software dedicated to the knitted textiles study has been coded in-house. The software aims
at providing displacement fields measurement for the textile and local wire curvature and slipping
during loading. The basic functioning is as follows:

1) Detection and numbering of knit loops,

2) Building map of the textile loops structure,

3) Tracking versus time of loops center,

4) Computation of loops singular points,

5) Estimation of each wire 2D shape,

6) Post-processing of data (displacement, strain, shape, etc.).

Initially, captured images are treated to reinforce contrast in order to strongly dissociate wire
from background. Contrast function used for such leveling is user-defined.

The knit loops detection is first performed (Figure III.4). A function 2 detects closed area
of same pixels value and labels those areas with a random number. Knit loops are therefore
distinguished and referenced uniquely.

2bwlabel function in Matlab
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Figure III.4. A knit loop “hole” (left) and tabular organization of loop labels (right)

Figure III.5. Centroid placed in line (left) and three possible centroid architecture (right)

On the reference image, the position of loops centroid is computed. From the position of such
center points, the neighboring loops are detected and organized in line in the wale direction (Fig-
ure III.5a). Possible rhomboidal textile structures are then automatically built and user selected
(Figure III.5b).

The centroids position in image Ip is transferred in image Ip+1 (Figure III.6). The new position
of loops centroid is updated and the tracking of each loop centroid can be performed. This method
yet implies that the maximum displacement increment between two successive images is small
compared to the loop size.

2.2.2 Wire detection and loop geometry

The tracking of loops centroid allows displacement fields to be computed inside the textile.
Yet, this information is limited, and images contain more information that can be deduced by
tracking wire organization and shape. Wire sliding, curvature, and loop dimensions can be com-
puted thanks to such tracking. The loop dimensions are described by 7 parameters, namely L, H ,
dy, W1, W2, α1, and α2 (Figure III.7, left).

The loops are composed of wire segments and contact zone between two wale rows. The wire
segments are named as follows:
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Figure III.6. Previous and current position of loops centroid superimposed on previous image

Figure III.7. Knit loop singular points and associated loop dimensions (left), and the corresponding seg-
ments and singular points in actual textile image (right)

• S1 between I2 and I7,

• S2 between I6 and I7,

• S3 between I4 and I5,

• S4 between I2 and I3.

Hence, the first step is to compute the loop wire structure and segments. Intersection points
I1 to I8 are approximated as the closest pixel (red squares) of the loops area (green area) between
neighbor loops, using the rhomboidal structure defined (Figure III.7, right).

Then, to identify wire segments S1 to S4, the color difference between background and wire is
used. For each segment, a straight line is created between the two intersection points I delimiting
the segment (Figure III.8). Two points are then created on this line, one in the middle and a second
one shifted two pixels aside on the line. These points serve as an initial guess of the first points on
the wire neutral axis.

The wire local center of mass is then computed into a circle centered on the initial guess
(Figure III.8). The same process is applied on the second starting point to provide a second point
on the wire neutral axis. Then, points are firstly guessed by extrapolating the position from the
two previous points found. The same method is applied afterward to find points that define the
neutral axis.
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Figure III.8. Starting point for wire neutral axis detection and wire segments numbering (left) and circular
mask and barycenter of subset for neutral axis detection (right)

This method is applied along the segment until the point Is is found in the circle. When an
extremity has been found, the wire is scanned in the opposite direction, starting from the two first
points detected, up to the second intersection point.

2.2.3 Post-processing

Morphological parameters variations are computed after tracking each loop shape versus time.
Dimensional parameters (L, H , and dy) and morphological parameters (W1, W2, α1, and α2) are
computed.

2.2.3.i) Dimensional parameters

To perform the loop dimensional parameters, mid points in the sense of the curvilinear abscissa
are defined, named M1, M2, and M3. The knit loop length L is defined as the distance between
pointsM1 andM3, belonging to adjacent loops. The knit height is defined as the distance between
the straight line (M1,M3) and the point M2. Lastly, the distance between two knit rows dy is
computed as the distance between M ′′2 and M2.

2.2.3.ii) Morphological parameters

The loop widths are calculated as the distances between the intersection points: the loop larger
width W1 is the distance between I3 and I6; and the smaller width is the distance between I2 and
I7.

To measure the characteristic angles of the loop i, the loop theoretical symmetry axis is defined
as the line (M ′′2 ,M2). Then, angles α1 and α2 are defined as ( ~I2I3, ~M ′′2M2) and ( ~I7I6, ~M ′′2M2)
respectively.

2.2.3.iii) Mechanical analysis

The textile displacement fields U and corresponding global strain fields ε are computed using
loops centroid positions. The sliding between loops is computed using the variation of curvilinear
length of segment 1 (course oriented) versus segment 2 and 3 (wale oriented).

DRAFT 2016-07-18 18:48



29

Figure III.9. Displacement fields, in pixels, obtained by the in-house software (top) and differences with
VIC2D measurements, in pixels, (bottom) during uniaxial tensile loading in walewise direction (y)

2.3 Illustration example

Displacement fieldsU have been calculated on an experimentally obtained pictures of a knitted
NiTi textile subjected to wale-wise uniaxial tension (~y) to serve as an illustration example.

The software developed in-house and presented in Section 2.2 computes displacement fields
alongside several other data. Displacement fields obtained with such software are compared with
results obtained using image correlation software VIC2D (Section 2.1) and presented in Fig-
ure III.9.

The first line of Figure III.9 presents displacement fields in pixel obtained with the software
along x and y directions, and displacement vectors norm. The second line presents the differ-
ence between fields obtained by the software and by VIC2D. Error fields are scarce and random,
showing only critical point in the sample zone of interest borders, where measurements tend to
lack precision for both methods. However, the random repartition of error valuer indicates that no
error are induced by loops movement and that those error, being of the order of 2 pixels, are solely
due to post-processing errors, either imputed to VIC2D and to the in-house software. At the zone
of interest edges, high error are found on few points, which are due to DIC measurement errors
and therefore neglected. Errors are found less or equal to 5%, which is considered satisfactory.

3 Method to determine wire friction coefficient

During textile stretching, knit loops segments slide along each other. Friction thus has a pre-
ponderant impact on the mechanical behavior and energy damping capability of the knitted textile.

The friction coefficient between nitinol wires has not been widely studied throughout littera-
ture. Many studies focus on friction forces intensity, mainly for orthodontic applications. Few
studies provide a friction coefficient, and found values are scarce, ranging from 0.04 [90] to
0.13 [50] for the static friction coefficient to 0.51 for the dynamic friction coefficient [91]. An
experimental setup has thus been developed to estimate the friction coefficient between two wires.

DRAFT 2016-07-18 18:48



30

Figure III.10. Principle schematic of the wire friction coefficient measurement device developed. Top: the
mobile in the random state within friction cone; Bottom: mobile axis along the friction cone depicted limit
angle ϕl and angles notation used to compute friction cone angle ϕ.

The proposed principle is drawn in figure III.10.
To measure the friction cone angle, the orientation of the reaction force ~R between two NiTi

wires is measured. When the reaction force ~R lies within the cone, no gliding occurs. When wires
start sliding, the reaction force is held on the friction cone surface. The friction cone angle can
thus be deduced from the reaction force ~R orientation compared to the fixed wire when sliding
occurs. The reference wire (1) is held horizontal and the second wire (2) is held perpendicularly.
This wire is gripped into a mobile at point E. The mobile is articulated at its extremities (E and
G) and summit to two forces, namely wire reaction force ~R and mobile weight ~P . Hence, the
two forces are equal in norm and opposed directions, collinear to vector ~EG. To vary the force ~R
orientation in order to place it on the friction cone surface, an horizontal force ~T is applied to the
mobile at point G. The reaction force ~R then becomes ~R = −(~T + ~P ). The friction cone angle ϕ
can then be computed. The associated friction coefficient f is equal to f = tanϕ.

To perform the reaction force ~R orientation measurement, two pairs of points have been intro-
duced. Pair (A,B) defines the reference wire orientation. Pair (C,D) defines the mobile orientation.
Those points are the centroid of targets that can be tracked in pictures during tests. The targets may
not be exactly aligned with their respective reference. Therefore, error angles α and β have been
introduced between wire 1 and line (AB) and between mobile axis ~EG and line (CD), respectively
(Figure III.10, Bottom). The angle measured is the angle between (AB) and (CD), named ψ. The
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friction angle ϕ and the measured angle ψ are linked by the relation:

α+ ψ + β + ϕ = π

2 (III.3)

To remove from the calculation angles α and β, two sets of measures are realized, with op-
posite sign for the tension ~T . In such case, two values of ψ are obtained, named ψ+ and ψ−, for
~T > ~0 and ~T < ~0 respectively. Hence, equation III.3 becomes:

α+ ψ+ + β − ϕ = π

2
α+ ψ− + β + ϕ = π

2

(III.4)

Substracting both equations of Eq. III.4 results in the following relation between measured
angles and friction cone angle:

2ϕ = ψ+ − ψ− (III.5)
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Figure III.11. Principle sketch of the setup in initial state.

4 Biaxial experimental setup

4.1 Introduction

Preliminary tests have been performed on knitted textiles and deformations obtained range
from 0% to 40%. The corresponding lineic force level has been measured to 0.2 N.mm−1 ap-
proximately. During biaxial tests, strain fields heterogeneities in the specimen may be caused
by boundary conditions distributions or the textile intrinsic architecture heterogeneities. There-
fore, the experimental setup boundary conditions heterogeneities are studied on homogenous soft
silicone membranes. The membranes have been chosen for the strain range required. The mem-
branes thickness has been chosen to result in a corresponding lineic force level at maximum strain
as knitted NiTi textiles provided.

A description of the principle of the new proposed experimental method is first presented
(Section 4.2). An experimental setup based on this principle is then presented (Section 4.3.1 to
4.3.2.ii)). Specimen and fabrication process used to test the device are then introduced (Sec-
tion 4.3.3). Finally, results are presented (Section 4.4) and analyzed (Section 4.5) before conclud-
ing (Section 4.6).

4.2 Principle of the experimental setup

The aim of the setup proposed in this work is to combine both methods c and d advantages
(Figure II.15 c and d). To do so, attachment wires used in setups c and d have been replaced by
elastic elements (Figure III.11). Pictures of springs and specimen zone of interest are acquired by
cameras during tests. The displacement and strain fields inside the sample zone of interest are then
obtained by DIC analysis. Elongations of the elastic elements are analyzed to provide boundary
loads distributions.

4.3 Experimental setup method

The proposed experimental setup will be first further described in Section 4.3.1. The bound-
ary loads calculation method is then presented in Section 4.3.2, followed by the definition
of physical quantities used to characterize and to analyze samples mechanical behavior (Sec-
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Figure III.12. Pictures of a) the biaxial tensile machine with experiment set up and the two cameras “Cam0”
and “Cam1”, b) “Cam0” picture, and c) linkage and associated target design.

tion 4.3.2.ii)). Lastly, the material preparation and the samples fabrication procedure are described
(Section 4.3.3).

4.3.1 Method

The biaxial tensile machine (C&B Tessile, Cinisello Balsamo, Italy) used is composed of two
pairs of grips, moving symmetrically compared to the machine origin (Figure III.12a). One grip
per direction is equipped with a load-cell with maximum force of 500N and a resolution of 0.1N.

In this work, small diameter helicoidal steel springs were used to measure force distributions
on the sample boundaries: one spring end is fixed into the grip while the other end is hooked onto
the sample (Figure III.11). The sample zone of interest is delimited by the springs attachment
points. Its dimensions have been noted a0 × b0, and its thickness e0. Each spring has an initial
length Li and a stiffness k (Table 4.3.1). Springs link between the sample edge and the grip are
equivalent to ball joints: springs have been attached to the sample using fishing hooks. Targets
have been painted on each hook tip so as to be used as specific tracked points (Figure III.12c).
The helicoidal springs outside diameter is reduced to allow a maximum number of springs on the
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n D (mm) d (mm) Li (mm) k (N.mm−1)

19 1.6 0.28 153 0.21
Table III.1. Parameters of springs

sample edges without interference. Moreover, a higher number of attachment points is expected
to provide a more uniform strain field inside the sample area of interest [83, 92].

To measure the required displacements, two cameras have been used (Stingray F-504B/C,
Allied Vision Tech., Stadtroda, Germany) (Figure III.12a). Camera "Cam 0" is used to record
images of the sample zone of interest (Figure III.12b). A Digital Image Correlation (DIC) analysis
of the strain fields inside the sample is processed with these pictures (VIC 2D, Correlated Solution,
US). Camera "Cam 1" provides images of the setup on which grips and springs hook targets
displacements have been tracked. "Cam 0" and "Cam 1" have been synchronized by an acquisition
software (Mercury RT, Sobriety s.r.o., Czech Republic).

4.3.2 Definition of measures

4.3.2.i) Spring loads

Each spring i develops a force
→
F
Ej

i proportional to its length variation (Figure III.13), which
can be written:

→
F
Ej

i = k(‖ →pigi ‖ − Li)
→
pigi

‖ →pigi ‖
(III.6)

where each spring is indexed with the letter i ∈ [1, n]. Each specimen edge is noted Ej

(j ∈ [1, 4]). pi refers to the spring attachment point on the sample along edge Ej and gi to the
spring end hooked onto the grip Gj. Grips have been noted Gj with the number j corresponding
to the sample edge Ej to which they are linked.

Eventually, each spring force
→
F
Ej

i can be seen as the sum of its two components:

→
F
Ej

i =
→
N
Ej

i +
→
T
Ej

i (III.7)

where
→
N
Ej

i is the force component normal to edge Ej, and
→
T
Ej

i is the force component tangent
to edge Ej (Figure III.13-detail A).

4.3.2.ii) Resulting load

To characterize the sample mechanical behavior, macroscopic stress quantities are required and
defined.

The force measured by grips load-cell is noted ~FGj and will be compared to the corresponding
macroscopic force measured via the springs system ~FEjspring defined as:

→
F
Ej

spring=
∑
i

→
F
Ej

i (III.8)

4.3.2.iii) Stresses

The nominal stress (Piola-Kirchoff stress) is computed using macroscopic forces ~FGj provided
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Figure III.13. Notations and labels used in the experimental setup.

either by the grips load-cell or the springs system ~FEjspring. Using the force provided by the grip
load-cell ~FGj , a first definition of stress components have been chosen:

σGxx =

∥∥∥~FG4
∥∥∥

b0 e0
and σGyy =

∥∥∥~FG1
∥∥∥

a0 e0
(III.9)

Similarly, using the force measured by the springs system
→
F
Ej

spring, another Piola-Kirchoff
stress can be defined in a similar way:

σExx =

∥∥∥∥→FE4
spring

∥∥∥∥
b0 e0

and σEyy =

∥∥∥∥→FE1
spring

∥∥∥∥
a0 e0

(III.10)

4.3.2.iv) Sample strains

Strains used in this paper are logarithmic strains (Hencky formulation) to assess for large de-
formations. Attachment points spatial coordinates have been noted xEjpi

and xEj0pi
along the X axis

and yEjpi
and yEj0pi

along the Y axis at current and initial times, respectively.
Likewise, grip spatial coordinates have been noted xGj and x0Gj along the x axis and yGj and

y0Gj along the y axis at current and initial times, respectively. Grips displacements can be defined
as (Figure III.13):

UGj = xGj − x0Gj and VGj = yGj − y0Gj (III.11)

The DIC analysis performed on pictures of the sample loaded area provides the local strain
field components εxx and εyy. The averaged values εDICx and εDICy can be computed as:

εDICx = mean(εxx) and εDICy = mean(εyy) (III.12)
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Figure III.14. Monotonic unixial test data of silicone and identification of a Neo-Hookean behavior model.

