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Abstract 

To address motor control issues in speech production a 3D finite element model of the face has been 
constructed. This model is made of a mesh that consists of hexahedral and wedge elements. The mesh 
has three distinctive layers and is symmetrical about the mid-sagittal plane. Face muscles are 
anatomically represented in the mesh as subsets of contiguous elements. The elements of the mesh 
have elastic properties described by an isotropic nearly incompressible hyperelastic constitutive law. In 
order to study the global effects of muscles on facial mimics and lips gestures, and more specifically 
on speech gestures like protrusion and rounding, a simple linear muscle model has been first designed. 
The impact on facial gestures of stiffness changes in soft tissues is studied. Stiffening in soft tissues is 
indeed concomitant with muscle activation due to stress stiffening effect. This effect is accounted for 
in the muscle model through a variation of the hyperelastic constitutive law. Special attention is also 
devoted to the production of protruded and rounded lips which are required for the production of 
rounded vowels particularly in French. It is shown that stiffening helps the achievement of an accurate 
protrusion/rounding gesture thanks to the existence of a saturation effect in the relation between the 
muscle activations and the acoustically relevant geometrical characteristics of the lips. 
The result shows the importance of the dynamical properties of the articulators in the achievement of 
speech production gestures. Having been incited to improve the modeling of the main source of the 
force in speech movements, namely the muscles, a more realistic muscle model including a new 
constitutive law corresponding to a transversely isotropic nearly incompressible hyperelastic material 
and a Hill-type muscle model is designed in the ANSYS® finite element software thanks to the 
USERMAT programming facilities of this software. To account for a full Hill-type muscle model a 
force-velocity characteristic is then included in the new muscle element, thanks to the USERELEM 
facilities of ANSYS®. The implementation of this force-velocity characteristic introduces a damping 
effect on muscle movement due to a decrease of the muscle force when muscle compression velocity 
increases.  
The designed structure of the muscle element is general enough to enable studying other muscle 
models. Hence, Feldman’s muscle model, which has been extensively used in former modelling works 
at Gipsa-lab, is implemented. In a bid to integrate the Feldman’s model in a finite element structure a 
distributed formulation of this model has been proposed. The Hill-type and the Feldman-type muscle 
element are included in the face model to replace the first simple linear muscle model. The first 
simulations of lips protrusion/rounding gesture show realistic results. A comparison of the results 
obtained with the Hill-type model with those obtained with the Feldman’s model is also conducted 
which shows that the final face shapes are very similar to those of these two models. 
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Résumé 
 
Un modèle tridimensionnel du visage a été élaboré, dans la perspective de contribuer à l’étude de 
questions importantes sur le contrôle moteur de la production de la parole. Ce modèle est construit sur 
un maillage constitué d’éléments hexahédraux et de clavettes, qui comporte 3 couches distinctes et est 
symétrique par rapport au plan medio-sagittal. Les muscles faciaux sont représentés dans le maillage 
par un sous-ensemble d’éléments contigus. Les propriétés élastiques des éléments du maillage sont 
décrites par une loi de comportement de type isotrope quasi incompressible et hyperélastique. Dans 
une première phase de ce travail, pour étudier les conséquences globales de l’activation des muscles 
oro-faciaux sur les mimiques faciales et les gestes labiaux, et plus particulièrement sur les gestes 
labiaux en parole, un modèle linéaire de muscle a été élaboré. L’influence des variations de la raideur 
des tissus mous sur les gestes faciaux a été étudiée. En effet, l’activation des muscles entraîne un 
raidissement des tissus mous musculaires concernés. Cet effet est pris en compte dans le modèle de 
muscle par un changement de la loi de comportement hyperélastique avec l’activation musculaire. Une 
attention particulière a été portée dans cette étude à la production du geste de 
protrusion/arrondissement des lèvres qui est un geste fondamental dans la production des voyelles 
arrondies, en particulier en Français. Nous montrons que le raidissement des tissus mous musculaires 
facilite la production précise de ce geste grâce à l’existence d’un effet de saturation dans la relation 
entre les activations musculaires et les paramètres géométriques des lèvres qui sont pertinents 
acoustiquement.  
Ce résultat souligne l’importance des propriétés dynamiques des articulateurs dans la production des 
gestes de la parole, et il nous a incités à améliorer encore la modélisation de la source principale de 
force en production de la parole, c’est-à-dire les muscles. C’est pourquoi, un modèle de muscles plus 
réaliste a été élaboré qui se fonde sur une loi de comportement transversalement isotrope quasi 
incompressible et hyperélastique et sur un modèle de muscle de type Hill. Ce modèle a été implémenté 
dans le logiciel éléments finis ANSYS® grâce à sa fonction de programmation USERMAT. La prise 
en compte supplémentaire d’une loi caractéristique force-vitesse a permis la modélisation complète 
d’un modèle de muscle de type Hill. Ceci a été fait sous ANSYS® grâce à sa fonction de 
programmation USERELEM. Cette loi caractéristique force-vitesse introduit un effet d’amortissement 
dans le mouvement du muscle du fait d’une atténuation croissante de la force musculaire lorsque la 
vitesse de compression du muscle augmente. 
Ce nouvel élément de type muscle a été conçu de manière telle qu’il est possible d’implémenter 
d’autres modèles de muscles que le modèle de type Hill. C’est pourquoi nous avons aussi implémenté 
le modèle de Feldman, qui a été utilisé de manière importante à Gipsa-lab dans les dernières années. 
L’intégration du modèle de Feldman dans une structure à éléments finis a nécessité une reformulation 
de façon à le rendre compatible avec une modélisation distribuée. Les modèles de Hill et de Feldman 
ont ensuite été incorporés dans le modèle de visage pour remplacer le modèle linéaire initial. Dans ces 
conditions les premières simulations du geste de protrusion/arrondissement labial ont donné des 
résultats réalistes. Finalement une comparaison des résultats obtenus avec le modèle de Hill avec ceux 
qui génère le modèle de Feldman montrent que les formes labiales finales sont très similaires pour les 
deux modèles. 
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Chapter One: Introduction: Speech Production, Motor Control and Biomechanics 

“A director makes only one movie in his life.” 
“Then he breaks it into pieces and makes it again.” 

Jean Renoir 

1.1 General scientific context, goals and challenges  

Human motor effectors, fingers, hands, arms, legs, eyes, the jaw or the tongue, have physical 
properties such as mass, inertia, damping factor, stiffness, elasticity or degrees of freedom, which 
determine their behaviours in response to external or internal stresses. These behaviours can be very 
different across motor effectors. Inertia is for instance very low for eyes and very significant for the 
legs; the tongue or the lips are highly deformable structures in which elastic characteristics are 
determining factors of movements, while arms, legs or jaw are rigid bodies articulated at joints that 
specify and limit their degrees of freedom. In the context of the study of motor control of human 
skilled movements, this statement raises the issue of the way the Central Nervous System takes into 
account these specific physical properties of the motor effectors, in order to achieve the intended 
movements, with the desired spatial accuracy and the desired timing. Two main classes of hypotheses 
exist in the literature to study this issue.  
The first class of hypotheses, defended amongst others by Kawato et al. (1990), Shadmehr & Moussavi 
(2000), Hinder & Millner (2003) or Ahmed & Wolpert (2009), suggests that the brain stores a 
comprehensive description of the physical behaviours of the motor effectors in the so called “internal 
models”. It is hypothesized that the Central Nervous System would use these models to compute 
inverse dynamics, and determine the time variation of the motor commands that are appropriate to a 
correct achievement of the motor goals with the required timing. This is done in the context of a so-
called feedforward motor control scheme. In sum, according to this first class of hypotheses the time 
courses of movements are determined by a procedure that anticipates or predicts the consequences on 
movements of the physical properties of the motor effectors, in order to counteract them and to reach 
the motor goals in any case.  
The second class of hypotheses, mainly defended by Feldman (1986), Gribble et al. (1998), or Perrier 
et al. (2003), suggests that only global representations of the physical system would be stored in the 
brain. These representations would be used by the Central Nervous System to determine a global 
setting of the motor commands as for example the co-contraction level, in order to deal with timing 
and accuracy constraints. However, these representations would be not accurate and comprehensive 
enough to allow any inverse dynamics procedure. Thus, the actual movements would be the results of 
a combination of influences, namely the one of the centrally specified motor commands and the one of 
the physical properties of the motor effectors. In this context, the variability of the physical 
characteristics of motor effectors would result in an equivalent variability of movement patterns. 
The aim of this thesis is not to provide direct support to any of these hypotheses in the context of 
speech motor control rather to elaborate a sophisticated biomechanical model of the face, in order to 
provide a thorough full and realistic account of the physical characteristics of the orofacial region. This 
should allow evaluating very precisely and quantitatively to which extent these physical properties are 
likely to significantly influence movements. In the line of the works of Payan & Perrier (1997), Gerard 
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et al. (2006) and Buchaillard et al. (2009), this work is an additional step toward the elaboration of a 
powerful modeling context that will enable quantitative testing all these different hypotheses, by 
confronting simulated and experimental movements. 
This approach is in line with the one of Gribble, Ostry and colleagues (Gribble & Ostry, 1996, Gribble 
et al. 1998), who used biomechanical models to evaluate basic hypotheses about motor control. In their 
controversy with Gomi & Kawato (1996) about the complexity of the control signals in human arm 
movements, Gribble et al (1998) suggested that the differences between their own results (i.e. control 
signals are simple) and those of Gomi & Kawato (1998) (i.e. control signals are complex in shape) 
would “arise from their (Gomi & Kawato’s) use of a simplified model of force-generation” (p. 1413). 
This example illustrates well the central challenge of the present work, namely achieving a high degree 
of accuracy and realism in the description of face biomechanics in the model, in order to ensure the 
validity and the generality of the conclusions of future works that will be carried out with this model. 
Since face is mainly made of soft tissues and muscles, soft tissues properties, muscle force generation 
mechanisms and their influence on muscle tissues mechanics are at the core of the present work. If it is 
considered that leaving human soft tissues have a negligible plasticity and are nearly incompressible, 
their mechanical behavior is described by the relation between stress and strain, also called 
“constitutive law”. The derivative of the stress with respect to strain is the “Young Modulus”, which 
described the sensitivity of the tissue’s size to local variations of stress in the direction of the applied 
force. It is an expression of the common concept of stiffness. Muscle activation generates an increase 
of the stiffness of muscles soft tissues in the directions orthogonal to the muscle fibers direction. This 
phenomenon is known as the “stress-stiffening” effect. Its amplitude increases with the so-called co-
activation of antagonist muscle pairs. Stiffness is classically considered as an important parameter in 
motor control studies, and from different perspectives (see below section 1.2). However, the “stress-
stiffening” effect is generally ignored in these studies that are mainly concerned by articulated rigid 
motor effectors. Hence, a significant part of the present work has been devoted to the study of the 
potential impact of this biomechanical effect on oro-facial gestures and more specifically on gestures 
underlying speech production. This has been done first with a muscle model in which stress-stiffening 
effect is accounted for in a functional manner and isotropically, in the continuity of the proposals made 
for the tongue by Gerard et al (2006) and Buchaillard et al (2009). In a second stage, a more 
sophisticated model has been elaborated that models physically the muscle generation mechanisms in 
transversally isotropic tissues, in which the muscle fiber direction has a specific status. In this model 
stress-stiffening effect arises naturally from muscle mechanics when muscle is activated. Rationales 
for these two main achievements of the present work are summarized below in sections 1.2 and 1.3 
 
1.2 Stiffness: biomechanical and motor control perspectives  

Stiffness properties of the human motor system depend on various physiological influences, such as 
passive elastic properties of muscle tissues, muscle activations, and neural feedback (McMahon, 
1984). Thus muscle activations in motor systems not only induce changes in position but also changes 
in stiffness. Stiffness changes and position changes intrinsically co-occur as the consequences of 
muscle activation, but to a certain extent they can also be controlled separately. Evidence supporting 
the hypothesis of these separate controls has been well documented in different studies that have 
shown the existence of (1) isometric motor tasks (change in muscle activations and stiffening, but no 
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change in position), (2) isotonic motor tasks (change in position and in individual muscle activations, 
but without change in global muscle activation), and (3) unconstrained motor tasks (change in position 
and in muscle activations and stiffening) (see for example Feldman, 1986, for an account of these 
separate controls in the context of the Equilibrium Point Hypothesis). According to the literature, a 
specific control of stiffness is useful in motor control mainly for two reasons: increasing stiffness has 
an impact on movement speed and duration, and it is an efficient way to control movement accuracy, 
especially in the context of external perturbations. 
A number of experimental (Bennett, 1993; Suzuki et al., 2001) and modelling studies (Gribble & 
Ostry, 1998; Perrier et al., 1996) of speech production have shown that high stiffness levels of the 
motor system are associated with rapid movements. Controlling the stiffness of the motor system 
allows the global movement duration for a given movement amplitude to be influenced. In a pure 
dynamical representation of motor systems (Kelso, 1995) the motor system is represented as sets of 
coupled oscillators. In the framework of coupled oscillators it has been proposed that modulating 
stiffness would be the means to control time, in the form of individual movement durations as well as 
of interlimb (or, for speech, interarticulator) time coordination (phasing) (Kelso et al., 1981; Kelso, 
1995, p.104-106; for speech production see also Saltzman, 1986). For speech research this proposal is 
grounded in the intrinsic speech timing theory proposed by Fowler (1980) (but see Fuchs et al., 2011). 
So far, the majority of recent studies on stiffness control in movement production are related to the 
question of movement accuracy control. It has been shown that, for postural control, increasing the co-
activation of agonist and antagonist muscles would minimize the consequences of perturbing external 
loads by increasing joint stiffness (see for example Milner & Cloutier, 1998, and Milner, 2002 for the 
wrist joint). Similar findings have been obtained for movement control in perturbed conditions. For 
example, Burdet et al. (2001) observed that, in a motor task where the subjects had to follow with their 
arm a straight line connecting two targets, the subjects adapted to an unstable velocity-dependent 
perturbing force field imposed by a robot by increasing the stiffness of their arm in the direction of a 
perturbing field. However, as suggested by Milner (2002), increasing the stiffness is “metabolically 
costly” (p. 406). Hence, it can be expected that under normal movement execution, i.e. in the absence 
of a perturbing field, subjects could favour alternative and less costly motor strategies to ensure 
accuracy. Milner & Franklin (2005) indeed found that, in the presence of a perturbing force field, 
subjects would increase stiffness only during the first trial. According to these authors, for the other 
trials, other strategies were elaborated based on the acquisition of a crude internal model of the 
dynamics in the perturbed conditions. Assuming the acquisition and the use of internal dynamical 
representations, similar results were observed by Davidson & Wolpert (2003) for subjects performing 
a single task in a predictably varying environment. A number of studies confirm, though, that even 
under normal, unperturbed conditions, stiffness is used to control accuracy. Studying jaw movements 
in speech production with respect to relations between positioning accuracy and stiffness ellipses, 
Shiller et al. (2002) found that accuracy is better in the direction of the major axes of the ellipses, i.e. 
movements are more precise in the directions along which stiffness is larger. Osu et al. (2004) 
observed that in tasks where subjects were asked to reach targets of different sizes, they stiffened their 
arm when the targets were small. These authors also noticed that movements intentionally produced 
with increased co-contraction were more accurate. Similarly, Wong et al. (2009) measured the 
variation in limb stiffness when subjects were asked to move their arm from a start target to an end 
target, in the absence of any perturbing external force field, with various requirements in terms of end 
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target accuracy. The authors observed that stiffness increased when the size of the end target 
decreased. 
Hence, the relation between stiffness of the limb, the jaw or the arm and movement accuracy seems to 
be well established. However, all motor effectors studied so far are rigid bodies articulated at joints. 
Stiffening these effectors actually means stiffening the joints, by increasing the forces of the agonist-
antagonist sets of muscles (a coordinated muscle activation also called co-activation) around these 
joints. In the case of speech production, the articulators that are responsible for the fine shaping of the 
vocal tract, which determines the properties of the acoustic signals, are soft bodies such as the tongue, 
lips, and velum. The impact of stiffening on soft bodies is likely to be quite different from that 
observed for rigid bodies. Indeed, stiffening a joint changes the stability of the motor system around 
this joint, without modifying in any way the range of the configurations that are likely to be achieved 
by the motor system. In the case of rigid bodies a change in stiffness modifies the dynamical 
characteristics of the task space, but it does not alter the shape or the size of the task space. For soft 
bodies, the situation is different because different stiffness values may affect the required shape of 
motor system. Consequently, it can be expected that controlling stiffness could be used in speech 
movements for other purposes than in limb or arm movements. 
There is only one study on the role of stiffening in the control of soft body motor systems which was 
proposed by Hooper (2006) and concerns the octopus. Hooper (2006) explains the observation that 
octopuses stiffen their tentacles when they grasp at food by the fact that this strategy allows a 
reduction in the number of degrees of freedom of the tentacle. This reduction simplifies the selection 
of the motor commands that enable a precise achievement of a particular gesture. However, to our 
knowledge, there has so far been no study on the role of stiffening in soft body motor control for 
humans. 
 