Other macroscopic strains have been defined using the mean distance between attachment
points edge to edge, as:

εEx = ln(1 +
mean(xE2

pi
− xE4

pi
)

a0
) and εEy = ln(1 +

mean(yE1
pi
− yE3

pi
)

b0
) (III.13)

A third calculation of the sample macroscopic strains εGx and εGy has been proposed using only
machine measurements (grips displacements UG4 and VG1 and grips forces ~FG4 and ~FG1 as:

εGx = ln (1 + ∆LX
a0

) where ∆LX = 2× (UG4 −

∥∥∥~FG4
∥∥∥

Keq
)

εGy = ln (1 + ∆LY
b0

) where ∆LY = 2× (VG1 −

∥∥∥~FG1
∥∥∥

Keq
)

(III.14)

where Keq is the springs equivalent stiffness used to evaluate the averaged springs length
variation. Assuming that the springs remain parallel and normal to their attachment edge during
testing, the approximate equivalent stiffness is given by Keq = n× k (Eq. III.14).

Those three macroscopic strains definitions have been compared to assess the accuracy of the
proposed control methods. The error associated to the equivalent stiffness Keq approximation has
also been studied in Section 4.4.3.

4.3.3 Specimen

A charged silicone elastomere RTV 3428 (BlueStar Silicone, Saint-Fons, France) has been
used and prepared using the methodology of Machado et al. and Rey et al. [93, 94]. This silicone
is highly resistant to tearing and possesses recoverable strains up to 300%, low viscoelasticity,
and is initially isotropic. The material has been formerly mixed with a hardener with a weight
ratio of 1/10, degased, and injected into a mold under near vacuum atmosphere. The 2.2 mm thick
membrane is then cured in an oven at 70oC during 4 hours. The silicone mechanical behavior in
uniaxial tension is drawn in solid line in Figure III.14.

The sample used for biaxial test was of 50x50 mm area and cut from the membrane with a
precision knife. A black paint speckle has been realized on the inner zone of interest with an
airbrush, delimiting a centered zone of interest of 44x44 mm (Figure III.12b). This speckle will
be used to experimentally compute the sample strain fields using DIC.
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Figure III.15. a) Grips displacement (left scale) and resulting reaction forces (right scale), b) Stress/strain
macroscopic behavior.

4.4 Experimental Results

4.4.1 Macroscopic behavior

The loading cycle has been controlled using the sample macroscopic strains εEx and εEy
(Eq. III.13). The measurement of εEx and εEy has been performed in real time using a target track-
ing software linked with the machine pilot software. An optimal solution would be to use the
strain provided by DIC measurement inside the sample εDICx and εDICy (Eq. III.12). However,
DIC measurement can not be performed in real time by our system; the values εDICx and εDICy can
not be used to control the test.

A specimen has been stretched via 4 sets of 19 springs. An equibiaxial loading cycle is
performed on the virgin sample (no Mullins effect [57]) up to a maximum logarithmic strain
εEmax = 35% at a strain rate of 0.48 s−1 in both directions. The reaction forces from load cells
~FGj (Figure III.15a) and grip displacements allow to compute the macroscopic stress σG versus
strain εG relations using Eqs. III.9 and III.14 (Figure III.15b). The curves overlap; the sample
mechanical response is identical in both directions due to isotropy and equibiaxial loading. Only
results on the vertical direction will be retained for further macroscopic studies.

Four specific times have been presented in this section. These specific times have been referred
to as states A, B, C, & D corresponding to macroscopic strains εEy of 9%, 17.5%, 26%, and 35%
respectively.

Force distributions along the specimen edges have been first investigated in Section 4.4.2. The
results of the three different macroscopic strains definitions are then compared in Section 4.4.3
before presenting the obtained experimental strain fields in Section 4.4.4.

4.4.2 Force distributions

The distributions of normal
→
N
Ej

i and tangential
→
T
Ej

i components of spring forces ~FEji
(Eq. III.7) along the specimen boundaries are first presented (Figures III.16 & III.17).

The normal force distribution
→
N
Ej

i presents an increase at each sample corner (Figure III.16).
Springs number 1 and 19 differ from the mean value by 12% and springs 2 and 18 by 6.5%
approximately at every step time A to D. The force distributions between springs 3 to 17 remain

DRAFT 2016-07-18 18:48



38

Figure III.16. Normal forces along specimen boundaries with 19 springs. A: εEmax = 9%, B:
εEmax = 17.5%, C: εEmax = 26%, D: εEmax = 35%.

Figure III.17. Tangential forces along specimen boundaries with 19 springs. A: εEmax = 9%, B:
εEmax = 17.5%, C: εEmax = 26%, D: εEmax = 35%.
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Figure III.18. Ratio of tangential over normal springs forces on sample boundaries. A: εEmax = 9%, B:
εEmax = 17.5%, C: εEmax = 26%, D: εEmax = 35%.

uniform with a standard deviation inferior to 3%.
As expected, the central spring tangential force

→
T
Ej

i is equal to zero (Figure III.17): the
tangential force distributions are symmetrical due to sample, mounting, and grips displacement
symmetries. In theoretical biaxial tests, only normal forces should be applied on sample edges.
Therefore, the influence of tangential force shas been qualified using a criterion R defined as:

R =

∥∥∥∥→TEji ∥∥∥∥∥∥∥∥→NEj

i

∥∥∥∥ (III.15)

The ratio R presents a symmetrical distribution along each edge, with a maximum value of
4%, which is considered negligible (Figure III.18).

4.4.3 Comparison of macroscopic strains

The experimental results obtained with the three definitions of the sample macroscopic strains
have been compared (Figure III.19a). The strains measured with DIC analysis εDIC present lower
values than strains measured via grip displacements εG and targets positions εE , with a maximum
relative difference of 7.7% relatively to εDIC . The target and grip strains εE and εG overlap.
These macroscopic strains have been used to control the test targeted strain by compensating the
deviation with respect to the DIC strains εDIC .

Then, stresses obtained from grip forces and displacements σGyy =
∥∥∥~FG1

∥∥∥ /SE1
0 (Eq. III.9)

and spring forces σEyy =
∥∥∥∥∑i

→
F
E1
i

∥∥∥∥ /SE1
0 (Eq. III.10) have been plotted versus the sample macro-

scopic strains εGy and εEy , respectively, and compared (Figure III.19b). The macroscopic stress σEyy
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Figure III.19. a) Comparison of macroscopic strains measurements and b) stress/strain relations calculated
from grip measured forces and summed spring forces.

measured by the spring system overestimates the macroscopic stress σGyy measured using grips
forces by 15% at 12% strain and 3.7% at 35% strain, maximum and minimum errors respectively.

4.4.4 Strain Fields

The DIC strain fields maps have been plotted for each time A, B, C, and D, in order to as-
sess the strain uniformity inside the sample working area (Figure III.20). The three in-plane
components have been plotted (i) to iii)), with the same scale for εxx and εyy. To study the
equibiaxiality of the strain field components observed on the macroscopic behavior of the sample
(Figure III.15b), the absolute difference |εxx−εyy| is also computed (iv)). This absolute difference
is then normalized using the mean DIC strains εDICx and εDICy (Eq. III.12) as:

h = |εxx − εyy|
(εDICx + εDICy )/2 (III.16)

This calculation has been performed to highlight zones where strains are uniform relatively
to the mean strain (v)). Areas where strains are matching the criterion 0% ≤ h ≤ 5% have been
countoured in white. The size of such areas relatively to the zone of interest area has been marked
into these areas.

4.5 Analysis

4.5.1 Macroscopic behavior

The measurement of macroscopic strains estimated from grip load-cell forces and displace-
ments εGx (Eq. III.14) and targets position variations εEx (Eq. III.13) overlaps (Figure III.19a).
Either data set used to control the macroscopic strain level during the test will provide the same
control quality.

However, mean DIC strains εDICy (Eq. III.12) return a lower value than grips and targets
measured strains εGy and εEy . This difference is explained by the deformation of attachment holes.
These holes deformations induce a lower strain state inside the sample compared to the strain
computed directly from attachment points displacements.
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Figure III.20. i, ii, and iii) Strain field components (%), iv) absolute difference of the strain field components
εxx and εyy (%), v) normalized absolute difference of the strain field components. A: εEmax = 9%, B:
εEmax = 17.5%, C: εEmax = 26%, D: εEmax = 35%.
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Figure III.21. Geometry of finite elements models with a) experimental hooks disposition and b) ideal
hooks disposition.

Moreover, as expected, stresses deduced from grip forces σGyy (Eq. III.9) and springs macro-
scopic forces σEyy (Eq. III.10) are similar and validate the measurement of spring forces (Fig-
ure III.19b).

4.5.2 Strain fields

Despite the applied equibiaxial boundary conditions, the strain field components εxx and εyy
are not perfectly symmetrical, which is underlined by the difference |εxx − εyy| (Figure III.20,
lines i), ii), iv) respectively). This difference is caused by symmetry defects of attachment points
placement, springs characteristics deviations, and sample internal defects. The error on attachment
points placement impact will be further analyzed in Section 4.5.3.

Strain field uniformity has been characterized using relative strain h maps (Eq. III.16, Fig-
ure III.20 v). Strain field is considered uniform where h ≤ 0.05. The area where this criterion
is verified is outlined in white and observed firstly on the upper third of the sample, and then
grows as the sample is stretched. At maximum stretch, this zone covers approximately 50% of the
sample speckled area, in accordance with literature [83]. The increasing stress produces a more
uniform strain field inside the sample zone of interest.

4.5.3 Finite Elements model

Finite elements models have been created using a finite elements software (Abaqus, DDS
Dassault Systemes, France). The model aimed at proposing a simple yet effective simulation to
enable optimizing experimental parameters such as springs characteristics, specimen shape, etc.
This model also provides insight to study the impact of springs attachment points placement on
boundary forces distributions and strain field uniformity. Models using perfect and experimental
hooks implantation schemes have been first realized (Figure III.21).

Hooks circular sections have been defined as rigid bodies and their perimeter nodes have been
merged with specimen nodes on the outward pointing semicircle to study holes deformation upon

DRAFT 2016-07-18 18:48



43

Figure III.22. Comparison of stress/strain relations between experiment and FE model with experimental
hooks disposition.

loading as observed experimentally.
A Neo-Hookean hyperelastic material model has been used to simulate the material mechani-

cal behavior and has been fitted on uniaxial tensile tests realized on virgin samples (Figure III.14).
The strain energy density function requires the two mechanical parameters C10 and D1. The
resulting parameter C10 is found equal to 0.131 MPa, and D1 is taken equal to 10−4 MPa−1, cor-
responding to a Poisson’s coefficient of 0.4999, to simulate the silicone quasi-incompressibility.

Those models have been validated by comparing experimental and model results on the sample
macroscopic stress σGyy (Eq. III.9) versus strain εGy (Eq. III.14) (Figure III.22). The macroscopic
stress deduced experimentally from grips force σGyy is properly simulated with a difference lower
than 8.5%. Even if the Neo-Hookean non-linearity observed on the fitted curve diverges from
experimental results, the model is considered validated in regard to the macroscopic behavior of
the sample.

Normal forces ~NEj
i distributions have then been compared between FE analysis and exper-

imental results (Figure III.23). For concision sake, only experimental and numerical results on
edges E1 and E4 have been compared. The normal forces ~NEj

i distributions with experimental
placement of hooks (solid lines) are well predicted by the model compared to experimental dis-
tributions, with a maximum deviation of 11% on edge E1 at step B, and 8.5% on edge E4 at step
D.

The normal forces ~NEj
i distributions of the model using ideal placement of attachment points

(dash lines in Figure III.23) highlights that errors in springs attachment points placement are re-
sponsible for small variations in the normal forces values. These variations are of an order of 4%
at maximum value. The increase seen on normal forces distributions borders are observed inde-
pendently of springs placement errors. These gradients were caused by the peripheral material
situated behind hooks (between attachment points and sample outer edges). Numerical tests (not
presented in this paper) highlight that the thinner this part is, the lower the increases at the sample
corners are.

Finite elements models also provide analysis on the differences observed experimentally on
the three sample strains formulations εDIC versus εG and εE (Eq III.12, III.13, and III.14) (Fig-
ure III.24). The same relative difference is found on the mean strain in the sample working area
εDIC as opposed to the value measured via grips εG and targets εE , confirming that holes defor-

DRAFT 2016-07-18 18:48



44

Figure III.23. Comparison of spring normal forces between experiment (symbols), FE model with ex-
perimental hooks disposition (solid lines), and FE model with ideal hooks disposition (dash lines). A:
εEmax = 9%, B: εEmax = 17.5%, C: εEmax = 26%, D: εEmax = 35%.

Figure III.24. Comparison of macroscopic strains calculations using the FE model with ideal hooks place-
ment.

mation causes such sample strains deviation.
Finite elements strain field components εxx, εyy, and εxy maps have also been plotted to ob-

serve strain non-uniformities when experimental attachment points placement is simulated (Fig-
ure III.25). Strain field components maps highlight strain concentrations around attachment points
as could be expected for such a setup. These heterogeneities at the sample edges were not sym-
metrical as experimental attachment positions have been implemented in the model. Strain het-
erogeneities were not directly related to normal forces distributions as higher forces value does
not implies higher strain value in the attachment point neighborhood.

Unfortunately, strains concentrations are over-estimated by the model. The shear strain is
specifically over-estimated by a factor 2 as opposed to experimental data (Figure III.25 iii).

A model ignoring every incertitude related to springs characteristics, placement, sample ho-
mogeneity, symmetry defects, and calculation approximation has been created. As expected, this
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Figure III.25. Strain field components (%) for the finite element model with experimental hooks disposition.
A: εEmax = 9%, B: εEmax = 17.5%, C: εEmax = 26%, D: εEmax = 35%.

model presents non-uniform yet symmetrical strain field components (Figure III.26). As opposed
to the real implantation scheme, for time A, B, and C, strain concentrations area around attach-
ment points were smaller. Uniformity criterion h (Eq. III.16) maps obtained with such model
are symmetrical and uniform through time. The size of the uniform area h ≤ 0.05 decreases
slightly from 54% to 51% of the sample loaded area. The last results is similar to results obtained
experimentally (Figure III.20)

The placement of spring attachment points thus possesses a limited impact on strain field
uniformity inside the sample working area, considering the standard deviation of hooks placement
around the ideal position is as small as ±0.3mm (equal to the hooks radius). Optimizing such
placement yields very small strain field uniformity improvement in return.

4.5.4 Improvement perspectives

It has been shown that small deviations in the placement of springs attachment points were
responsible for small deviation of approximately 4% of normal forces distributions along the sam-
ple edges, and partially responsible for strain non-uniformities. A special care may yet be taken
to place hooks precisely to reduce such deviations.