1.3 Biomechanical face model: modelling issues and goals 

Numerous biomechanical models of the face have been developed in the last 10-15 years. Many of 
them were developed in the framework of computer graphics facial animation (Lee et al. 1995; Sifakis 
et al. 2005) or computer aided surgery (Chabanas et al. 2003; Gladilin et al. 2004; Beldie et al. 2010), 
but only a few were used in studies about speech production and speech perception (Lucero and 
Munhall 1999; Piterman & Munhall, Gomi et al. 2006).  
The pioneer work of Lee et al. (1995) has made popular a discrete modelling framework, with sparse 
mass-spring entities regularly assembled inside facial tissues. This approach allows fast computations 
with a simple algorithmic implementation. However, in addition to the lack of accuracy of such 
models and to their numerical instabilities, it seems to be very difficult to set their elastic parameters 
(the stiffness of springs) in order to fit the constitutive law that is observed and measured on living 
tissues. Recently Kim & Gomi (2007) have improved Gomi et al.’s (2006) discrete model by 
implementing a so-called “continuum compatible” mass-spring model with stiffness parameters that 
can be adjusted in order to follow a simple linear continuum constitutive law. Although this model is 
interesting in computational terms, especially for dynamic simulations, it is limited to correctly 
reproduce the behaviour of highly non-linear material such as facial tissues (Fung 1993; Gerard et al. 
2005).  
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In continuity with the works of Chabanas et al. (2003) the finite element framework is used here to 
model the continuous tissues of the human face. Although computationally less efficient than the 
discrete modelling framework, it enables in particular the use of non linear mechanical modelling such 
as hyperelastic laws to better approximate the tissues behaviour (Fung 1993). 
The total force generated in a muscle is the sum of two components: an active one (Fac) and a passive 
one (Fpc). Due to α-motoneurons depolarization, muscle fibres generate force, which in turn causes 
change in muscle length. The force generated through the actin-myosin cross-bridges is the active 
component of muscle force. According to this basic model a contractile element generates force as a 
function of muscle length (F versus L curve) and its velocity (F versus V curve). These curves are 
assumed to be scaled up or down as a function of the level of activation (Zajac 1989). Due to their 
stiffness the surrounding tissues will resist to the active component thus defining a passive component 
of muscle force. In real muscles this passive component is not isotropic since the mechanical 
properties in the direction of muscle collagen fibres are different from the embedding matrix 
(McMahon 1984). Hence, the passive material behaviour should ideally be modelled with a 
transversely isotropic material (Humphrey and Yin 1989; Weiss et al. 1996). As mentioned in section 
1.1, our approach consisted in two stages: in the first one, to limit the complexity of the modelling 
approach, we did not consider this transversally isotropic characteristic, and worked with a face model 
made of isotropic elements. In the second stage, after a first evaluation that has demonstrated the 
potential impact of muscle stiffening on facial shaping and speech production gestures, a detailed and 
physically advanced modelling work was initiated, that aimed at accounting as realistically as possible 
for muscle forces generation mechanisms and their associated muscle tissues stiffening. 
Some authors working with finite element modelling have implemented muscle force generation 
mechanisms by designing new elements which include both active stress stiffening effect and passive 
transversal isotropy (see among others Wilhelms-Tricario 1995; Johansson et al., 2000;Yucesoy et al. 
2002; Blemker et al. 2005;Martins et al., 2006; Rohrle and Pullan, 2007; Tang et al., 2009). These 
elements need to be oriented along the axis orthogonal to the direction of isotropy (Ng-Thow-Hing and 
Fiume 2002) in order to define fibre and cross fibre directions. These elements also should obviously 
be distinguished from the surrounding tissues (Teran et al. 2005). This method has been implemented 
by Sifakis et al. (2006) for modelling face muscles and speech behaviours quasi-statically. 
In order to increase the realism of model we have developed a transversely isotropic constitutive law 
together with muscle activation function via a user-defined element in finite element. This work has 
required a long mathematical study that is based on advanced mathematical formulations of soft tissue 
mechanics. This element has been included in the face model, to replace the functional model used in 
the first stage of the work. This provides more realism to the model for further assessments of motor 
control hypotheses in the context of orofacial gestures. In addition this muscle element can be in the 
future integrated in finite elements models of other soft tissues articulators such as tongue, velum or 
pharyngeal constrictors.  
 
1.4 Structure of the manuscript 

This manuscript can be divided in three parts. In the first part (chapters 2 and 3) states of the art are 
presented that served as foundations for the whole work. . In the second part (chapter 4) a study of the 
impact of stiffening of lips gestures is presented. It is based on the use of the first face model, which 
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integrates the functional modelling of muscle force generation mechanisms and stress-stiffening. In the 
last part (chapters 5 and 6) mathematical formulations of the new muscle element are presented and a 
first evaluation is proposed in the context of the face model. Some of the new horizons that this new 
implementation provides are also presented. 
 
1.4.1 First part 

Muscles in face are interwoven and their tracks are complex and object specific. A short study of 
orofacial muscles anatomy and their innervating nerves is presented in chapter 2. 
Muscles are main driving elements of face model hence a good understanding of muscle behaviour is 
essential. A literature survey regarding muscle mechanics are presented in chapter 3. In this chapter 
macroscopic muscle models are revisited. Two types of muscle models are more specifically studied 
which are at the core of important debates in motor control studies: Hill-type models (Hill, 1938; 
Siebert et al, 2008), also called adjustable stiffness models, and Feldman’s like model (Feldman, 1986; 
Gribble et al., 1998), also called adjustable starting length models. These models differ basically in the 
way motor control parameters are defined and influence muscle force. The chapter is closed with an 
original mathematical reformulation of Feldman’s model which is suitable for finite element 
modelling. 
 
1.4.2 Second part 

A simple version of an adjustable starting length model (sliding spring model) is used to produce 
orofacial gesture. The implementation of this model is presented in chapter 4. The stress-stiffening 
effect due to activation is presented in this chapter. The effect of this muscle modeling and its 
consequence on face model regarding speech production and motor control studies conclude this part. 
 
1.4.3 Third part 

This third part deals with the description of the new muscle model that account physically for muscle 
force generation mechanisms and stress-stiffening. It accounts precisely for the complexity of the Due 
to fiber-like structure of muscle a transversely isotropic incompressible hyperelastic constitutive law 
can model the behaviour of the passive property of the muscle. This constitutive law also should 
include the force generating mechanism of the muscle (active force). The mathematics required to 
implement this model in a finite element model are presented. A quantitative comparison between a 
Hill-type muscle models and Feldman muscle model in producing voluntary movements of face model 
are presented in the last part of chapter 6. 
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Chapter Two: Anatomical review of orofacial muscles 

“I'm not ugly, but my beauty is a total creation.” 
Georg Wilhelm Friedrich Hegel 

 
In this chapter a summary of the orofacial muscles’ anatomy is presented with a focus on 
characteristics that are related to speech production. After a general introduction, twelve different 
orofacial muscles are classified into five functional groups considering their effects on oral fissure. 
Then each group is discussed functionally. Two special muscles that have an indirect effect on oral 
fissure shaping are then introduced. Finally this chapter ends with a short discussion of fiber types of 
orofacial muscles and their innervations. 

 
2.1 Orofacial Muscles: Generalities 

Orofacial muscles are those face muscles that are located around the lips to produce different shapes of 
mouth opening. Their main role is to produce the shape and movements necessary for speech and for 
the emotional expressions like sadness and happiness. Fibers of these muscles are interdigitated and 
interwoven with each other in conjunction points (modioli). At these points the muscles cannot be 
distinguished from one another. It means that they together behave like a tent-like network around the 
mouth orifice. This network is attached to the skull at some points. This network is embedded in two 
layers of face, namely the dermis (middle layer) and the hypodermis (the inner layer). The outer layer 
of the face, the epidermis, covers that sandwiched structure. This tent-like structure can behave in 
stretch only but because of contacts with the teeth and jaws, the muscles can generate complex lip 
shapes such as protrusion and rounding. Ivancevic & Ivancevic (2006) adhere to this idea and consider 
this structure as a 2D Riemannian manifold which is driven by internal muscles. 
There are 24 orofacial muscles appearing symmetrically with respect to the sagittal plane (Figure 2.1). 
These muscles are: 1- Levator Labii Superioris Alaeque Nasi (LLSAN) 2- Levator Labii Superioris 
(LLS) 3- Levator Anguli Oris (LAO) 4- Zygomaticus Minor (ZYG_MIN) 5- Zygomaticus Major 
(ZYG_MAJ) 6- Risorius (RIS) 7- Buccinator (BUC) 8- Depressor Anguli Oris (DAO) 9- Depressor 
Labii Inferioris (DLI) 10- Mentalis (MENT) 11- Orbicularis Oris Peripheralis (OOP) 12- Orbicularis 
Oris Marginalis (OOM). Each orbicularis oris muscle is composed of two upper and lower parts which 
are called superioris and inferioris, respectively. Muscle attachments on the skull are shown in Figure 
2.2. Innervation of these muscles is done through the facial part of cranial nerves. The motor branches 
of facial nerves are shown in Figure 2.3. A summary of both end attachment points of these muscles is 
presented in Table 2.1. Interindividual variability of these muscles can be significantly reduced with 
spatial normalization of their positions with respect to individual and average facial dimensions 
(Lapatki et al., 2006). 
These orofacial muscles can be categorized functionally in five different groups: 

1- Upper lip levators: LLSAN, LLS,ZYG_MIN 
2- Mouth angle (lip corner) mobilizers: in upward direction by LAO, upward and laterally by 

ZYG_MAJ, laterally by RIS and downward by DAO 
3- Lower lip mobilizers: in upward direction by MENT and downward by DLI 
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4- Oral fissure constrictors: OOP and OOM 
5- Specific muscle: BUC 

In the following each muscle group is explained. 
 

2.2 Upper Lip Levators 

This group of muscles elevates the upper lip and controls the shape of the nasolabial furrow. This 
shaping mostly happens in facial expressions like sadness, happiness or mockery. Zygomaticus minor 
is not common in all people (Pessa et al., 1998b). 

 

Figure 2.1 Orofacial muscles of the face (original picture taken from www.anatomy.tv)

2.3 Mouth Angle Mobilizers 

These muscles move lip corner in different directions. Zygomaticus major moves the lip corner 
upwards and laterally. This muscle has two morphologies: single or double (bifid) type (Pessa et al. 
1998a). The bifid zygomaticus is more common in females. This muscle is responsible for cheek 
dimples. It plays an important role in smiling and laughing. This action can be augmented by levator 
anguli oris and risorius muscles. Risorius muscle is also used in grinning action. This muscle is not 
well developed in all people (Pessa et al. 1998b). Depressor anguli oris muscle moves the mouth 
corner downward in actions like mockery and contempt. 
 

http://www.anatomy.tv/
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2.4 Lower Lip Mobilizers 

Depressor labii inferioris muscle moves the lower lip downwards as for instance in irony speaking. 
Mentalis helps upward motion of lower lip in lips protrusion initiated by orbicularis oris muscles. This 
upward motion also helps in the act of drinking and while expressing doubt (Standring, 2005). 
 

Figure 2.2 Skull attachments of face muscles (Standring, 2005) 

 
Table 2.1 Summary of orofacial muscles’ starting and ending positions with the corresponding 

innervation branches 

Group 
No. 

Muscle 
Name 

Abbrevi
ation 

Muscle’s Starting 
Position 

Muscle’s 
Ending 
Position 

Innervation 

1 Levator 
Labii 

Superioris 
Alaeque Nasi 

LLSAN Upper frontal process 
of maxilla 

Skin of the 
lateral parts of 
the nostril and 

upper lip 
(OOPS) 

Zygomatic and 
buccal branches 
of facial nerve 

1 Levator 
Labii 

Superioris 

LLS Lower margin of the 
orbit immediately 

above the infraorbital 

OOPS (between 
zygomaticus and 

LLSAN) 

Zygomatic and 
buccal branches 
of facial nerve 
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foramen(maxilla and 
zygomatic bone) 

1 Zygomaticus  
Minor 

ZYG_MI
N

Malar surface of the 
zygomatic arc or bone 

Corners of the 
mouth and the 

upper lip 
(OOPS) 

Zygomatic and 
buccal branches 

of the facial 
nerve 

2 Zygomaticus 
Major 

ZYG_MA
J

Malar surface of the 
zygomatic arc or bone 

OOPS Buccal and 
zygomatic 

branches of the 
facial nerve 

2 Levator 
Anguli Oris 
(Caninus) 

LAO Canin fossa on the 
skull 

OOPS Buccal and 
zygomatic 

branches of the 
facial nerve 

2 Risorius RIS Fascia over the patoid 
gland 

Insert to the skin 
of the angle of 

mouth 

Buccal branches 
of the facial 

nerve 
2 Depressor 

Anguli 
Oris(Triangu

laris) 

DAO Oblique line of 
mandible 

OOPI & RIS & 
LAO 

Mandibular and 
buccal branches 

of the facial 
nerve 

3 Depressor 
Labii 

Inferioris 

DLI Oblique line of 
mandible 

Skin of lower lip 
(OOPI) 

Mandibular 
branches of the 

facial nerve 
3 Mentalis MENT Mentalis on the skull OOPI Mandibular 

branches of the 
facial nerve 

4 Orbicularis 
Oris 

Peripheralis 
Superioris 

OOPS It is derived from the 
other facial muscles 

which are inserted into 
the lips and partly of 
fibers proper to the 

lips. 