Springs initial and final length (Li and Li + ∆L respectively) impact the value of the ratio
R (Eq. III.15); R criterion and tangential forces are needed to be as small as possible. Springs
parameters such as initial length Li and stiffness k have to be adjusted to comply with machine
constraints and to have the greatest final length available so as to reduce the tangential spring
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Figure III.26. Strain field components (%) and normalized absolute difference of the strain field compo-
nents for the finite element model with ideal hooks disposition. A: εEmax = 9%, B: εEmax = 17.5%, C:
εEmax = 26%, D: εEmax = 35%.

forces intensity, and therefore to diminish the ratio R.
Finite elements models can be used to optimize such an experiment and to study the influence

of the sample geometry on the strain fields uniformity. The distance between external springs of
each edge may be responsible for high stress concentration and the influence of such parameter
have to be studied. Furthermore, the size of the excess of material behind the springs attachment
points may induce force distributions gradients and should be analyzed.

4.6 Conclusion

The setup presented in this paper has been used to perform equibiaxial tensile tests on a sil-
icone membrane. Using an uniformity criterion h ≤ 5%, a uniform strain field is obtained over
50% of the sample zone of interest.

The developed method also provides boundary conditions measurement such as displacements
and forces distributions. The resulting boundary forces measured using springs have been shown
to match forces measured using grips load-cell. Boundary forces distributions have been shown
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to be partially dependent on the precision with which hooks have been placed. Errors of ±3 mm
resulted in a maximum deviation of 4% of normal forces distributions.

In theory, planar biaxial tests only result in normal forces applied on the sample boundary. A
ratio of tangential over normal forces R lower than 5% has been obtained experimentally, which
has been considered satisfactory.

DIC strain fields have been computed on images, and provide a measurement of the sample
macroscopic strains. Two alternative definitions of such macroscopic strains have been proposed
and provide a moderate error of less than 7.7%. Such definitions yet allows driving the test with
ease and requires less complex real-time measurements.

Finally, a finite element model has been proposed and validated in regard to the sample macro-
scopic behavior and normal forces distributions along the sample edges. Such model provides sat-
isfactory results to predict the impact and to optimize values of various parameters such as springs
attachment point placement errors, springs number, springs characteristics, etc.

5 General conclusion

To experimentally study knitted textiles, a testing setup providing direct boundary load dis-
tributions measurement have been developed and validated using soft silicone membranes. An
in-house developed software has been proposed alongside to analyze the textile structure evo-
lution on experiment pictures. These data grant access to several key parameters of the textile
deformation, gliding, local curvature, etc, that are not obtainable by common DIC methods. This
program has been developed specifically for knitted textiles and uses their particular inner struc-
ture to perform tracking of stitches. An illustration example presented similar displacement fields
between the two image analysis method obtain on experimental pictures. It has been shown that
the average error in displacement measurement is lower than 4%. Only few critical points show
higher errors which is induced by DIC method errors on the area of interest edges. This error is
considered acceptable has standard DIC can not precisely detect the difference between two con-
secutive knit loops. Yet few drawbacks are to be noted, such as the time-efficiency of the method
and the restrictive application that requires only weft knitted textile.

Those experimental tools can also be used to validate analytical and/or numerical tools.
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CHAPTER

IV
Numerical analysis tool

1 Introduction

In this chapter is presented the finite elements model used to study knitted NiTi textiles. It
aims at studying stresses and strains distribution and evolution, material parameters and geometry
dimensions influence, etc. Analytical models are limited (loading case, loop geometry, etc.) and
numerical models are either highly simplified (no bending, no friction, etc. [88]) or computation
heavy (3D elements [79], no periodicity, etc.). This model is inspired by models presented in
Chapter II [18, 88, 89], and tends to combine advantages of each model.

The used geometry is based on a single loop which represents the textile Representative El-
ement Volume (RVE). A set of parametric equations have been written to describe the knit loop
geometry (Vokoun & Heller). Considering the wire curvilinear length over diameter ratio, beam
elements have been used to reduce the model size.

The knit loop deformation is constrained by periodic boundary conditions (homogenization
method). Continuity boundary conditions have also introduced to constrain the deformed geome-
try periodicity due to the presence of rotational degrees of freedom. The contact management is
performed via general contact definition.

2 Stitch finite elements model

The finite elements model aims at providing with information on the local wire stress-strain
state, which can not be obtained experimentally. Furthermore, the finite element model allows
performing simulation on various knit loop size and geometry, various material quantities, etc., to
study the impact of such parameters on the textile behavior.

In Section 2.2, the knitted NiTi textile studied has been briefly introduced. It can be seen
on pictures (Figure III.2) that the wire diameter is small compared to the loop curvilinear length.
Therefore, to simplify the finite element model and reduce calculation time, beam finite elements
are used to mesh the loop.

The material model used to model the wire superelastic behavior is first presented in Section
2.1. The knit loop and the finite element model geometries are then introduced in Section 2.2.
A brief introduction on beam finite elements and a benchmark comparing 3D and beam elements
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Figure IV.1. Aurrichio behavior model used to model the NiTi superelastic-plastic mechanical behavior.

in simple bending are given in Section 2.3.2. Periodic boundary conditions are then formulated
in Section 4.1.1. Contact management methods are then described depending on the resolution
method used in Section 2.5. Finally, a brief overview of mass scaling and issues with kinetic
energy are presented in Section 2.5.3.

2.1 Material Model

To model the NiTi wire superelastic mechanical behavior presented in Chapter II (Section
2.3), the Aurrichio behavior model has been used (Figure IV.1). This behavior model requires a
couples of parameters listed below. In the stress/strain plane (σ, ε), the required parameters are:

• σMs, σMf : martensitic transformation start and end stresses

• σAs, σAf : austenitic transformation start and end stresses

• σP , (σiP , εiP ): martensite yield stress and yield curve points coordinates

• σcMs: martensitic transformation start stress in compression

• EA, EM : austenite and martensite Young’s moduli

• εl: transformation strain

• νA, νM : austenite and martensite Poisson’s coefficients

In the stress/temperature plane (Clausius-Clapeyron law), the additional required parameters
are:

• ( δσδT )A: austenitic transformation start stress variation versus temperature

• ( δσδT )M : martensitic transformation start stress variation versus temperature

• T0: temperature at which above parameters have been measured
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Figure IV.2. Left: Multiple repeating unit cell of a knit loop (red & green) or cut unit cell (dash squares);
Right: Knit loop geometry and shape parameters

2.2 Loop geometry and shape parameters

2.2.1 Geometry equations

The knitted structure of a sample is a repetition of a unit cell, which can be defined in different
ways (Figure IV.2, left). The knit loop geometry has been modeled using parametric equations and
dimensional parameters along the course direction. The equations describe the undulating shape
of the wire over a single knit loop.

A set of dimensional parameters has been used to describe the knit loop morphology (Fig-
ure IV.2), namely:

• L: the knit loop length,

• H: the knit loop height,

• W1 & W2: the knit loop large and small width of inner curvature,

• e: the knit loop thickness,

• dy: the distance between two courses in the wale direction.

Additionally, to describe the loop shape and symmetry, three angles have been defined, namely
α1, α2, and θ = α1 + α2. For idealized textiles, α1 and α2 are equal. In the case of a physical
textile, the manufacturing process induces defects in the loop symmetries. These defects can be
partly quantified by the difference between those two angles. θ represents the knit loop opening.

These parameters allow the knit loop geometry to be defined with less loop shape restrictions
as proposed in earlier models (Section 4.2.1). The spatial coordinates of a point N along the
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loop neutral axis can be determined from: a parameter t ∈ [0, 2π] referring to the normalized
curvilinear abscissa of the point N (Eq. IV.1).

x = L
t

2π + k sin(2t) + asm sin(t)

y = H
cos(t)

2

z = e
St

2× |St|

(IV.1)

with

St = sin(π2 + 2(t− ti1)) + sin(π2 + 2(t− ti4))

− sin(π2 + 2(t− ti2))− sin(π2 + 2(t− ti3))
(IV.2)

where k and asm are curvature parameters around dimensions W1 and W2 respectively. ti1, ti2,
ti3, and ti4 corresponds to the intersection points between two course rows normalized curvilinear
abscissa t.

2.2.2 Finite elements stitch geometry

The knit stitch geometry consists here only in the wire medium fiber. Such geometry is de-
scribed using the parametric model presented in Section 2.2.1 and with experimental geometrical
parameters obtained using the image correlation software presented in Section 2.2.

A quasi-infinite number of repeating patterns composes the knit structure. The finite element
model geometry is chosen to represent a full knitted periodical structure as depicted in Figure IV.3
(green rectangle). The geometry is extracted using a box measuringLwide and dy high, arbitrarily
placed.

Figure IV.3. Creation of the finite elements model knit loop geometry and reference points for periodic
boundary conditions.
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Figure IV.4. Schematization of initial (left) and deformed (right) beam according to Euler-Bernoulli (top)
and Timoshenko (bottom)

2.3 Beam finite elements

2.3.1 Beam theory

Two main kinematic hypotheses sets exist to model beams: i) Euler-Bernoulli theory, and ii)
Timoshenko theory (Figure IV.4).

Euler-Bernoulli formulation is the simplest formulation: the beam cross-section initially pla-
nar and perpendicular to the beam axis is supposed to remain planar and perpendicular to the beam
axis when deformation occurs. This theory is valid for slender beams.

Timoshenko theory takes into account for cross-section deformation and is suitable for thicker
beams. Using such formulation, the initially right and planar cross-section may deform under the
effect of shear strains.

In this work, the wire superelastic behavior is expected to induce large bending with shear
stress. The contact pressure is also expected to induce shear stress in the wire section. The
Timoshenko formulation is therefore used in the model.

2.3.2 Beam finite elements

In beams, nodal displacements allow to compute the deformed shape of the structure and the
nodal section strains ε and stresses σ. The section stresses are then used to compute the nodal
bending moment Mb. Considering a 2D planar problem, the bending moment around z-axis Mbz

can be computed as:

Mbz =
∫∫

S
yσxxdS (IV.3)

In order to numerically solve such integral, the trapezoidal rule is used with a certain number
of integration points in the section. The default number is 3 points radially and 8 circumferentially,
allowing for accurate material plasticity reproduction. The number of integration points can be
user-defined in order to simulate more precisely more specific material behavior.

The NiTi wire superelastic behavior is non-linear and presented non-symmetric tension-
compression. A benchmark in simple bending has thus been realized to determine the optimal
number of integration points in the beam section to balance between precision and computation
time. The benchmark geometry is presented in Figure IV.5. The model consists in a beam of
length L, with a circular section of diameter d. The loading case consists in simple bending ap-
plied by a displacement Uy at the beam free extremity. Quadratic beam elements B32 have been
used, of length 0.5 mm. Three number of integration points have been tested, namely 3x8, 9x8,
and 15x8 (Figure IV.6, 15x8 is not represented for clarity reasons).
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Figure IV.5. Beam bending benchmark performed to compare beam finite elements and standard 3D brick
elements.

Figure IV.6. Illustration of the integration points organization and numbering in the section using default
3x8 integration (left) and user-defined 9x8 integration points (er x eθ) (right)

Table IV.1. Geometrical and material parameters of the benchmark performed to compare 1D beam ele-
ments and 3D brick elements.

L d Uy EA νA EM νM εtr σMs σMf σcs

5 mm 0.4 mm -5 mm 60 GPa 0.45 40 GPa 0.45 5 % 550 MPa 610 MPa 770 MPa

The benchmark geometrical and material parameters are summarized in Table IV.1.
The bending moment Mbz has been studied against the element curvature ρ for the three inte-

gration points number, during a single loading cycle (Figure IV.7). It appears that the default in-
tegration diverge from the user-defined integrations by 16% at the martensitic transformation end,
yet recovers identical bending moment for larger curvatures (ρ ≥ 0.9mm−1). Small difference
can also be seen at the martensitic transformation start. However, both non-default integrations
yield the same bending moment versus curvature relation, with a maximum difference equal to 5%
at ρ = 0.7mm−1. The calculation times are summarized in Table IV.2. Increasing the number
of integration points increasing computation times, as expected. Therefore, to balance precision
with computation times, it has been decided to use 9x8 user-defined integration points in the beam
section, to represent the wire bending accurately while reasonably increasing calculation times.
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Figure IV.7. Bending moment versus curvature using 3x8 (red dash), 9x8 (green crosses), and 15x8 (blue
line) integration points along ~er and ~eθ respectively.

Table IV.2. Computation (CPU) times of the benchmark depending on the number of integration points
used.

Integration 3x8 (17) 9x8 (65) 15x8 (113)

CPU Time (s) 27.3 63.5 101

Figure IV.8. Repetition of a 2D periodic pattern in initial state (a), and in any deformed state (b) [9]

2.4 Periodic boundary conditions

2.4.1 3D continuum

For 3D continuum, the kinematic unknowns are the displacements noted. They are noted u,
v, and w along ~x, ~y, and ~z axis respectively. In this case, the homogenization method consists in
constraining displacements between point pairs on opposite faces. With this expression, surface
may deform under the effect of loads; the adjacent patterns concordance is kept (Figure IV.8).

Let a cube ABCDEFGH be define with its edges aligned with ~x, ~y, and ~z space axis respec-
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Figure IV.9. Representation of a cubic volume and corresponding points pair for periodic boundary condi-
tions

tively (Figure IV.9). P is a point belonging to the face ABFE (plain color), and its pair P’ belonging
to the surface CDHG (hatching colored), so that ~PP ′ =

∥∥∥ ~PP ′
∥∥∥ ~x. The displacement vectors of P

and P’ are written as< uP ; vP ;wP > and< uP ′ ; vP ′ ;wP ′ > respectively. The periodic boundary
condition between P and P’ is written:

Cux(t) = uP (t)− uP ′(t)∥∥∥ ~PP ′(t)
∥∥∥

Cvx(t) = vP (t)− vP ′(t)∥∥∥ ~PP ′(t)
∥∥∥

Cwx(t) = wP (t)− wP ′(t)∥∥∥ ~PP ′(t)
∥∥∥

(IV.4)

Cux(t), Cvx(t), and Cwx(t) are constant over pairs (PP’) at each deformed state. The same
equation array is written for point pairs of faces BCGF and ADHE, and point pairs of faces ABCD
and EFGH, with new sets of constants Cuy(t), Cvy(t), Cwy(t) and Cuz(t), Cvz(t), Cwz(t) respec-
tively. Those quantities describe strain gradients along the RVE principal directions and ensure
the deformed pattern periodicity.

2.4.2 Application to knit loop model

For beam elements, nodal kinematic unknowns are displacements (~u, ~v, ~w) and rotations (Rx,
Ry, Rz). Periodic boundary conditions can be formulated using the general definition introduced
in Section 2.4.1 for the knit loop model and beam elements.

With such geometry, 3 pairs of periodic boundary nodes are present (Figure IV.10):

• Pair (M ′1 −M ′3) for vertical edges;

• Pairs (M4 −M ′4) and (M5 −M ′5) for horizontal edges;
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Figure IV.10. Knit loop model presenting boundary points and master nodes E and F.