1-Buccinator: 
from maxilla to 

the lower lip and 
from the 

mandible to the 
upper lip but 

from the 
uppermost and 

lowermost 
without 

intersection 
2- LAO to 

OOPS 
3- DAO to 

OOPI 
4- LLS, 

ZYG_MIN, 
ZYG_MAJ, DLI 
(all with oblique 

Buccal and 
mandibular 
branches of 
facial nerve 

4 Orbicularis 
Oris 

Peripheralis 
Inferioris 

OOPI 

4 Orbicularis 
Oris 

Marginalis 
Superioris 

OOMS 

4 Orbicularis 
Oris 

Marginalis 
Inferioris 

OOMI 
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direction) 
5 Buccinator BUC It arises from the 

alveolar processes of 
the maxilla and 

mandible 
corresponding to the 

molar teeth 

Toward the 
angle of the  

mouth where the 
fibers intersect 

each other 
(OOPS & 

OOPI) 

Buccal branches 
of the facial 

nerve 

2.5 Oral Fissure Constrictors 

Four orbicularis oris muscles control the orbital shape of the mouth. These muscles produce lip 
protrusion and rounding (Standring, 2005). They are also used in pursing of the lips. These muscles are 
the main muscles in speech gestures. Peripheralis muscle is the main component in lip shaping while 
the marginalis helps better shaping of the lips especially in rounding. Since the muscles act in tension 
only the protrusion gesture is accompanied by an increase in transversal resistance while the contact 
between the peripheralis and teeth/jaws provide part of this transversal motion. The marginalis part is 
more involved in speech gestures. 
 
2.6 Specific Muscle: Buccinator 

This muscle draws the corner of the lips laterally. Its main effect as its name stands for (Latin 
buccinator means trumpeter) is for compressing the cheeks against jaws and teeth as in sucking or 
blowing. It helps to hold food between the teeth during chewing. 
 
2.7 Masseter and Platysma 

Masseter (Figure 2.1) is a mastication muscle. It attaches to mandible and maxilla and elevates the 
mandible for chewing action. It has little effect on side by side motion. Fibers in masseter are pennated 
which allows the increase of number of fibers in its body and hence in its cross sectional area. It can 
produce forces up to 1kN (Miles and Nordstrom, 1995). In fact jaw movements due to masseter affect 
the lip shaping. 
Platysma (Figure 2.3) is a sheet-like muscle in the neck region. It arises from the clavicle and ascends 
through the neck towards the face. Most of its fibers are attached to the mandible. Some of its fibers 
join with muscles around the mouth. It can draw down the lower lip and the corners of the mouth 
during facial expressions like surprise. In some cases it attaches the lateral cheek which causes a 
furrow (Schmidt and Cohn, 2001). 
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Figure 2.3 Motor branches of the facial nerve for the muscles of facial gestures; these branches 
are classified into five groups: temporal, zygomatic, buccal, mandibular, and cervical (Marieb & 
Hoehn, 2007); (platysma muscle also is shown) 

 
2.8 Orofacial fibers characteristics and their motor units 

In contrast to masseter the other orofacial muscles (and even tongue muscles) are not expected to 
develop large forces. Orofacial muscle fibers, because of their moving attachment points develop 
passive stretching, but the magnitude of this passive stretch is low (McComas, 1998). Muscle fibers 
from contraction speed can be categorized into three groups (Wise and Shadmehr, 2002): slow non-
fatiguing (type I or S), fast and quickly fatiguing (type IIB or FF) and fast and fatigue resistant (type 
IIA or FR). Fiber types in orofacial muscles are of FF type except in masseter and buccinator where a 
percentage of fibers of S type exist. The domination of type IIB in orbicularis oris muscle shows that it 
is for high velocity and acceleration movements during intermittent motions like speech. But the 
dominance of fibers of type S in buccinator show it is built for slow and continuous work under low 
level of forces (Stal et al., 1990). 
There is little data on orofacial muscles but it is likely that these muscles have smaller motor units than 
limb muscles. Consistent with this assumption the number of motor units in orofacial muscles and 
especially in masseter is much higher than limb muscles. This provides a safety margin for these 
muscles against neuropathy diseases (McComas, 1998). Afferent cell bodies for masticatory muscles 
are located in brainstem. Muscle spindles do not exist in orofacial muscles (Stal et al., 1990) except in 
masseter where spindles are larger and more complex than for limb muscles (with type II afferents) 
(Appenteng et al., 1978). The short distance between muscle fibers and motoneurons in the brainstem 
(pons) enable activation signals with a small delay to arrive to these muscles. Histological 
examinations show that most of orofacial muscles have a small number of innervating terminals; 
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exceptions are orbicularis oris and buccinator in which motor endplates were found to be spread over 
the whole of muscle resulting in a smaller motor unit zone for these muscles (Happak et al., 1997).  
 
2.9 Synergies and antagonism in orofacial muscles for lips movements; the role of the modiolus 

A number of muscles converge towards the lip corner where they form a dense mass that is called the 
modiolus (Figure 2.1). At least nine muscles (orbicularis oris is regarded as four muscles, see Table 
2.1) are attached at this point (there are even 10 muscles if risorius included). In the modiolus, on the 
basis of orientation of their fibers, the muscles can be grouped into four bundles (Standring, 2005). 
The main factor influencing the positioning and the displacement of the modiolus, and then of the lip 
corner is the equilibrium between the forces exerted by these bundles of muscles. When the lips and 
teeth are in closed position, the modiolus mobility is at its minimum. But as soon as mouth opening 
reaches 2 to 3 millimeters, this mobility becomes maximal. Most activities take place in three steps 
(Standring, 2005). First a particular group of modiolar muscles become dominant over its antagonist 
group and relocate modiolus rapidly. At the second phase the modiolus is fixed transiently in this 
position by simultaneous contraction of ZYG_MAJ, LAO, DAO and platysma (and RIS). This 
provides a fixed basis from which the other orofacial muscles attached to this point, i.e. OO or BUC, 
can perform their actions. These actions are integrated with partial jaw movements. 
On the basis of the origin of their innervations from the facial nerve (see Table 2.1) orofacial can be 
classified into five groups: 

1- Zygomatic and buccal branch innervation: LLSAN, LLS, LAO, ZYG_MIN and ZYG_MAJ 
2- Buccal branch innervation: RIS, BUC 
3- Mandibular and buccal branch innervation: DAO, OO 
4- Mandibular branch innervation: DLI, MENT 
5- Cervical branch innervation: platysma 

As it can be seen muscles in groups 2, 4 and 5 can operate independently from the other muscles. But 
muscles in groups 1 and 3 should perform a coordinated action with other muscles. Positioning 
muscles of modiolus have a connection from all branches, which is an interesting fact. This allows 
how keeping the lip corner in position is possible, since this requires the simultaneous activations of a 
large number of muscles, which is made possible thanks to an innervation from all branches. 
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Chapter Three: Biomechanics of Striated Muscles: A Literature Survey and Distributed 
Feldman Model (DFM) 

“Never mistake motion for action.” 
Ernest Hemingway 

Muscles are the main end effectors of moving body parts in directions that are decided and controlled 
by the Central Nervous System (CNS). After receiving a command from the CNS, a muscle generates 
a force that is transmitted to the muscle’s attachment points. These attachment points can be on bony 
structure (as in the masseter), on surrounding tissues (like for one end of the mentalis), or on the 
extremity of another muscle (like the attachment of the corner of orbicularis oris to zygomaticus). If 
the attachment points are free to move, muscle length starts to decrease with activation which then 
moves the tissues attached to the muscle (e.g. the jaw during the mastication process through masseter 
activation, or the lower lip that moves upwards in the process of lip protrusion with orbicularis oris 
muscles helped by the mentalis). The force generated in the muscle is due to links (the “crossbridges”) 
between actin and myosin filaments and depends on the rate at which these linking mechanism works. 
These features give rise to two important properties of the force generated in the muscle and its 
resulting motion: the force-length and the force-velocity characteristics. The arrangement of these 
filaments structurally classifies muscles into striated ones, like skeletal and cardiac muscles, and non-
striated ones which are smooth muscles. Since all the orofacial muscles used in speech are of striated 
type, our emphasis will be on the characteristics of these muscles. They are reviewed in detail in this 
chapter which will conclude with the proposal for a distributed version of Feldman muscle model 
(Feldman 1966; 1986). 
 
3.1 Crossbridge theory 

Striated muscles are composed of fibers (Figure 3.1). These fibers are composed of thousands of 
smaller myofibrils (muscle cells). The myofibrils are in turn composed of a series of sarcomeres. Each 
sarcomere is located between two Z-discs and is a combination of parallel bands of actin (thin) and 
myosin (thick) proteins filaments. Following a motor command, calcium ions in the sacs surrounding 
the myofilaments are released and cause the hydrolization of myosin heads. The hydrolysis of ATP in 
the myosin heads makes them ready to be attached to the actin filaments, and therefore muscle starts to 
contract. The degree of overlap between myosin and actin filaments limits the level of force generation 
capacity of a sarcomere. With increasing overlap, the number of crossbridges between myosin heads 
and actin molecules increases. Hence the force generated by the muscle can be higher. This mechanism 
of force generation in a single sarcomere is the sole basis of the sliding filament theory as proposed by 
H.E. Huxley and A.F. Huxley at the same time (1954), yet separately without knowing each other and 
it was published in the same issue of Nature. Acquaintance of this mechanism is needed to understand 
the behavior of a muscle macroscopically. This mechanism is described in detail in next section. 
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Figure 3.1 Muscle structure in striated muscles; Top panel: A striated muscle composed of 
fibers; Middle panel: Each fiber consists of myofibrils; Bottom panel: Myofibrils are a sequence 
of Z-discs and sarcomeres and each sarcomere consists of parallel bands of actin (shown in red 
in bottom panel) and myosin (shown in green in bottom panel) protein filaments (from 
Standring, 2005). 

 
Figure 3.2 (McMahon, 1984) shows the tension produced in a single muscle fiber as a function of the 
length between two consecutive Z-discs (so-called striation spacing). The interval between points 2 
and 3, where there is maximum overlap between myosin and actin fibers, corresponds to the maximum 
force that a sarcomere can generate. Toward point 1, with more elongation due to the separation of 
actin and myosin filaments, the force drops. This part is called descending limb. With more 
contraction, between the points 3 and 5, the actin filaments overlap each other and therefore the total 
number of crossbridges is reduced. Hence the force decreases as well. After point 5, the myosin 
filaments collide with the Z-discs and the force reduces sharply. This part of the curve is called the 
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ascending limb. This behavior is reproduced at a macroscopic level (Zajac, 1989), which is described 
in the next section. 
 
3.2 Force-length characteristics of a muscle 

All the elements that generate force in a muscle are referred to as contractile element (CE). When all 
myofibrils in a striated muscle are activated, they produce the same sort of behavior as a single 
sarcomere. This property is described in the active force-length characteristics of a muscle (Figure 3.3, 
active part shown in red). Each point on this curve shows the maximum voluntary force (MVF) that a 
muscle can generate at the corresponding length. The curve describes the envelope of normal active 
muscle behavior, excluding the stretch reflex case. 
 

Figure 3.2 Force as a function of length in a single sarcomere; Point 1: fully extended sarcomere; 
no force is generated by muscle (1-2 is called descending limb part); Point 2&3: maximum 
overlap between actin and myosin and maximum force generation capacity of sarcomere; Point 
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4: decreasing overlap between actin and myosin during contraction; Point 5: collision of myosin 
heads with end Z-discs and fast decrease of force (4-6 is called ascending limb part); Point 6: 
fully contracted sarcomere with no overlap between actin and myosin heads(from McMahon, 
1984). 

 
In fact, each point of this curve is obtained when a muscle isometrically (muscle length kept constant) 
generates the maximum force. There is also a passive resistance to extension when an external force is 
applied to the muscle. This resistance comes from elastic properties of fibers when they are extended 
beyond their rest length. This elastic property is different across muscles, and it mainly depends on the 
proportion of connective tissues of muscle fibers (passive blue part in Figure 3.3). A high proportion of 
connective tissues leads to important resistance as in masseter (Figure 3.3b) while a low proportion 
generates small resistance as in zygomaticus (Figure 3.3a). The actual behavior of an active muscle 
fiber in response to an external force (described with the black curve in Figures 3.3a, b) is the sum of 
the red and blue curves. The corresponding black curve can show a local maximum when the muscle 
has less connective tissues (Figure 3.3a). 
There are controversies concerning the shape of the force-length characteristic of a muscle when the 
level of activation is below the maximum voluntary force (MVF). It is assumed (Zajac, 1989; Winters, 
1990; Shapiro & Kenyon, 2000) either that the active part is scaled multiplicatively (Figure 3.4a) or it 
is scaled additively (Figure 3.4b). 
 

(a) 



19 

 

(b) 
 
Figure 3.3- Force-length characteristics of a muscle with (a) weak passive part or (b) strong 
passive part (Blue curve shows the passive part; Red curve shows the force in the contractile 
element; Black curve is total force in the muscle). 

 
There are three passive elastic elements within the muscle. The first one behaves as an exponential 
function and is shown in the figures 3.3 and 3.4 (blue curve). This corresponds to the passive property 
of connective tissues and membranes which is part of elastic properties in series with fibers. This 
behavior manifests itself in the extension phase only. For measuring this property the standard 
universal tension test can be used. The second elastic property comes from tissues surrounding the 
muscle fibers. This property is referred to as parallel elastic (PE) elements since it acts in parallel 
fibers. Surrounding tissues resist in both directions. It means they can also withstand while the muscle 
fibers shorten. This property is not shown in figures 3.3 and 3.4. 
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(a) 

(b) 
 
Figure 3.4 Force-length characteristics for different levels of activations (a) multiplicative scaling 
or (b) additive scaling (the passive part (blue curve) is fixed). 

 
The third elastic element accounts for the intrinsic elasticity of myofibrils and crossbridges (Fung, 
1993). This element acts in series with contractile elements and is designated as series element (SE). In 
fact the series element has been included in Figures 3.3 and 3.4 implicitly. Indeed this series element 
works like a conveying media between the contractile element (CE) and the extremities of the muscle 
(Winters, 1990). It can be said that this element plays the role of a low stiffness tendon. This means 
that it transfers muscle action to the attachment points. The effect of this series element is shown in 
Figure 3.5. If the contractile element force is shown by red curve, then it means that this series elastic 
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property implicitly has been taken into account. If the green curve shows the output of contractile 
element then the series elastic stiffness should be augmented with this series element. 
 

Figure 3.5 Series elastic effect on output of contractile elements. This series elastic element is due 
to intrinsic elasticity of crossbridges. 