A set of six periodic boundary conditions equations are thus obtained for each pair as: Nodal
displacements:

Cux(t) = u(M ′3)(t)− u(M ′1)(t)∥∥∥ ~M ′3M
′
1(t)

∥∥∥
Cvx(t) = v(M ′3)(t)− v(M ′1)(t)∥∥∥ ~M ′3M

′
1(t)

∥∥∥
Cwx(t) = w(M ′3)(t)− w(M ′1)(t)∥∥∥ ~M ′3M

′
1(t)

∥∥∥
(IV.5)

Cuy(t) = u(M ′4)(t)− u(M4)(t)∥∥∥ ~M ′4M4(t)
∥∥∥

Cvy(t) = v(M ′4)(t)− v(M4)(t)∥∥∥ ~M ′4M4(t)
∥∥∥

Cwy(t) = w(M ′4)(t)− w(M4)(t)∥∥∥ ~M ′4M4(t)
∥∥∥

(IV.6)

Cuy(t) = u(M ′5)(t)− u(M5)(t)∥∥∥ ~M ′5M5(t)
∥∥∥

Cvy(t) = v(M ′5)(t)− v(M5)(t)∥∥∥ ~M ′5M5(t)
∥∥∥

Cwy(t) = w(M ′5)(t)− w(M5)(t)∥∥∥ ~M ′5M5(t)
∥∥∥

(IV.7)

Nodal rotations:

Rx(M ′3)−Rx(M ′1) = 0
Ry(M ′3)−Ry(M ′1) = 0
Rz(M ′3)−Rz(M ′1) = 0

(IV.8)

Rx(M ′4)−Rx(M4) = 0
Ry(M ′4)−Ry(M4) = 0
Rz(M ′4)−Rz(M4) = 0

(IV.9)
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Rx(M ′5)−Rx(M5) = 0
Ry(M ′5)−Ry(M5) = 0
Rz(M ′5)−Rz(M5) = 0

(IV.10)

Note that constants Cuy, Cvy and Cwy are the same for pairs M4 −M ′4 and M5 −M ′5 (Eqs IV.6
and IV.7). The beam mean fiber tangent continuity is ensured by the equations constraining the
nodal rotational degrees of freedom (Eqs IV.8 to IV.10).

The strain field is applied to the knit loop by controlling the periodic gradients constants Cux
to Cwy (Eqs IV.5 to IV.7) (“master nodes” method [95] 1). The stitch loop kinematic boundary
conditions are applied as nodal displacements or forces on the master nodes E and F. The relation
between master nodes displacements and periodic gradients constants are as follows:

Cux = u(E)
L

Cvx = v(E)
L

Cwx = w(E)
L

(IV.11)

and

Cuy = u(F )
dy

Cvy = v(F )
dy

Cwy = w(F )
dy

(IV.12)

Hence, nodal displacements of master nodes E and F are introduced into Eqs. IV.5 and
Eqs. IV.6 and IV.7 respectively. Eqs. IV.6 and IV.7 are also combined to obtain periodic boundary
conditions equations as:

u(M ′3)− u(M ′1) = u(E)
v(M ′3)− v(M ′1) = v(E)

w(M ′3)− w(M ′1) = w(E)

(IV.13)

u(M ′4)− u(M4)− u(M ′5) + u(M5) = u(F )
v(M ′4)− v(M4)− v(M ′5) + v(M5) = v(F )

w(M ′4)− w(M4)− w(M ′5) + w(M5) = w(F )

(IV.14)

2.5 Contact and resolution method

The contact are modeled with a “distant contact” condition between slave nodes and master
geometry 2. Such “distant contact” condition may become difficult to implement when the section

1Two master nodes, namely E and F, are used to constrain constants Cux, Cvx and Cwx, and Cuy , Cvy and Cwy ,
respectively.

2As opposed to 3-dimensional case where the contact occurs when the distance between slave nodes and master
geometry is zero
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Figure IV.11. Illustration of the contact management between a node and a beam element in Abaqus using
implicit resolution method.

of both slave and master geometries are not circular as this requires to know the actual configura-
tion of the section and its orientation in the global coordinates system for each slave and master
geometry. Hence, several simplifications have been introduced in the finite elements code to com-
pute such “distant contact” condition between beam elements. These hypotheses depend on the
chosen resolution method: i) implicit or ii) explicit.

2.5.1 Implicit resolution method

The contact between a node and a beam finite element is represented in figure IV.11. The
master surface is defined by beam finite elements of length L between nodes A, B, C and D.
Those elements possess a circular section of diameter D. Let consider a node M, moving along the
master surface in direction of the element AB axis with a direction vector noted ~U(M). A contact
pressure noted ~PC is applied on the element at point M. Using the implicit resolution method
in Abaqus, the contact is performed by creating “contact spheres” of diameter equal to 2 × D

around the master surface nodes. The contact condition is defined by restraining slave nodes from
moving inside such spheres. Two cases are depicted in figure IV.11. The first case represents a
master surface where elements length L is less than elements diameter 2 × D. The second case
represents a master surface where elements length L is greater than 2×D.

In the first case, contact spheres around nodes A and B intersects and form a continued contact
surface. Slave node M may therefore slide along this surface, describing a set of arcs with rough
points at each intersection of spheres outer surface.

In the second case, however, contact spheres around nodes A and B do not intersect, and the
obtained contact surface is discontinued. Hence, the node M may slide on the spherical surface
around node B, in this case, and then move through the entire element AB due to the vertical force
PC .

This method may be therefore used in very specific cases, where elements used in the model
are thick beams with 2D > L, or when no movement is intended between master elements and
slave nodes. A special care should be taken to align both master and slave nodes in the initial
configuration to ensure a correct contact distance.

2.5.2 Explicit resolution method

When using an explicit resolution formulation, the contact between beam elements is con-
strained similarly to contact between solid elements. The distance a between the slave node M
and each master surface elements is computed at every increment start. This distance is compared
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Figure IV.12. Illustration of contact management between beam finite elements using explicit resolution
method.

to the sum of both master and slave surfaces section radii. A common contact penalty method
is then used to solve contact restrictions. Therefore, the contact surface obtained along the beam
element axis is continued and represents the actual element volume.

Yet few restriction are presents, such as the circular shape of the contact surface, equal to the
smallest outbound circle around the section in the case of non-circular sections. The contact sur-
face is also computed in straight line between master nodes, reducing the effective representation
of the element volume in the case of highly deformed quadratic beam elements for example.

In knitted textiles, high slip distances are traveled during tensile tests. Hence, due to the
implicit resolution contact management restrictions, explicit resolution method is used.

2.5.3 Mass scaling and kinetic energy

The contact between beam elements requires the use of explicit resolution method for the
knit loop model. Such resolution method is conditionally stable, and the stability is dependent
to time increment. The critical time increment is generally small, and computational times may
increase drastically. Furthermore, the explicit resolution method take into account dynamic effects
in the form of kinetic energy, while experiments are conducted at low strain rates for quasi-static
deformations.

As the stable time increment depends on the mesh size and material density, to increase the
stable time increment artificially, the “mass-scaling” process is used. This process increases the
material density by a specific factor, or to reach a certain time increment, both user-defined, if
density is not a relevant parameter in the analysis.

However, as mass-scaling increases material density, kinetic energy is increased as well. High
kinetic energy induces oscillations in nodal displacements, and may distort the analysis results.
Therefore, mass-scaling factor or target time increment have to be chosen carefully to not induce
a large amount of kinetic energy in the model.

To help reduce the amount of kinetic energy stored in the model during loading, material
damping has been introduced, and the influence of its intensity studied in simple bending with
beam elements. A simple model has been created in order to define the optimal damping coeffi-
cient. The model used is the model used in Section 2.3.2. The beam free end is constrained in
displacement, with a maximum displacement uy = −??. This value has been chosen to induce
large nodal displacement and strain energy to increase the damping coefficient impact visibility.
The material used is linear elastic material to keep a conservative model, apart from the material
damping studied. A Rayleyh type material damping has been chosen for simplicity reasons. Five
damping coefficient values have been tested. The impact of the coefficient α on the model kinetic
energy and reaction force during bending is shown in Figure IV.13. The reference analysis is
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Figure IV.13. Kinetic energy (top) and reaction force at the beam free end (bottom) for different values of
material damping.

calculated with the implicit method (dots), while the study of damping influence is performed in
explicit resolution (lines).

When no material damping is introduce, kinetic energy shows the oscillations mentioned pre-
viously, leading to similar oscillations in the reaction force at the beam free end. With the increase
of damping coefficient α, kinetic energy decreases earlier during loading. Peak values also de-
creases, resulting in lower to negligible oscillations on the reaction force for α ≥ 50. However,
the increase in damping coefficient causes an increase in reaction force due to the absorption of
internal strain energy. For a parameter α = 100, the estimated reaction force is 10% higher than
the reference value. A value of α = 50 returns an error in the reaction force estimation of 6.7%,
which is considered satisfactory. Such value has been used for the numerical analysis of the knit
loop.

2.6 Conclusion

In this chapter, the periodic boundary conditions and beam elements have been presented and
applied to create the knit loop unit cell model. The geometrical model has been derived from
the knit loop dimensions and models the contact between two knit rows. The general equations
defined for periodic boundary conditions on a cube have been translated to the stitch model and
allow simplified boundary conditions with only few constraints. A set of 9 equations has been
introduced in addition to the general equations to ensure the beam mean fiber tangent continuity
between consecutive patterns in the deformed state. The method led to a total of 18 equations to
fully constrain the stitch periodicity and continuity. The master nodes technique has been used
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with those equations to enforce the knit loop strains in the (~x, ~y) plane.
The explicit resolution method is used to allow beam contact and sliding management. Be-

cause of the explicit resolution, kinematic effects and long computational times are yet involved.
The mass scaling technique is therefore used to increase the stable time increment to a target time
increment giving reasonable calculation times while minimizing dynamic effects. Furthermore,
to reduce undesired dynamic effects, Rayleigh material damping has been introduced and vali-
dated in simple bending on beam elements. A typical value of 50 for the damping coefficient has
been found to lead to low to negligible dynamic effects while limiting the bending reaction force
overestimation.

Lastly, the influence of the number of integration points on the beam section has been studied
in terms of bending moment to curvature relation in simple bending for a superelastic material
behavior. It has been shown that default integration (3x8 points) lead to an overestimation of the
bending moment up to 16% at the martensitic transformation end. The number of integration
points has hence been increased, and the increase in precision over computation time balanced.
The final number has been chosen equal to 9 points radially and 8 circumferentially.

The model will then be validated in regards to experimental results in the following chapter
on knitted NiTi textiles.
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CHAPTER

V
Knitted NiTi textile characterization

1 Introduction

The goal of this chapter is to characterize the various deformation mechanisms taking place
in the knitted NiTi textile and their influence on the textile mechanical behavior during tensile
loading. The experimental analysis and numerical tools (Chapters III and IV) are applied to the
knitted NiTi textile sample in uniaxial and biaxial tension.

The textile mechanical behavior depends on several parameters, such as knit loop geometry,
wire characteristics, friction coefficient, etc. To analyze those parameters, the knit loops dimen-
sions distributions and populations are first studied in order to characterize the textile geometrical
uniformity. The wire material parameters are computed from a simple tensile test and the friction
coefficient between NiTi wires is estimated. These parameters are introduced in the numerical
model in order to study the influence of material constants and friction coefficient on the knit loop
mechanical behavior.

In a first time, chosen samples are presented (Section 2). Experimental results obtained on
such samples are then presented (Section 3). The corresponding finite element model results are
introduced and validated in regard to the experimental results (Section 4). A conclusion is finally
made on the knitted NiTi textiles mechanical behavior (Section 5).

2 Samples

Knitted textiles used to run experiments are presented here. The wire properties, the heat treat-
ment performed to shape-set the textile, and the wire tensile behavior are first introduced. It has
been tested with the experimental setup (Chapter III, Section4) adapted to knitted textiles. Then,
the knit loop pattern at the initial state is studied in terms of value, population, and spatial repar-
tition, with the in-house software (Chapter III, Section 2.2). The knit loop mean representative
geometry is computed from those measurements.
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Figure V.1. Simple tensile test of a NiTi wire, composition of 50.8 at% Ni and ∅0.1 mm diameter (Fort
Wayne Metals, NiTi#1)

2.1 Wire composition and behavior

The wire used for the knitting process is composed of 50.8 at% Ni (Fort Wayne Metals,
NiTi#1), possesses a diameter of ∅0.1mm, and is provided in the “cold-work” state. In such
state, the wire has an common elasto-plastic behavior with a high yield stress, of the order of 1.5
GPa.

A flat bed bench knitting machine is used to manufacture the fabric. After the knitting process,
the wire does not possess the superelastic behavior and residual stresses remain within the wire
due to the knitting. The shape-setting stage is performed using a simple setup to hold the textile
and to obtain more even loop shape. The system is then put in a furnace at 450oC for 30 minutes
to reduce internal stresses and to heat-treat the wire to the superelastic behavior. The wire is tested
in simple tension after treatment, and the resulting mechanical behavior is presented in Figure V.1.

The experimental biaxial testing setup presented in Chapter III (Section4) and tested on soft
silicone membranes has then been adapted to fit knitted textiles. Springs hook-like extremities are
used to grab the textile directly within each loop, taking advantage of the fabric porosity (Figure
V.2, zoomed insets). However, because of the knit loop geometry and the convexity of segments
S1 and S3 (cf Chapter III , Section 2.2.2), springs aligned with the wale direction (y in this case)
are not placed symmetrically side to side (Figure V.3). The hooking point stability is not insured if
a symmetrical spring disposition was to be chosen. A similar problem occurs with springs aligned
along the x-axis as the sinusoidal shape of segments S2 and S4 does not offer a stable hooking
point.
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Figure V.2. Knitted NiTi textile set-up in the biaxial tensile test experimental apparatus

Figure V.3. Springs placement in the wale direction and symmetry defect due to the knit loop wire curva-
ture.
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Figure V.4. Distribution maps of knit loop length L in the initial state (left) and population distribution and
gaussian fit with mean value and standard deviation (right)

2.2 Knit pattern and representative geometry

The knit loop representative geometry is computed from the knit loop dimensions mean values.
This representative geometry is used to feed the numerical model. Each dimension variation
determines the representativity of such geometry.

The knit loop geometry obtained after the sample shape-setting (Figure IV.2) is studied thanks
to the in-house software presented in Chapter III (Section 2.2). Each dimension spatial repartition
is analyzed within the sample zone of interest. Its population distribution is studied to verify the
random characteristic, or to highlight particularity in the distribution resulting from manufacturing
or shape-setting process instabilities. Assuming a gaussian repartition the mean value and standard
deviation in absolute value and in percent of the mean value are computed and presented in text
box within the histogram plots with letters µ, σ, and σ% respectively.

The knit loops length L spatial distribution (Figure V.4) shows an higher values in the central
part of the sample zone of interest, while minimal values are scattered over two columns on the
left hand side and three columns on the right hand side. Vertically, this distribution does almost
not vary. A few possible causes can be identified:

Firstly, a defect in the knitting machine causing a larger needles spacing in that particular area
would lead to larger loops in that same area over the whole height of the fabric. A measurement
over the whole textile could validate such hypothesis. Secondly, the shape-setting device may
introduce defect in the knit loop dimensions uniformity, yet such hypothesis remains difficult to
highlight. Nevertheless, the standard deviation measured is small before the mean value (3.4%),
and knit length is considered uniform within the sample zone of interest.

The knit loops height H spatial distribution (Figure V.5) presents a notable alternating pattern
between high and low values, with a global lowering tendency along -y-axis. Horizontally, dimen-
sions are uniform. As there is no presence of similar repartition as observed with the knit loop
length L, image distortion is absent and removed from the previous hypothesis list. However, a
possible cause for such defect could be the shape-setting setup, also difficult to identify. Nonethe-
less, as for the knit length L, standard deviation of knit loop heights is low before the mean value
(5.4%), and is thus considered uniform.

The distance between successive knit rows dy shows similar spatial distribution as the knit
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Figure V.5. Distribution maps of knit loop length H in the initial state (left) and population distribution
and gaussian fit with mean value and standard deviation (right)

Figure V.6. Distribution maps of knit loop length dy in the initial state (left) and population distribution
and gaussian fit with mean value and standard deviation (right)

loop height H seen earlier (Figure V.6). High values are concentrated around three fourth of the
zone of interest, at the top side, while lower values are found on the bottom fourth. However, a
distinctive alternate pattern can be seen in the wale direction between high and low values. The
standard deviation of this population is higher than the two previous dimensions with a proportion
to the mean value of 8.1%. The standard deviation is still considered in a reliable range, below
10% of deviation.

The knit loop greater width W1 is randomly spread across the sample zone of interest, with
no distinct pattern (Figure V.7). The resulting standard deviation is equivalent to 6.5% of the
mean value. This deviation remains close to previously presented dimensions deviation, and is
considered uniform.

Lastly, the knit loop smaller width W2 spatial distribution appears random, attesting of the
sole knitting machine precision (Figure V.8). The standard deviation obtained for this dimension
is equal to 13.3% of the mean value, superior to the maximum deviation admitted (10%). How-
ever, the absolute value of all standard deviations presented previously are of the same order of
magnitude, between 0.13 and 0.19 mm. The same standard deviation, of a magnitude close to
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Figure V.7. Distribution maps of knit loop length W1 in the initial state (left) and population distribution
and gaussian fit with mean value and standard deviation (right)

Figure V.8. Distribution maps of knit loop length W2 in the initial state (left) and population distribution
and gaussian fit with mean value and standard deviation (right)

the wire diameter, gives hints on the knitted textile manufacturing process (machine and shape-
setting) precision.

The knit loop opening angle spatial distribution is also random and no high concentration zone
can be distinguished (Figure V.9). The population distribution possesses a large standard deviation
(28.9%), notably due to the difficulty of shaping a wire with a considerable elastic modulus.

The knit loop warping α1 − α2 spatial distribution shows a distinctive alternated pattern be-
tween positive and negative values in the wale direction (Figure V.10). The mean value is close
to zero (0.89o) which correspond to an almost right angle between course and wale direction
(89.11o). Two main populations can be distinguished: a population centered around -2o and a
second around +3o, equivalent to the mean value ±σ (±2.78o).

The mean value and standard deviation are recapitulated in table V.1, and the mean represen-
tative geometry has been identified with such dimensions and the parametric equations presented
in Chapter III, Section 2.2. The resulting knit loop is presented in Figure V.11 (green line) along-
side with 8 copies (blue lines) and superimposed over the picture of the textile in its initial state.
This superposition over a larger zone the a single knit loop shows the approximation of a mean
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Figure V.9. Distribution maps of knit loop lengthα1+α2 in the initial state (left) and population distribution
and gaussian fit with mean value and standard deviation (right)

Figure V.10. Distribution maps of knit loop length α1 − α2 in the initial state (left) and population distri-
bution and gaussian fit with mean value and standard deviation (right)

Table V.1. Experimental initial mean loop dimensions

L(mm) H(mm) dy(mm) W1(mm) W2(mm)
Mean 4.42 3.29 2.30 1.92 1.12

Std dev 0.15 0.18 0.13 0.15 0.19

representative geometry over the real varying geometry, yet depicts that idealizing the textile as a
repetition of perfect loops fits a larger sample area.

3 Experimental results

In this section, experimental results obtained on knitted textile are presented. Firstly, the wire
friction coefficient between NiTi #1 wires heat treated at 450oC for 30 minutes is presented and
briefly opposed to values found in literature. Then, uniaxial tensile test on knitted NiTi textiles
are presented, starting with the sample macroscopic behavior, followed by knit loop geometry
changes during loading, and finally boundary forces distribution measured via the spring system
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Figure V.11. Initial geometry identified on experimental picture created using parametric equations pre-
sented in Chapter 2.2

Figure V.12. Total friction cone angle measurement between two nitinol wires plotted versus time

presented in Chapter III. On the same plan are then presented results obtained for the same textile
in biaxial tension.

3.1 NiTi wires friction coefficient

Using the concept presented in Chapter III, Section 3, the friction coefficient between NiTi#1
(FWM) wires heat-treated at 450oC during 30 minutes has been experimentally determined.

Values obtained during time of the angle ψ − π
2 are plotted in the two configurations, namely

~T > ~0 (blue line) and ~T < ~0 (green line) (Figure V.12). A single measurement set is presented
over the three performed for clarity purposes. Peak values correspond to instants when the mobile
begins sliding along the reference wire, i.e. instants when ~R relies on the friction cone edge.

The friction cone half summit angle ϕ is defined by the peak-to-peak values of curves ψ − π
2

divided by 2, repeated over the three measurements sets. In this case, a total number of 121 values
have been obtained for ϕ and the corresponding histogram distribution plot is presented Fig-
ure V.13, with a Gaussian distribution providing a mean value ϕmoy = 0.186rad and a standard
deviation σ = 0.016rad. The friction coefficient is therefore equal to f = 0.185. In literature,

DRAFT 2016-07-18 18:48



70

Figure V.13. Demi-friction cone angle obtained with a set of three measurements, mean value
φm = 0.186 rad and a standard deviation σ = 0.016 rad

few values are found, and range from 0.13 to 0.51. The coefficient measured with this method
is relatively close to the coefficient 0.13 obtained by Abel et al. [50], identified with a reverse
method using an analytical model and experimental results in uniaxial tension on knitted NiTi
textiles made of ∅ 0.2 mm wire.

3.2 Uniaxial tension

This section regroups experimental obtained for the knitted NiTi textile in uniaxial tension.
An initial pretension F0 = 0.02N.mm−1 is applied in both course and wale direction before

conducting tests in order to remove textile looseness. This force is maintained constant during
uniaxial tension in the transverse direction. The working area targeted strains are measured via
camera extensometers placed on springs target, one extensometer in each direction. The maximum
strain is equal to 30%, and the strain rate equal to 0.0025 s−1.

3.2.1 Stress-strain relations

The sample macroscopic behavior measured with the spring system (FElin and εW , Chapter III,
Section 4) is presented Figure V.14. The upper part presents the mechanical response in lineic
force versus axial strain for each course and wale direction, and the bottom part represents the
transverse strain versus axial strain. Four specific step times have been included and are referenced
in further figures as specific strain states.

The experimental results highlight the mechanical properties and particularities of the knitted
textile tested. The textile anisotropy appears clearly in this figure, depicting the course direction
(blue line) stiffer than wale direction (red curve). At 24% zone of interest strain, the lineic force
in the wale direction is 30% lower than in the course direction.

At strain state A, in the course direction, the zone of interest strain is equal to 6%, and the
hysteresis in lineic force is equal toHC(A) = 3.4610−2N.mm−1, and at strain state C (ZoI strain
equal to 18%), the lineic force hysteresis is equal to HC(C) = 4.5510−2N.mm−1. The increase
ratio between this minimum and maximum values is equal to 1.316. In another hand, in the wal
direction, at 6% zone of interest strain, the lineic force hysteresis HW (A) = 210−2N.mm−1,
almost two times lower than its course-wise counterpart. However, at 18% zone of interest strain,
the hysteresis is equal to HW (C) = 3.8710−2N.mm−1, hence an increase ratio of 1.94. Finally,
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Figure V.14. Mechanical behavior of knitted NiTi textile in uniaxial tension; lineic force - axial strain
relations (top), and transversal strain - axial strain (bottom)

at final stage of loading (30% ZoI strain), the maximum hysteresis value is reached and is equal
to HW (D) = 4.8910−2N.mm−1, being 2.45 times greater than HW (A). The course direction
also shows a greater “stiffening” of its force response. Finally, no residual strain appears in each
direction after charges are released.

The curve presenting the transverse strain versus axial strain also highlight the textile
anisotropy in an opposite way, in the sense that, in the course direction, the textile is more com-
pliant inducing an higher transverse strain. The Poisson’s coefficient in the course direction is
thus higher than in the wale direction, and estimated at νxy = 1.05 while in the wale direction,
the Poisson’s coefficient is estimated at νxy = 0.94. This strains anisotropy may prove useful
in specific applications, such as tubular actuator, for example, with the wale direction parallel to
the tube axis and course direction to the circumferential axis. Inflating the tube leads to an axial
stroke, and the anisotropy allows higher axial strains for lower tube inflation, reducing volume
needed for the actuator to inflate.

3.2.2 Representative loop geometry under loading

The evolution of the mean representative loop geometry is studied during loading, as well as
the standard deviation associated. In the following figures, the mean value is represented in thick
lines, and standard deviation by the area around mean value, plotted at ±σ.

The wale-wise tensile test is studied first (Figure V.15). The knit loop length L as weel as
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Figure V.15. Loop dimensions variations during loading cycles in wale-wise tension

Figure V.16. Loop dimensions variations during loading cycles in course-wise tension

the vertical distance between rows dy show an opposite variation, corresponding to the zone of
interest global strains. The standard deviation of each dimension retains its initial absolute value,
implying that no uniformization of loop dimensions occurs with increasing loading.

The knit loop heightH also increases yet of a smaller quantity than dy. The standard deviation
retains its initial value until step C, where the transverse contraction of the textile implies contact
between segments S2 and S4, preventing the detection of segment S1 and intersection points
correctly (Figure V.17). This error is also reproduced during the second loading, in same intensity
and time span, inducing that the error is phenomenological and not consequent to the method.
Mean values and standard deviations of the loop widths W1 and W2 decrease with loading. The
almost zero value of W2 indicates the contact between segments S2 and S4, and such measure
may be taken with caution as well because of errors in intersection points placement described.

Finally, the mean warping value α1 − α2 shifts from zero value, while the standard deviation
decreases. The springs symmetry defects on each side on the wale direction and hooking points
instability in both wale and course direction may induce small shear strains in the sample zone of
interest and modify the warping mean value. The loop angular opening α1 + α2 follow a stable
increase while the standard deviation decreases. Loading in wale direction tends to standardize
the angular opening.

The tensile test in course direction is then studied (Figure V.16). The knit loop length L as well
as the knit rows distance dy vary in opposite way, corresponding to the zone of interest strains,
similarly to the tensile test in wale direction. The standard deviation of both dimension remains
constant throughout loading cycles.

As previously, the knit loop height H decreases alike knit rows distance dy with a lower
intensity, and the standard deviation remains constant. For this loading case, knit loop remains
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Figure V.17. Deformation of a random knit loop during wale-wise tensile loading (top) and course-wise
tensile loading (bottom)

well defined, and the in-house software is able to detect correctly intersection points and loop
segments, removing the increase in the standard deviation seen in the previous test. The knit
loop smaller width W2 increases largely as compared to the larger width W1, up to close values.
Knit loops tend to change to a rectangular shape, without change in standard deviations of both
dimension. There is no standardization of knit loop dimensions with this type of loading.

Finally, shape parameters are analyzed. The angular opening α1+α2 decreases slightly despite
the rectangular shape depicted previously. The standard deviation increases by 40% (from ±5o

to ±7o) implying that the deformed knit loops initial defects are amplified by the loading case.
Such deduction can be performed on the loop warping α1 − α2 which mean value remains close
or equal to zero, yet the standard deviation greatly increases from ±2.5o to ±7.5o.

The deformed shape of a loop chosen randomly around the zone of interest central area is
presented in Figure V.17 for both wale-wise and course-wise uniaxial tension. In the former load
case, the knit loop horizontal symmetry is preserved as the loading is also of the same symmetry
and therefore, initial defects in the loop warping and opening are preserved. Horizontal segments
[M1, I1] and [I8,M3] remains horizontal, and initial warping does not interfere and the deforma-
tion mechanism is thus stable. On the contrary, for the second load case, initial warping defects,
which can be linked to alignment defects of segments [M1, I1] and [I8,M3], tend to destabilize
deformation mechanisms, and such defects are amplified with the increased loading, as seen previ-
ously. The initial knit loops dimensions uniformity is thus key to stable deformation mechanisms.

Knit loops length L and knit rows spacing dy illustrate the knit loop encompassing box strains.
Logarithmic strains of each loop are thus computed using such dimensions as:

εxx = ln( L
L0 )

εyy = ln(dy
d0
y

)
(V.1)

The evolution of the loops strains mean value (thick lines) and standard deviation (colored
surface) are plotted versus time and compared to the zone of interest strains in the same direction
(symbols) (Figure V.18). The stitch strains mean value correspond to the global zone of interest
strains, in both course-wise and wale-wise uniaxial tension, allow correlation between the mean
representative knit loop strains to the zone of interest strains and thus allowing the study of such
loop numerically. Furthermore, stitch strains spread in the course direction (blue lines/surfaces) is
narrow (±2% to ±4% at maximum ZoI strains), indicating more uniform strains in that particular
direction and better approximation of the zone of interest strain with the homogenization method.
In the wale direction, the standard deviation in strains ranges from ±5% to ±7% at maximum
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Figure V.18. Correspondence between global area of interest strains and local loops dimensions variations
in wale-wise tension (top) and course-wise tension (bottom)

zone of interest strains. The homogenization method in that direction may lead to slightly larger
errors but remains in the confidence interval.

3.2.3 Boundary force distributions

Boundary forces distributions are then analyzed at strain increments A, B, C, and D, for each
load case in uniaxial tension. Those distributions are presented along edges E1 and E4 for reasons
presented in Chapter III.

In a first time, forces distributions are presented for the wale-wise uniaxial tension test. In
chapter III, silicone membranes in their deformed shape presented a concave edge shape, resulting
in a distribution showing an increasing force close to corners (springs 1 & 2 and 18 & 19) and a
uniform distribution in springs in between. The case of uniaxial tension on knitted textiles, the
sample deformed shape shows edges concave in the tensile direction and convex in the transverse
direction (Figure V.19). A similar distribution as obtained with silicone membranes is attained
on edge E4, while an opposite distribution is present on edge E1 because of the edge convexity
(Figure V.20). In the tensile direction, normal force is considered uniform between springs 4 and
13 included, with a deviation of ±8% for step B, C, and D. At step A, only spring 1 is off the
uniformity criterion with a deviation of 20%. Along edge E1, normal force distribution is highly
heterogeneous, with a variation of approximately ±27% in the central area between springs 3 to
17 at steps B, C, and D, and ±33% for all springs at step A. This non-uniformity is mainly caused
by the low forces measured during loading implying a strong influence of measurement errors and
springs defects (initial length, placement, knit loop geometry, etc.) highly impacting.

Along edge E1, tangential forces are almost non-existent, either because of the low normal
forces than because of the low angle formed by springs compared to their initial normal position.
Along edge E4, in another hand, normal forces induce stronger tangential forces, with a distri-
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Figure V.19. Schematic representation of the ZoI deformed shape in uniaxial tension.
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Figure V.20. Boundary forces measurement along edges E1 (top) and E4 (bottom) during wale-wise ten-
sion, normal component N is on the left side, and tangent component T on the right side; Values are given
at strain increments A, B, C, and D
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Figure V.21. Tangent component T over normal component N ratio (in %) along edges E1 (left) and E4
(right) during wale-wise tension; Values are given at strain increments A, B, C, and D

bution consistent with observations realized on silicone membranes. The criterion for negligible
tangential forces has been introduced in Chapter III, equal to R ≤ 5%, is controlled in the case
of uniaxial tension. Along edge E1, the ratio

∣∣∣ TN ∣∣∣ is always inferior to 5% (Figure V.21). The
boundary conditions applied are thus considered equivalent to simple tension. Along edge E4,
in the zone define previously as uniform in regard to normal forces, the ratio obtained verifies
the criterion introduced, validating the absence of shear forces in the sample. However, on exter-
nal springs, this ratio overcomes the maximum value of 5%, unlike tests performed on silicone
membranes on which the ratio remained under 4%.