 
The first functional model for these three elements has been presented by Hill (1938) and illustrated in 
Figure 3.6 in two forms. A recent study (Siebert et al, 2008) has shown that the model with PE in 
parallel with the contractile element (Figure 3.6b) better matches experimental results. However the 
model with PE in parallel to both CE and SE can be better justified with physiological characteristics 
of muscle alone (Figure 3.6a) without considering the effect of tendons. 
During motion the behavior of a muscle is different from the above properties since the generated 
force depends on muscle velocity. The effect of kinetics of the muscle is discussed in next section. 
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(a) 

(b) 
 
Figure 3.6 Two different Hill-type muscle models (a) the force in series elastic element is equal to 
force in contractile element (b) the force transferred to series elastic element is attenuated by 
parallel elastic element. 

 
3.3 Force-velocity characteristics of a muscle 

When a muscle shortens quickly, it generates less force than when it moves slowly. This is explained 
by the fact that the force output of contractile element is damped by the viscosity property of the 
muscle. This phenomenon was studied for the first time by Hill (1938). He studied the effect of 
shortening velocity on the force produced by a muscle. He proposed that the force varies with respect 
to velocity of shortening as a hyperbolic function (eq. 3.1). 
 

F/Fmax=(1-v/vmax)/(1+(1/k)(v/vmax)) if vmax<v<0  (3.1) 
 

In this equation vmin is the maximum shortening velocity (negative velocity). Constant k for all 
vertebrate muscles lies in the range 0.15<k<0.25. The shortening of the muscle is called concentric 
contraction, since in that case, the crossbridges between myosin and actin filaments are oriented 
towards the z-discs (or centers). When the muscle lengthens, it is an eccentric contraction. In this case 
the crossbridges are moving away from the center. In an eccentric contraction, when the velocity of 
lengthening increases the force is also increasing in a first stage. Katz (1939) found that the behavior in 
extension cannot be extrapolated from the Hill’s equation and that at velocities close to zero, the slope 



23 

 

of the force-velocity curve is about six times (m=6) greater for concentric contraction. Katz also 
discovered that, above a certain level of tension, muscle yields when the elongation rate increases. It 
means that after a threshold (the yield point), the muscle loses its ability to withstand more elongation. 
Katz found that this threshold is about d=1.8 times the maximum isometric tension at a specified 
length. The equation governing this behavior according to Leeuwen & Kier (1997) is: 
 

F/Fmax=d-(d-1)((1+v/vmax)/(1+(kec/k)(v/vmax))) if v>0  (3.2) 
where kec is an eccentric muscle constant and which can be computed from the difference between the 
slopes of the force velocity curves on both sides of the zero velocity. If the slope in eccentric section is 
m times the slope in concentric section, kec becomes: 
 

kec=(m(k+1)/(d-1))-k  (3.3) 
 

The curves corresponding to the combination of equations (3.2) and (3.3) are shown in Figure 3.7 with 
k=0.25 and m=5.

Figure 3.7 Hill-type force-velocity curve; negative velocity shows the concentric motion and 
positive velocity eccentric motion; at zero velocity the curve is not smooth (not C1 continuous). 

 
The inclusion of force-velocity characteristics of a muscle in Hill’s functional model is shown as a 
damper element in parallel to contractile element and with a damping constant (B) which is a nonlinear 
function of velocity (Figure 3.8). 
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Figure 3.8 Functional model of a muscle; damper B is added to take care of damping property of 
the muscle (from McMahon, 1984). 

 
The combined effect of force-velocity and force-length characteristics is shown in three dimensions in 
Figure 3.9. 
 

Figure 3.9 Total effect of the behavior of a muscle (Hill-type muscle); with more negative velocity 
the force generated by muscle decreases strongly. 

 
In the next section discuss different functional models of muscle, other than Hill’s basic model is 
studied. 
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3.4 Functional models of muscle 

In general two types of functional models were provided in the literature. In one type, the muscle 
behaves as a black box, assuming a macroscopic description of the input/output relationships. Basic 
Hill model belongs to this group. The force output of muscle (Fm) can be expressed as the sum of a 
force in the parallel elastic element (FPE) and a force in the contractile element (FCE): 

 
Fm=FPE+FCE=FSE   (3.4a) 

FCE=f(L,v,Ac) (3.4b) 
 
Force in the contractile element is a function of muscle length (L), muscle velocity (v) and activation 
(Ac). This force is usually expressed in a multiplicative way (like in Figure 3.4a) as a product of three 
distinct functions: force-length (FL), force-velocity (Fv) and time transition function of the activation 
(called henceforth activation dynamics) (fac) (Zajac 1989; Cheng et al., 2000): 
 

FCE=FL×Fv×fac (3.5) 
 
The activation dynamics (fA) can be either taken as a function of the firing frequency or recruitment of 
muscle fibers (for example filtered EMG) or the level of activation. This multiplicative account of 
contractile force is called adjustable stiffness because the contractile element behaves like a nonlinear 
spring whose stiffness varies as a linear function of force (Shadmehr & Arbib, 1992).  
In other approaches, the contractile force is expressed as a general nonlinear function of activation 
level and velocity as in equation (3.4a) (Feldman, 1986) or in a multiplicative way (Shapiro & 
Kenyon, 2000; Laboissière et al., 1996): 
 

FCE=f(Ac,L)×g(v) (3.6) 
 

In this subgroup, models that indicate the activation as a length quantity, like Feldman’s model (1966), 
are called adjustable starting length models (Shadmehr & Arbib, 1992). In these models, muscle 
stiffness changes as a nonlinear function of force. 
In the second type of models, muscles are considered microscopically. These models are based on 
Huxley’s sliding filament theory and take into account physiological mechanisms of force generation 
in the muscle (Zahalak, 1990; Murtada et al., 2010a and 2010b). In the macroscopic models the muscle 
velocity is uniquely related to muscle length and to the level of muscle activation, which is generally 
not true. On the other hand the microscopic models can better predict the viscoelasticity behavior of 
muscles than the Hill-type models. However these microscopic models suffer from lack of simplicity 
requirement of a model. That’s the reason why we have chosen to focus on the first group of models in 
the rest of this chapter. 
The activation mechanism in the muscle completely limits the domain of applicability of models and 
their competency. In the next section, this mechanism is reviewed. After this review adjustable 
stiffness and adjustable starting length models will be compared in detail. 
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3.5 Activation Mechanism 

The nerve cells (neurons) that innervate the muscles are called motoneurons. Their activity varies with 
their membrane potential. Hence innervation signals are called action potentials. A motor unit consists 
of a set of muscle fibers activated by a motoneuron plus the motoneuron itself. The motor units 
responsible for force generation and associated with the main muscle fibers (also called extrafusal 
fibers) are called α-motors. The associated motoneurons are known as α-motoneurons. Motor units 
involving fine movements have a small number of fibers. Those motor units which correspond to a 
large number of fibers have larger motoneurons. Depending on the speed of contraction, the motor 
units may be classified into fast or slow motor units (Wise and Shadmehr, 2002).  
In most muscles, there are some stretch receptors in parallel with extrafusal fibers. These receptors are 
called spindle organs or intrafusal fibers. These receptors act as a strain gauge in the muscle. The 
functional model of the spindle organs can be represented as the model of Figure 3.8. The spindle 
organs with their driving motoneurons are called γ-motor units. Another receptor known as Golgi 
tendon organ, is located inside the tendon. It provides information about the force acting on the 
tendons. The arrangement of these two types of receptors is shown in Figure 3.10. As it can be seen, 
these receptors send their signals to the spinal cord (or, in case of orofacial muscles, brainstem), where 
motoneurons reside. Since these signals carry information from the peripheral motor systems back to 
spinal cord/brainstem, they are called afferents. Signals sent from the motoneurons to the motor system 
are going away from spinal cord/brainstem; these signals are called efferents. Afferents Ia and II are 
provided from the spindle organs while Ib afferents come from Golgi tendon organs. Efferents α and γ
are activation signals to the extrafusal and intrafusal fibers respectively. The afferents reside on dorsal 
root of spinal cord and efferents in ventral root. The path of the descending commands down from the 
central nervous system (CNS) to motoneurons is shown in Figure 3.11 for hand movements. 
There are four activation mechanisms that influence the behavior of a muscle: 1-α-γ co-activation, 2-
stretch reflex, 3- Golgi tendon organ inhibition (reflex stiffness), and 4- inhibition (feedforward and 
feedback). 
3.5.1 α-γ Co-activation 