As for the tensile test in the wale direction, in course-wise tension edge E1 possesses the “U-
shape” distribution on normal forces and the opposite distribution on edge E4 (Figure V.22). On
edge E1, the center zone between springs 3 and 18 included is poorly uniform, with a variation of
±46% around the mean value. The same observation is performed on edge E4 where the normal
force variation between springs 3 and 17 included represents 57% of the mean value. Stitch
warping defects, amplified by the sample strains as well as attachment points instabilities for
springs aligned with the tensile direction on segments S2 and S4, are the cause of this distribution
non-uniformity.

Tangential forces distributions are of the same configuration as for tests carried out on silicone
membranes, with however an off-center zero value on edge E1, obtained on spring 12 instead of
spring 10, which correspond to a vertical translation of 5 mm, i.e. 12% of edge E1 length. Despite
the normal forces lack of uniformity during such test, the 5% criterion on ratio

∣∣∣ TN ∣∣∣ is verified all
along edge E1, and on 18 over 19 springs on edge E4, with the dismissed value equal to 6%. This
criterion allows to neglect shear effects in course-wise uniaxial tension as well.

3.3 Biaxial tension

In this section are presented experimental results obtained in biaxial tension for the knitted
textile tested in uniaxial tension in Section 3.2. The macroscopic behavior is first presented,
followed by the evolution of stitch dimensions and mean representative geometry during loading.
Finally, boundary forces distributions are analyzed for this loading case.
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Figure V.22. Boundary forces measurement along edges E1 (top) and E4 (bottom) during course-wise
tension, normal component N is on the left side, and tangent component T on the right side; Values are
given at strain increments A, B, C, and D
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Figure V.23. Tangent component T over normal component N ratio (in %) along edges E1 (left) and E4
(right) during course-wise tension; Values are given at strain increments A, B, C, and D
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Figure V.24. Representation of the textile working area (green outline) and Zone of Interest (ZoI - orange
outline)

3.3.1 Stress-strain relations

For this test, Figure V.24 depicts the zone of interest (orange line) and the working area (green
line) of the textile. The maximum strain used to carry out the loading case is measured with visual
extensometers (camera 1), one for each direction, following the movement of one spring targe on
each edge of the working area. The maximum value defined for this test is 10%, with a strain rate
of 0.02 s−1. Two cycles of loading/unloading are performed.

Principal strains on the working area εworkingarea (lines) are presented for each zone presented
previously during the two loading cycles (Figure V.25). The control strain follows the desired
equi-biaxiality condition along the first loading. These strains differ after the first loading and for
the next cycle because of the constant grip speed, the sample anisotropy, and the friction causing
residual strains after unloading. Principal strains on the zone of interest εZoI (symbols) resulting
from such test are also presented, and dramatically differs from the working area strains. The
buffer zone between working area and zone of interest deforms in an highly non-uniform manner,
adding to the excessive bending of the working area border segments under the springs loading in
their middle point, not representative of the stitch deformation mechanism in the zone of interest.
This lead to the very small even negative zone of interest strains. Nevertheless, some stabilization
occurs after the unloading since strains (both working area and ZoI) in the second cycle identically
reproduce strains of the first cycle minus the loading step between t = 0 and t = 150 s.

Despite the non-monotonic zone of interest strains during such biaxial test, resulting macro-
scopic lineic forces evolution is monotonic and linear in time (Figure V.26), which implies that
the control sequence is actually performed on macroscopic forces instead of strains.

3.3.2 Representative loop geometry under loading

Similarly as the presentation scheme used for uniaxial tension test (Section 3.2.2), the knit loop
mean representative geometry, as well as the standard deviation associated to each dimension, is
studied during loading cycles. The mean value is represented in thick lines while the standard
deviation correspond to the colored area around, drawn at ±σ (Figure V.27).
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Figure V.25. Strains measurements of the sample working area (lines) and ZoI (symbols) in principal di-
rections.
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Figure V.26. Macroscopic behavior of the sample ZoI in force (left scale, lines) and strains (right scale,
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Figure V.27. Loop dimension variations during loading cycles in biaxial tension

As for the uniaxial tension tests, the knit loop length L and knit rows distance dy vary corre-
spondingly to the zone of interest strains, with a constant standard deviation. The biaxial loading
does not imply dimensions standardization.

In opposition, knit loop height H varies in the opposite way as dy, decreasing under the
effect of loading, yet with a constant standard deviation. This is due to two main deformation
mechanism, different or absent in uniaxial tension. The first mechanism is the straightening of
segments S1 and S3, implying a lower height H even if a constant spacing dy is considered, as the
middle points of segments S1 and S3, namely M1 and M2 used to measure the stitch height move
toward each other as the segment straighten. The second part is the decreasing contact distance
between C1 and C2, allowing for a slightly higher distance dy, even if a constant height is taken.
The loop greater width W1 mean value and standard deviation remain practically constant, with
a decrease of less than 10% of the mean value. The loop smaller width W2 follow an evolution
similar to the loop length L with a constant standard deviation. This is due to locking preventing
the wire to slide between two contacting loops, and only the rotation around z-axis of segments
S2 and S4 and segments S1 and S3 axial strains allow the textile to deform in the course direction
(x-axis).

The stitch mean angular opening α1 + α2 and its standard deviation absolute value decrease
from 35% at the end of the first loading. This is due to the rectangular shape stitch tend toward.
The mean warping value α1 − α2 remains stable around its initial value, while the standard de-
viation decreases significantly during loading, to reach a 50% reduction at step D. The locking
happening in the case of biaxial loading implies the straightening of the loops segments S1 to
S4, removing every defects present initially because of the manufacturing process and which was
responsible for the warping standard deviation increase in course-wise uniaxial tension (Section
3.2.2.

Therefore, loading does not allow stitch dimensions uniformization, notably because of the
lack of sliding which prevent stitches height and length to balance. Yet, locking allows reducing
shape defects (warping and opening) contrarily as in course-wise uniaxial tension.

The stitches strains are computed following Eq. V.1 using dimensions L and dy, and the mean
value (thick line) as well as the corresponding standard deviation (colored area) are presented
Figure V.28 and compared to the zone of interest strains. Knit loops strains appear poorly uniform,
with a standard deviation increasing with loading up to 100% increase in course direction and
200% increase in wale direction. Yet, the mean stitches strains reproduce the global zone of
interest strains, inducing the ability to use the homogenization method and study the behavior of
the mean representative loop.
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Figure V.28. Correspondence between global area of interest strains and local loops dimensions variations
in biaxial tension
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Figure V.29. Boundary forces measurement along edges E1 (top) and E4 (bottom) during biaxial tension,
normal component N is on the left side, and tangent component T on the right side; Values are given at
strain increments A, B, C, and D

3.3.3 Boundary force distributions

Normal (N) and tangential (T) boundary forces distributions are plotted for steps A, B, C, and
D along edges E1 (top) and E4 (bottom) (Figure V.29).

Along edge E1, no corner effects are present as all springs are comprised around±15% around
the mean normal force, yet this spread is too large to consider this distribution uniform. Springs
attachment points instability is the main cause of this non-uniformity. Along edge E4 however,
springs hooking points are very stable, and the central zone between springs 2 and 18 included is
therefore uniform at ±2% around the mean value, and external springs 1 and 19 differ only from
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Figure V.30. Ratio of tangent component T over normal component N (in %) along edges E1 (left) and E4
(right) during biaxial tension; Values are given at strain increments A, B, C, and D

10% and 15% respectively. This value is of the same order as measured with silicone membranes
where external springs where off by 12% to 13%. Yet, in the case of knitted textiles, only one
spring at each edge extremity is to be considered non-uniform, as opposed to two for silicone
membranes. Normal force distributions on this edge highly uniform.

The tangential forces distribution along edge E4 presents a similar shape as obtained in uni-
axial tension and with silicone membranes, yet off-center of 30% of the edge length. The zero
position remains stable during loading, indicating potential lack of symmetry in the displacement
field along x-axis, inducing a larger angle between actual and initial spring axis for springs 11 and
above than symmetry would impose. Along edge E1, the distribution appears randomly spread
and is consequence of springs hooking points instability coupled with measurement precision,
springs initial defects, and knit loops geometry defects. Yet, the ratio

∣∣∣ TN ∣∣∣ obtained on both edges
is always less or equal to 3%, verifying the previously defined 5% criterion, and validating the
biaxial loading hypothesis (Figure V.30).

4 Numerical simulations

The finite element model presented in Chapter IV is used with the initial geometry defined
in Section 2.2 and validated in regard to the textile experimental macroscopic behavior presented
Sections 3.2 and 3.3. Firstly, boundary conditions and loading steps, as well as material behavior
models used are presented. The model is then opposed to experimental results in uniaxial tension
for the stitch macroscopic behavior. Then, influences of the material Young’s modulus and the
wire-to-wire friction coefficient are analyzed. Finally, the biaxial tension is studied following the
same steps as for the uniaxial tension.

4.1 Model parameters

4.1.1 Boundary conditions

In Chapter IV, the periodic boundary conditions method as well as the master nodes method
used to apply displacement gradients on the stitch have been described. The finite elements model
have also been presented in this chapter (Section 2.2.2).
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Figure V.31. Loading steps for the finite elements model depending on the tensile direction.

This initial geometry yet presents a large penetration of both [M4,M2] and [M ′1,M ′4], and
identically for segments [M2,M5] and [M ′5,M ′3], because of the stitch curvature in the z direction.
In order to remove such penetration, the stitch distance dy is reduced artificially, and a pre-load
force F y0 is applied taking the experimental value (Figure V.31). During this step, horizontal
gradients C1, C2, and C3 are maintained equal to zero. Therefore, the vertical symmetry and knit
length L are preserved during this step, but vertical translation is allowed. This pre-loading step
is common for all three loading cases.

The next step depends on the loading case chosen. In the case of uniaxial tension, the stitch
kinematic is constrained in the axial direction and determined with the experimental zone of in-
terest axial strain. In the transverse direction, a constant force F0 is imposed taken equal to the
experimental value.

In the case of biaxial tension, a second pre-loading step is performed as experimental initial
loading is different than uniaxial tension. This step is performed by imposing experimentally
measured forces F0biax in both x and y directions. Then, the complete stitch kinematic in x and y
directions is imposed to control stitch strains determined with experimental zone of interest strains
(Figure V.25).

4.1.2 Material behavior models

Using the tensile test carried out on an heat treated NiTi wire (Figure V.1), necessary parame-
ters used for Auricchio superelastic material behavior are identified, and presented Table V.2.

A simplifying approximation has also been introduced by using a linear elastic material of
Young’s modulus E equivalent to austenite modulus EA. This approach allow considerable com-
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Table V.2. Superelastic material parameters identified on wire uniaxial tension (Figure V.1) for use with
the Auricchio superelastic material behavior model.

EA (GPa) EM (GPa) σtr (MPa) εtr (%) ∆hσ (MPa)

46.2 18 553 5.23 340

puting time reduction compared to a model using superelastic behavior model. The macroscopic
behavior of both methods are compared with experimental results in further sections.

4.2 Uniaxial tension

Firstly, uniaxial tension is studied. The knit loop macroscopic behavior obtained numerically
is first compared to experimental results, using a linear elastic material model first then the su-
perelastic material behavior. The material is then chosen and the influence of austenite Young’s
modulus EA and friction coefficient on the stitch macroscopic behavior is then analyzed numeri-
cally.

4.2.1 Macroscopic behavior

The stitch macroscopic behavior in wale-wise tension using linear elastic material is presented
in Figure V.32. The lineic force versus axial logarithmic strain overestimates by 50% experimental
results at the loading beginning, up to step B where this overestimation decreases to less than 4.5%
at step D. The unloading however reproduces exactly experimental unloading. The transverse
logarithmic strain computed numerically substantially overestimated experimental results, while
hysteresis in another hand is correctly reproduced.

The superelastic material behavior model is then used in the same conditions and the result-
ing macroscopic behavior is compared to numerical results with linear elastic material and to
experimental results (Figure V.33). The overall lineic force response is similar than with elastic
material, taking oscillations. The superelastic hysteresis and unloading response appear better
fitting experimental results. The almost equivalent hysteresis (2.5% different) between two simu-
lations indicates that martensitic transformation does not occur during such test or is confined in
a small volume that does not affect the stitch macroscopic behavior.

The stitch macroscopic behavior with linear elastic material in course-wise uniaxial tension is
compared to experimental results (Figure V.34). The finite elements model reproduces the exper-
imental response of the textile in lineic force versus logarithmic axial strain with 93% precision
during loading. The numerical unloading path overestimates experimental results because the
finite element model fails to reproduce the textile stabilization happening experimentally, high-
lighted by the shifting zero position after the first loading and constant after the next loading cycle
(Figure V.14). The transverse logarithmic strain is 14% underestimated while the hysteresis is
overestimated by 19%.

The stitch macroscopic behavior with the superelastic material is then compared to the linear
elastic model and experimental results together (Figure V.35). With such material model, the stitch
maximum lineic response is overestimated by 20%, while unloading is correctly reproduced. The
transverse maximum logarithmic strain is still underestimated yet by 9% with the superelastic
material, while the hysteresis is overestimated by 50%. The higher lineic force hysteresis in the
case of superelastic material indicates martensitic transformation presence.
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Figure V.32. Comparison between FE model and experimental results in uniaxial wale-wise tension using
simple elastic material model.

However, despite the presence of martensitic transformation in course-wise tension, the linear
elastic model reproduces the stitch experimental mechanical response better in both course-wise
and wale-wise tension, and is therefore used for following numerical analysis.

To assess for the presence of martensitic transformation in the wire during loading, the section
maximum Von Mises stress σmaxmises is plotted along the normalized curvilinear abscissa for strain
increments A, B, C, and D. Because of the stitch initial geometry, mesh, and loading vertical
symmetry, only half of the loop is represented for clarity purposes, i.e. segments [M4,M2] and
[M ′1,M ′4], each plotted on a separate graph. Contact points are named C1 and C2 and C ′1 and
C ′2 for segments [M4,M2] and [M ′1,M ′4] respectively, and contact pressure along the normalized
curvilinear abscissa is plotted to detect their position.

The wale-wise uniaxial tension is first studied (Figure V.36). Bending occuring between M4

and C1 rises a maximum Von Mises stress lower than martensite start stress σms. This threshold
is only exceeded between contact points C1 and C2 until point M2, after step B. Along segment
[M ′1,M ′4], transformation stress is surpassed between points M ′1 and shortly after C ′1, at steps
C and D. Martensitic transformation would therefore occur over a long curvilinear length in the
wire. However, bending being the most preponderant deformation mechanism, transformed zone
is located on the outer layers of the section, and therefore represents only a small proportion of the
total volume in the stitch. Furthermore, equivalent Von Mises stress does not allow separating ten-
sion to compression within the section, and as the compressive martensite start stress is generally
40% higher than its tension counterpart σms, the worst case scenario has been used by placing the
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Figure V.33. Comparison between linear elastic (triangles) and superelastic (asterisks) material behavior
models with experimental results (lines) in uniaxial wale-wise tension.

tension threshold for both tension and compression. Hence, the low martensite volume fraction
and worst case scenario for compression explains the limited impact of using Aurrichio behavior
model.

Then, maximum Von Mises stress within the wire section is studied for the course-wise tension
(Figure V.37). Along segment [M4,M2], martensitic transformation start stress σms is surpassed
only at step D, at point M2 vicinity, under the effect of the wire straightening. During loading,
sliding induces a constant distance between contact points C1 and C2, while moving both toward
point M4. The sliding distance crossed corresponds to 10% of segment [M4,M2] curvilinear
length. Along segment [M ′1,M ′4], section maximum Von Mises stress surpasses the martensite
start stress earlier, from step C, in the vicinity of point M ′1. The maximum Von Mises stress is
reach at contact point C ′2, acting like the pivot for segment [M ′1,M ′4] bending. For such loading
case, martensitic transformation would still occur in the wire yet with a lower martensitic fraction
as the threshold stress σms is exceeded over a shorter wire length. This observation indicates that
location of martensite transformation has a greater impact on the stitch macroscopic behavior than
volume fraction as using a superelastic material to model the course-wise tension lead to larger
hysteresis in both lineic force and transverse strain.

Therefore, the linear elastic material is used for further analysis as it allows for better stitch
macroscopic behavior simulation and large computation time reduction, usually by a factor 6.
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Figure V.34. Comparison between FE model and experimental results in uniaxial course-wise tension using
simple elastic material model.

4.2.2 Influence of Young’s modulus

In order to provide with a first mechanical behavior analysis of knitted NiTi textiles and the
influence of wire parameters, the austenite Young’s modulus EA impact over the knit loop macro-
scopic behavior is studied. Two values have been tested, namely 46 GPa and 70 GPa. The first
value has been identified on the wire behavior in simple tension and corresponds to the elas-
tic modulus on the first linear part of the load (Figure V.1). However, during this phase, R-
phase appears more or less significantly and the austenite modulus computed on the whole charge
blends together austenite and R-phase modulus. Usually, initial nickel-titanium Young’s modulus
is around 70 GPa.

Young’s modulus influence is first analyzed in wale-wise tension (Figure V.38). Increasing
Young’s modulus induces a strong stiffening because of bending deformation mechanisms and
stress levels presented previously (Section 4.2.1). At strain increment D, the lineic force response
suffers a 35% increase. However, slope at the unloading start are identical, and passed 20%
strain, both unloading curves are superimposed over experimental results. The transverse strain
obtained with both moduli is, however, perfectly superimposed, indicating that the stitch Poisson’s
coefficient νyx is unresponsive to Young’s modulus variation.

Then, the influence of such moduli is studied in course-wise tension (Figure V.39). Similar
conclusions as the wale-wise uniaxial tension case are drawn, namely the lineic force stiffening
with a maximum force increased by 35% and identical initial unloading slopes. Passed 17%
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Figure V.35. Comparison between linear elastic (diamonds) and superelastic (crosses) material behavior
models with experimental results (lines) in uniaxial course-wise tension.
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Figure V.36. Maximum mises stress (top) and contact pressure (bottom) in the wire section along normal-
ized curvilinear abscissa between pointsM4 andM2 (left) and pointsM ′

1 andM ′
4 (right) using linear elastic

material during uniaxial wale-wise tension at strains increments A, B, C, and D.
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Figure V.37. Maximum mises stress (top) and contact pressure (bottom) in the wire section along normal-
ized curvilinear abscissa between pointsM4 andM2 (left) and pointsM ′

1 andM ′
4 (right) using linear elastic

material during uniaxial course-wise tension at strains increments A, B, C, and D.

0 5 1 0 1 5 2 0 2 5 3 0 3 5
0 . 0 0 0
0 . 0 2 5
0 . 0 5 0
0 . 0 7 5
0 . 1 0 0
0 . 1 2 5
0 . 1 5 0
0 . 1 7 5

Lin
eic

 fo
rce

 FE y (N
.m

m-1 )

L o g a r i t h m i c  a x i a l  s t r a i n  ε w
y  ( % )

 E x p e r i m e n t a l
 E l a s t i c  E A  =  4 6  G P a
 E l a s t i c  E A  =  7 0  G P a

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0
0 5 1 0 1 5 2 0 2 5 3 0 3 5

 

 

Lo
ga

rith
mi

c t
ran

sve
rsa

l st
rai

n ε
w x (%

)

Figure V.38. Influence of Young’s modulus on the mechanical behavior of the knit loop in wale-wise ten-
sion.
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Figure V.39. Influence of Young’s modulus on the mechanical behavior of the knit loop in course-wise
tension.

strain, both models fit experimental results. The transverse strain however slightly shifts with
the change in Young’s modulus, with a 8% increase of transverse strain at strain increment D.
Transverse strain hysteresis increases also by 15%, indicating that the stitch Poisson’s coefficient
is dependant about the material Young’s modulus.

4.2.3 Influence of friction coefficient

The stitch deformation mechanism being also highly dependant on wire sliding, friction coef-
ficient is a preponderant parameter in the mechanical response of knitted textiles. The influence
of such parameter has been studied by using three distinct values for f , namely f = 0.185 found
experimentally (Section 3.1), f = 0.13 found in literature [50], and f = 0 to verify the presence
of structural hysteresis (hysteresis not created by friction nor material).

In a first time, the wale-wise tension is studied (Figure V.40). A decreasing friction coefficient
f induces better fitting of experimental results at loading start. However, the lineic force response
differs from experimental results at 15% and 2.5% strains and the maximum lineic force reached
at strain increment D is decreased by 16% and 70% for f = 0.13 and f = 0, respectively. The
absence of friction induces an almost stiffless stitch. Friction is therefore the most important
parameter controlling the stitch mechanical response in lineic force. Maximum transverse strain,
however, is barely increased by less than 3% for both f = 0.13 and f = 0. The strain hysteresis
is almost insensitive to small f change but becomes nullified for f = 0. Hence, no structural
hysteresis is detected in wale-wise tension.
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Figure V.40. Influence of the wire friction coefficient on the knit loop mechanical behavior in wale-wise
tension.

Course-wise tension is then analyzed for its dependance about friction coefficient (Figure
V.41). The friction coefficient decrease induces, similarly as wale-wise tension, a softening of
the stitch mechanical response. However, even with no friction the stitch produces a non-constant
lineic force response, yet with a maximum value decreased by 40%. With f = 0.13, the maximum
lineic force is reduced by 13%. The transverse strain increases with the reduction of friction
coefficient, with 9% and 40% increase for f = 0.13 and f = 0, respectively. The strain hysteresis
decreases with the friction coefficient, up to a zero value without friction. In this case again, no
structural hysteresis is detected, and friction coefficient plays a less important role as in wale-wise
tension.

4.3 Biaxial tension

The numerical model is used in this section to compute the knit loop mechanical response in
biaxial tension, depending on the material behavior model used, and compared to experimental
results. As for the uniaxial tension case, the material model in then chosen in regard to the stitch
macroscopic behavior, and the influence of the austenite Young’s modulus EA and friction coeffi-
cient f on the macroscopic behavior are analyzed. In this analysis, only the first loading cycle is
studied.
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Figure V.41. Influence of the wire friction coefficient on the knit loop mechanical behavior in course-wise
tension.

4.3.1 Macroscopic behavior

The linear elastic material behavior is then used for biaxial tension and resulting stitch lineic
forces are compared to experimental results (Figure V.42). Until time increment A, elastic material
reproduces exactly experimental results. Then, after this step, elastic material starts to overesti-
mate the experimental stitch response up to a factor 2.3 at step D for both course and wale direc-
tion. Therefore, superelastic material is used to model biaxial tension, and reproduces precisely
the knit loop experimental mechanical behavior until step time B. From this point, the model un-
derestimates experimental response by 17% in the wale direction and less than 3% in the course
direction (Figure V.43). Taking into account hypothesis linked to initial knit loop and strains uni-
formity, the finite element model using superelastic material is validated in regard to the stitch
macroscopic behavior and superelastic material behavior is used for further analysis.

Then, the section maximum Von Mises stress σmaxmises along the curvilinear abscissa is studied
for this loading case (Figure V.44).

Along segment [M4,M2], the Von Mises stress exceeds the martensitic transformation stress
σms immediately at time A, between contact pointsC1 andC2 (Figure V.44), indicating a complete
martensite transformation in the external layers. Along segment [M ′1,M ′4], martensite appears
at time A at the close vicinity of contact point C ′2. In the volume, the low martensite volume
fraction yields similar results between the elastic material model, superelastic material model,
and experimental results. Furthermore, stress level analysis in uniaxial tension highlighted that
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Figure V.42. Comparison between experimental (lines) and numerical lineic forces using linear elastic
material (asterisks) during a biaxial loading cycle.
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Figure V.43. Comparison between experimental (lines) and numerical lineic forces using linear elastic
material (asterisks) and superelastic material (circles) during a biaxial loading cycle.
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Figure V.44. Maximum mises stress (top) and contact pressure (bottom) in the wire section along normal-
ized curvilinear abscissa between points M4 and M2 (left) and points M ′

1 and M ′
4 (right) using superelastic

material during biaxial tension at strains increments A, B, C, and D.

surpassing martensitic transformation stress, even with maximum stress 50% higher, still yields
correct simulation of the stitch macroscopic behavior with the linear elastic material.

However, since step time B, a large portion of segment [M4,M2] curvilinear length possesses
a maximum Von Mises stress superior or equal to the martensitic transformation stress, causing the
lineic force response overestimation observed with the linear elastic material. Stress levels reached
between contact points C1 and C2 for step times C and D would theoretically cause martensite
plasticity, not taken into account in the model. However, only small shitf in strains are present at
the end of the first cycle, namely -1.2% and -0.5% for course and wale directions, respectively.
The shift strains negative signs indicate that the shift is not plastic permanent strain but knit loops
shape balance because of sliding and friction. Therefore, martensite plasticity is negligible.

Along segment [M ′1,M ′4], stress levels are of similar magnitudes, with however a slower in-
crease in time, as at time C, a longer portion of the segment curvilinear length possesses a max-
imum equivalent stress lower than the martensitic transformation stress. Contrarily, at time D, a
slightly smaller portion of the segment curvilinear length lies below σms, namely 6.3% of segment
[M ′1,M ′4] against 15.2% of segment [M4,M2], with yet a peak maximum stress value lowered by
20%, and also located between contact points. The large martensitic volume fraction on this part
of the loop confirms the overestimation induced by the use of the linear elastic material.

Finally, the position of contact points C1, C2, C ′1, and C ′2 varies only until step B. This in-
dicates that sliding occurs only before this time, and friction coefficient is expected to yield an
impact only on this part of the force response.

4.3.2 Influence of Young’s modulus

As for uniaxial tension loading cases, the austenite Young’s modulus influence on the stitch
macroscopic behavior is studied in this section. Same modulus values as defined previously are
used. The mechanical response is presented in Figure V.45.

The increase in Young’s modulus induces an overestimation of lineic forces response yet only
before step time B. This is explained by the presence of sliding and important bending before time
B, inducing lower stress state in the section, thus a large austenite volume fraction. Hence, the
impact of austenite Young’s modulus is present only in this period. The maximum lineic forces in
both directions are equal for the two moduli.
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Figure V.45. Influence of Young’s modulus on the lineic forces response of the knit loop in biaxial tension.

Another impact of the austenite Young’s modulus appears during pre-loading, where the ma-
terial remains in austenitic phase. The Young’s modulus variation induces changes in the knit
loop dimensions before the loading step, causing potential deviation at the macroscopic and mi-
croscopic scale.

4.3.3 Influence of friction coefficient

Finally, the influence of the friction coefficient on the stitch macroscopic behavior is studied
for the biaxial loading case with the superelastic material model, and three values of friction
coefficient as introduced previously (Section 4.2.3). The knit loop lineic force responses for such
models are plotted alongside experimental results in Figure V.46.

The friction coefficient reduction induces the stitch softening, similarly as observed in uniax-
ial tension, yet with no sliding happening after step B previously identified (Section 4.3.1). No
friction induces small oscillations at the loading start because of the lack of energy dissipation by
friction and low dissipation due to the material hysteresis because of the low stress level in this
time period. The maximum lineic force decrease with the friction coefficient, by 23.5% and 28%
in the wale direction, and 14% and 9.5% in course direction, for f = 0.13 and f = 0 respectively.

As for the austenite Young’s modulus, friction coefficient variation induces initial geometry
shifts after the second pre-loading step, modifying the lineic force response with the application
of the experimental stitch kinetic.
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Figure V.46. Influence of the wire friction coefficient on the knit loop lineic forces response in biaxial
tension.
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5 General conclusion

In this chapter, direct measurement of heat treated nitinol wire-to-wire friction coefficient has
been brought and validated through the numerical analysis of the influence of the coefficient on
the stitch macroscopic behavior. The coefficient has been estimated at f = 0.185, similar to the
coefficient found in literature and identified on knitted NiTi textiles [50].

The knit loops dimensions have been analyzed thanks to the dedicated software developed
in-house and a mean representative loop geometry has been determined, with a relatively constant
standard deviation in absolute value, equal to 0.15 ± 4mm. This constant standard deviation is
yet to be understood, and potentially rises from manufacturing process precision.

The experimental setup, validated on soft silicone membranes in previous chapter, has been
adapted to fit knitted textiles and allowed computing stitch geometry changes during loading, to
verify concordance between the zone of interest and mean stitch strains, allowing the use of the ho-
mogenization method for numerical analysis. Boundary forces distributions have been measured
and corner effects characterized. It has been shown that uniaxial tension offers poor boundary
forces distribution with high standard deviation in central zone (27% for course-wise tension),
and 3 external springs at each edge extremity off the mean value by a larger amount. The ratio∣∣∣ TN ∣∣∣, however, has validated the hypothesis of negligible shear effects at the sample edges.

In biaxial tension, in another hand, boundary forces have been shown as highly uniform with
10% to 15% deviation on a single spring at each edge end, and less than 3% deviation on the
remaining springs. However, biaxial tension tests on the textile shown the experimental setup
limits by highlighting the dramatic difference between working area and zone of interest strains,
removing the possibility to control the sample strains effectively.

The mean representative geometry has been imported in the finite element model, and the
model has then been used to validate the use of a linear elastic material in order to optimize com-
putational times (reduction by a factor 6). This study has shown that such approximation yields
confident results in uniaxial tension in the strains range obtained experimentally. The maximum
Von Mises stress in the wire section along the curvilinear abscissa revealed the the linear elas-
tic material approach is validated even if local stresses highly surpass martensitic transformation
stress σms. The biaxial numerical results yet has depicted limits of such approximation as the lin-
ear elastic material overestimates 2.3 times experimental results. The Auricchio model however
has prove to be fitting experimental forces with a maximum error of 17% in the wale direction, and
less than 3% in the course direction. Maximum Von Mises stress in the section has highlighted
that a large length of the wire outer layers are transformed into martensite during such loading,
explaining the important errors obtained with the elastic material. Yet, this finite elements analy-
sis has shown that a very simple model, using beam elements approximation and simple material
behavior, can be used to estimate the behavior of a knitted NiTi textile, and is greatly time saving
by reducing calculation times by at least a factor 13 as compared to a standard 3D solid elements.

Finally, the finite elements model has been used to compute the influence of two key parame-
ters on the knit loop macroscopic behavior, namely the austenite Young’s modulusEA and friction
coefficient f , summed up in Table V.3, and highlight the importance of friction in uniaxial tension
(mainly in wale-wise tension) and the absence of structural hysteresis. This leads to the conclu-
sion that, no matter the loading case, the wire-to-wire friction coefficient is more impacting on the
knitted textile mechanical behavior than the austenite Young’s modulus.
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Table V.3. Summary of parameters EA and f influences depending on the loading case

Uniaxial Wale Uniaxial Course Biaxial

F ymax Hy νyx F xmax Hx νxy F xmax F ymax

EA + + – + + + – –

f +++ ++ – + ++ +++ - ++
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CHAPTER

VI
Conclusion & discussion

1 Conclusion and improvements

1.1 Conclusion

In this work, a complete set of analysis tools have been proposed and opposed with each other
in order to provide with analysis method for knitted NiTi textiles. For experimental characteriza-
tion of knitted NiTi textiles, an experimental setup to perform uniaxial and biaxial tests have been
proposed, which also provides with direct measurement of boundary forces distributions. This
setup has been inspired by studies performed on textiles as well as on soft polymers and biologi-
cal membranes, as the textile overall mechanical behavior is similar to such materials, to provide
the sample with strain fields uniformity within the sample working area. To complement this ex-
perimental setup, the image analysis software developed computes the internal morphology of the
textile and dimension changes during loading. Then, based on the assumption of uniform knit
loops dimensions and strain fields during tensile loading, a finite element model have been pro-
posed using the homogenization method and a single knit loop to compute the textile mechanical
behavior. This model uses beam finite elements in order to reduce greatly computation times as
the wire diameter is very low before its curvilinear length within a single loop. The model is solve
with the explicit method in order to be able to take into account for contact between beam elements
as no contact management allowing sliding is available with the implicit resolution method. Fi-
nally, in order to complete the model configuration, an experimental setup to perform wire-to-wire
friction analysis has been developed. This simple device allows for measuring in a very simple
and precise way the friction coefficient between two nickel-titanium wires. The value obtained
after several measurement is averaged and implemented in the model. The mechanical behav-
ior analysis of a knitted NiTi textile has then been performed with the analysis tools developed
specifically and presented in this work.

The macroscopic behavior obtained in uniaxial tension presents the characteristic anisotropy
and large recoverable strains (up to 32%), as expected. The anisotropy is characterized by a lineic
reaction force 30% lower in the wale direction than in course direction, up to 24% ZoI strain.
The wale direction also presents stronger stiffening as, for 24% ZoI strain, the lineic response is
5 times greater than the initial lineic force, while in the course direction, at such strain level, the
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lineic is response is 3.8 times greater than at 0% strain. The lineic force versus strain hysteresis in
the wale direction also presents a larger increase during loading, being 2.45 times greater at 30%
strain than at 6% strain.

The experimental analysis setup proposed allows performing boundary forces direct distri-
butions measurement and orientation (normal and tangential) in order to verify biaxial tension
hypothesis and to quantify boundary effects and forces concentrations on the sample edges. On
soft silicone membranes, it has been shown that 2 springs on each edges extremity are off by
12% and 6%, and that strain fields are uniform at 32 ± 2.5% over 50% of the sample working
area. The area around fishing hooks attachment points can diverge from the mean strain by about
10% of the mean value, which is not considered uniform yet is not dramatically heterogeneous.
Applied to knitted NiTi textiles, this method however shown poor uniformity of boundary forces
distributions in uniaxial tension, where generally 3 outer springs were off the mean value by more
than 5% of the mean value. This phenomenon is caused by geometrical knit loops heterogeneities,
springs initial tension defects, and sample edges convex deformed shape, mainly. Still, the ratio
of tangential forces over normal forces remains lower than 5%, which assumes that the effect of
tangential forces are negligible along the sample edges, confirming the basic hypothesis of biax-
ial tensile test that assumes only normal forces are imposed on the sample edges and tangential
movement and strains are free. During knitted NiTi textiles biaxial tensile tests however, normal
forces distributions show strong uniformity, with only one single extreme spring on each edge off
the mean value by 10% to 15%. The tangential forces norm over normal forces norm ratio never
exceeds 3.5% in that case, confirming the hypothesis of biaxial loading over the sample edges.

The image processing software developed for knitted textiles allowed measurement of several
knit loop parameters (dimensions and shape) and provided with the knit loop mean initial geome-
try and standard deviation. The standard deviation associated with the mean value appeared of the
same order of magnitude for every of the loop dimensions (0.15± 4mm), requiring further study
to analyse the origin of such standard deviation. Yet, the mean dimensions values and standard
deviation have been studied throughout loading, and revealed that, in absolute value, the standard
deviation rarely change in few cases. The only standard deviation variations can be measured on
knit loop widthsW1 andW2 in wale wise tension only. The shape parameters α1 and α2 have their
standard deviation varying depending on the loading case, and highlights specifically the unstable
geometry of the knit loop in course-wise tension. For such loading case, the absence of symmetry
of the loop containing the loading direction and the presence of only one segment aligned with this
direction (versus two for the wale-wise tension) are the potentially main reasons for such instabil-
ity. Lastly, the knit loops dimensions allowed computing each loop strains along the x and y-axis,
using the loop length L and row spacing dy respectively. During loading, the knit loops strains
uniformity is evaluated with the corresponding standard deviation value and evolution. It can be
observed that uniaxial tensile tests present highly uniform strains, with a maximum standard devi-
ation of ±4% along the x-axis and ±7% along the y-axis. This low deviation indicates that strain
fields within the sample are particularly uniform within the sample zone of interest. Furthermore,
the knit loops strains mean value has been compared to the global zone of interest strains, and both
values correspond precisely. These two observations imply taht the homogenization method can
be used numerically to model the sample mechanical behavior and extrapolate its behavior from a
single knit loop.

The numerical analysis was then performed on the knitted textile mean geometry, using pe-
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riodic boundary conditions in order to produce the behavior of an virtually infinite textile, and
beam elements in order to reduce computational times and periodic boundary conditions enforce-
ment complexity. The model has also been further simplified by using a simple linear elastic
material behavior instead of a superelastic behavior model, in order to verify the possibility of
reducing further calculation times. The kinematic boundary conditions were implemented in the
model to constrain the stitch strains, and the resulting mechanical behavior has been compared
to experimental measurements. The model using linear elastic material behavior presents good
agreement with experimental measurements in uniaxial tension. The analysis of the section max-
imum Von Mises stress along the wire curvilinear abscissa revealed that stress levels within the
section are relatively low, and only locally exceeds the superelastic martensitic transformation
stress σMs. The low material volume exceeding the martensitic transformation stress allows to
neglect, for uniaxial loading case and up to 24% strain and 32% strain in the course and wale
directions respectively, the effect of martensitic transformation on the mechanical behavior of the
textile. However, in biaxial tension, stress levels within the wire section increase quickly, and after
reaching 1% and 3% in course and wale direction respectively (time increment A), the knit loop
lineic force response starts to deviate when using a linear elastic material. Hence, the superelastic
material model (Auricchio) is preferred. At maximum deformation (time increment D), only 15%
of the segment [M4,M2] and 6% of the segment [M ′1,M ′4] possess a maximum Von Mises stress
lower than the martensitic transformation stress. Using the superelastic behavior model, the stitch
loop lineic force response precisely reproduce the experimentally measured reaction in the course
direction, and underestimates by 17% the reaction in the wale direction. This simple finite element
model thus provide with precise evaluation of the knitted NiTi textile mechanical behavior, and
can be used for early studies as a time saving method to refine the research domain, prior to use
more complex yet more precise models.

The model proposed performs precise estimation of the textile mechanical reaction under uni-
axial and biaxial loading, taking into account for friction phenomenon, bending and axial strains,
and providing no restriction on the loading case. The use of explicit resolution method, imposed
by the contact management between beam elements, provides the model with the ability to model
dynamic analysis for impact resistance (ballistic vest) or energy damping under harmonic loads
(vibration absorber) of knitted textiles. Furthermore, the model used to perform numerical analy-
sis of knitted NiTi textiles can be also used for any wire materials as long as the material behavior
model is supported by beam elements and the number of integration points is chosen correctly.

Two preliminary studies have been presented to estimate the influence of two key parameters
for knitted NiTi textiles, namely the austenite Young’s modulus EA and treated NiTi wires fric-
tion coefficient f , and the result are summed-up in Table V.3. It has been shown that the austenite
Young’s modulus has a limited impact on the mechanical behavior of the textile, specially in biax-
ial tension. In uniaxial tension, bending is predominant in the knit loop, implying that an increase
in Young’s modulus increases the reaction force for same beam curvature, inducing here an in-
crease in the maximum lineic force of 35%. Yet, curvature changes are relatively small, hence the
influence of the austenite Young’s modulus over the lineic force response remains limited. The
lineic force versus strain hysteresis is also barely impacted by the increase of austenite Young’s
modulus. The knit loop Poisson’s ratio, however, is dependent on the austenite Young’s modulus
in course-wise tension but not in wale-wise tension. In biaxial tension, however, as the transforma-
tion stress σms is quickly exceeded, the austenite Young’s modulus possesses low to non-existent
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impact on the mechanical behavior of the knit loop, and the only impact is observable during the
loading first half.

The friction coefficient f , however, plays an important role on the mechanical behavior of the
knitted textile, even in biaxial tension where locking occurs directly at the beginning of the step.
The friction coefficient appeared responsible for almost the entire mechanical response of the knit
loop in wale-wise tension and the absence of friction reduces by 70% the maximum lineic force
obtained. This coefficient have much less influence in course-wise tension and the lack of friction
reduces the maximum lineic force by 40%. However, this observation is the opposite regarding
the loop Poisson’s ratio, where the friction coefficient as no impact in wale-wise tension while is
responsible for an important increase of the Poisson’s ratio νxy in course-wise tension, increasing
the maximum transverse strain by 40% when no friction happens between wires. In the case of
biaxial tension, the absence of wire friction induces an increased in lineic force response of 10%
and 28% in course and wale directions respectively. The difference is mainly explained by the
shift in initial loop dimensions after the second pre-loading step (specific to the biaxial loading
case) induced by the modification of the friction coefficient.

1.2 Improvement perspectives

Biaxial tests on knitted textiles appear difficult to really control due to stitch deformations
with the proposed hooking system. The local forces on the loop segments induced large concen-
trated bending on loop and thus large deviation of the global strain versus the mean loops strain.
However, such defects may also be observed with other setups which use very local attachment
technique. This study has thus brought to light such defects induced by the griping method and
particular precautions have to be taken for biaxial tests on knitted textiles. Those tests have to be
performed by taking into account the difference between global and zone of interest strains, and
the global strains measurement (grips or targets for the setup proposed) should not be used as the
mean zone of interest strains.

The spring system also highlight difficulties to obtain uniform initial spring forces. Springs
used for this setup were commercially provided with jointed coils, inducing an initial contraction
forces, and their free length was low (25 mm). Hence, each spring has been elongated on a tensile
machine up to a final free length of 150 mm. Yet, this elongation can not be performed with a
high enough precision to allow for an initial free length to be comprised between 150 ± 0.25 mm.
On top of such defect, the knit loop dimensions initial non-uniformity induces springs attachment
point placement defects. Therefore, initial spring tension present strong heterogeneities, and few
springs may be totally freely bent down or in the contrary stretch excessively. Therefore, a system
providing adjustable initial spring tension could be developed to tune each spring initial tension
to put every spring in a similar state before loading. Yet such system may not require to provide
with precise tension measurement as the initial tension only aims at straightening springs at the
initial state. Hence, such tension may be easily manually evaluated without the introduction of a
too large initial tension.

During tests presented in this work, two camera were used to take pictures of the sample and
setup, respectively. The two cameras may be replaced by a single one having large enough field
of view, coupled with an high resolution (about 16 Mpx) to provide with the capability of tracking
springs and grips target movements and knitted textile structure changes. Using only one camera
reduces the complexity of the camera mounting system, camera coupling software and synchro-
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nization with the tensile machine recordings, and also reduces the overall data weight as each
picture usually weight around 5 Mo. Yet, such camera may, to this day, still be expensive and
not always available in laboratories. Furthermore, to perform targets tracking and knit morphol-
ogy computation, two different contrast settings are used due to lighting and reflection problems.
Hence, using a single camera implies to define for each test pictures the knit structure zone of
interest and the target location to perform two black and white level treatment, leading to largely
increased computation times.

In the present study, only a small part of the data available on test pictures have been used. The
focus has been kep on knit loop dimensions and shape, but sliding distance, axial deformations,
textile porosity/loop density, and few more can also be computed on the images. The image
processing software developed for knitted textiles can also be further improved to give access
to even more precise information such as wire initial curvature and change during loading for
example, and could be used as well on composites using knitted textiles as reinforcement, as long
as the matrix offers enough transparency and low diffraction to analyze the textile deformation
mechanisms while locked inside the matrix.

2 Discussion and perspectives

The study presented in this thesis has only skimmed over the knitted textiles mechanical be-
havior comprehension. Further studies are required to complete the knowledge base on such
particular textiles in order to propose concrete applications, such as the effect of the initial knit
loop dimensions over the mechanical behavior of the sample or the characterization of shape-
setting method in order to provide with reproducible stitch dimensions after heat treatment. In
such purpose, the analysis methods have been presented and validated in this work to prepare
future studies.

The huge interest of knitted textiles is the wire high mobility within the structure which is
responsible for the textile high recoverable strain and damping capability, mainly. Therefore,
when used as composite reinforcement textile, the matrix blocks the wire movement and negates
such properties. The remaining aspect is the high formability and the ability to produce complex
preforms without any steps subsequent to knitting. After molding is completed, the textile looses
its special abilities (loss of mobility) and its mechanical behavior should become close to woven
textiles, i.e. similar to a wire in simple tension. In such case, the cohesion between the matrix
and the textile play an important role as the wire bending may induce strong shear stress and cut
through the matrix.

In the case of biomedical use of knitted NiTi textiles, the question of organism protection
may be asked. Indeed, nickel-titanium alloys may release nickel atoms in the organism which are
highly allergen and can even be hazardous for the patient’s health. Furthermore, chemical attacks
may appears when the alloy is exposed to acidic environment such as gastric fluids (esophageal
stents, for example), inducing premature damaging and braking of the implant. Finally, when
aiming at using the shape-memory capacity of the alloy, the heating of the implant can prove
tricky as biological tissues start to be severally damage when the temperature rises above 42oC.
Hence, coating the wire in a neutral material to provide the implant with a chemical and thermal
shield can be performed. Yet, such coating implies a strong modification of the wire to wire
friction coefficient, and therefore can modify greatly the knitted textile mechanical properties.
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And as the frictional forces rise, when sliding occurs, high tangential forces at the contact layer
between the NiTi wire and its coating arise and may fracture the bond. Deep studies on the bond
between nickel-titanium wires and polymer coating have to be perform to investigate the bond
strength and its possible damage under such loading conditions (Thierry Rey thesis work (2014)).

Bioresorbable polymers have already been used to produce knitted stents allowing easy man-
ufacture at low costs, controlled anisotropy and mechanical behavior, and easy removing opera-
tion [49]. Thanks to the analysis tools proposed in the present study, stents produced purely from
bioresorbable wires could be developed, their mechanical properties tuned to fit the artery which
they will be fitted in, to provide implants which degrades within the patient’s body to remove the
need of post-operative intervention to remove the stent.
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