This mechanism governs voluntary muscle activation (Figure 3.11). When a command from CNS is 
sent to α motoneurons, the muscle starts to be shortened. Accordingly the parallel spindle organs get 
slackened. This causes the afferents from spindle organs (Ia and II) to reduce the activation in α
motoneurons. In fact the change in signal from a spindle organ (∆S) is proportional to its length change 
(∆L=Lspindle-L0

spindle): ∆S=ks∆L. The signal to the muscle fibers from α motoneurons is: α=αm +∆S,
where αm is the reference signal set by the CNS. Because of the spindle organs slackening (∆L<0), a
negative signal is added to the α activation signals which reduces the muscle activation level. To avoid 
this problem, the CNS sends two simultaneous signals to α and γ motoneurons: the muscle contraction 
is accompanied by spindle contraction (from γ motoneurons) which means that the spindle slackening 
won’t occur (∆L=0). This co-activation process therefore solves the inhibitory action of slackening. Of 
course in presence of external loads, if a load causes extra lengthening or shortening of muscle fibers, 
as for stretch reflex (see § 1.5.2), the activation level changes accordingly to compensate the muscle 
force. In fact the spindle organ acts as a model reference for muscle (Houk & Rymer, 1981). This 
mechanism is shown in the Figure 3.12. 
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Figure 3.10- Signal paths of muscle spindle and Golgi tendon organs to spinal cord; Afferent 
signals from muscle spindle: Ia and II and from tendon organ: Ib; Efferent signals from 
motoneurons: α and γ (from McMahon 1984). 

 
3.5.2 Stretch Reflex 

A reflex is an involuntary response to an outside disturbance. When a muscle is stretched involuntarily 
by an external force, it reacts to regain its current length. This phenomenon is called the stretch reflex 
and is due to spindle organs. Since spindle organs are located in parallel to the main direction of 
muscle fibers, they are stretched with muscle extension. They therefore send their afferent signals (Ia 
and II) to α motoneurons which causes the motoneurons to fire more (α efferents) thus inducing higher 
contraction in muscle fibers (∆L>0). Consequently, the muscle produces more resisting force than 
before: this is the stretch reflex. 
3.5.3 Golgi tendon organ inhibition (reflex stiffness) 

Tendon organs send an afferent signal (Ib) that is proportional to the force level in the tendon. With 
increase of force the charging rate increases. This charging rate is sent to α motoneuron. Due to the 
linear relationship between charging rate and change in muscle force we can assume the feedback 
signal is proportional to change in muscle force level (∆F): ∆Tg=kg∆F. This is an inhibitory signal that 
protects the muscle from extra tension. This signal is therefore subtracted from α motoneuron output: 
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α=αm –∆Tg. If the external load induces an increase in muscle force (∆F>0) the Golgi receptors will 
decrease the force.  

Figure 3.11 Descending tract of motor system from central nervous system to motoneurons and 
then to corresponding muscle fibers (extrafusal and intrafusal fibers) (from Kandel et al., 2000). 

 
Thus with more tension in the tendons less activation is sent to the muscle fibers. This, in turn, 
increases muscle length. However, since the γ activation level has not changed, the length of spindle 
organs increases which causes a higher α signal. This dual mechanism keeps constant the change of 
force with respect to the change in length. Actually this can be seen as a control mechanism to 
maintain the reflex stiffness at a constant level (Figure 3.13). The reflex stiffness is the slope (K) of the 
force-length characteristics at a given level of muscle activation (α=αm). Therefore corresponding to a 
change of length (∆L) the change in force is: ∆F=K∆L. In presence of a load that does not induce a 
need for change in the reference activation (αm), the combined action of spindle organs and Golgi 
tendon organs compensate each other: kg∆F=ks∆L. Hence K=ks/kg, which means that reflex stiffness 
remains constant. 
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3.5.4 Inhibition (feedforward and feedback) 

In addition to Golgi tendon inhibition, there are two inhibitory mechanisms that regulate muscle 
action: the feed-forward inhibition due to inhibitory interneuron cells and the feedback inhibition due 
to Renshaw cells (figure 3.14). The feedforward mechanism happens in agonist and antagonist muscle 
pairs (flexor and extensor). When a flexor (or extensor) muscle is innervated through signals from 
CNS or from receptors, the afferent signals to α motoneurons have a branch on intermediary neurons 
called interneurons (figure 3.14). These interneurons inhibit the activation of antagonist muscle which 
means that the agonist muscle moves independently. The only resistance comes from passive 
properties of the antagonist muscle.  
In the feedback inhibition, the activation signal from motoneurons goes through an intermediate cell 
called Renshaw cell. This neuron cell produces a short-lived inhibitory effect on α motoneurons. This 
feedback mechanism around a motoneuron controls the sensitivity of the motoneuron to a given 
change of afferent signal and produces a non-oscillatory transient response in mechanisms like stretch 
reflex. In fact this feedback loop attenuates the gain of afferent signals and this in turn controls the 
level of outgoing efferent signals. This attenuation inhibits the occurrence of muscle spasm. 
 

Figure 3.12 α-γ coactivation; simultaneous signals from CNS to α and γ stops the inhibitory 
action of muscle spindles and voluntary muscle movement occurs (from Kandel et al., 2000) 
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3.6 Comparison between adjustable stiffness and adjustable starting length models 

Adjustable starting length or reflexive models (eq. 3.6) refer to models that better simulate the 
behavior of the muscle active part in the presence of a high level of descending commands. In contrast 
to these models are the adjustable stiffness models or areflexive models (eq. 3.5) that better simulate 
muscle active behavior when the muscle acts only through its stretch reflex mechanism (Shadmehr & 
Arbib, 1992). The very first adjustable starting length models go back to Feldman’s muscle model 
(1966). Feldman’s model states that the muscle starting length (or zero-force point length) is the 
activation command from CNS. For a given activation command, muscle behaves through its stretch 
reflex mechanism and its force-length characteristics will stay on an exponential curve called the 
invariant characteristic (IC) (Feldman, 1986): 
 

Factive_Feldman=Fmax(exp([l(t-td)-lthreshold+µv(t-td)]+/lc)-1)   (3.7) 
 
where Fmax is the maximum force generation capacity of a muscle and is a function of the physical 
cross sectional area (PCSA) of the muscle, lthreshold it the starting or threshold length, lc is a 
characteristic length, v is muscle velocity and µ is a damping coefficient. Both muscle length and 
velocity in this equation are delayed values at time t- td. []+ means that the force is equal to zero if the 
expression within []+ is negative. 

Figure 3.13 Structural plan of reflex system on muscle; the feedback signals (afferents) provided 
from spindle receptors (positive) and tendon organs (negative) to move a load adjust the output 
of motoneurons to keep the  muscle stiffness at a fixed level (from Houk and Rymer, 1981). 

A passive force should be added to this active force to take into account the passive mechanical 
property of the muscle. Examples of these IC curves at zero velocity are plots in figure 3.15. The 
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difference between these curves comes from their starting point or threshold length. If no voluntary 
movement is involved, the stretch reflex mechanism will maintain the movement on one of these IC. 
The force-length variation of a muscle which is moving voluntarily against an external load is shown 
with the red path in the figure. This path is generated with changing threshold length while the muscle 
tries to move against an external load. 
In a more recent version of this model the force was scaled multiplicatively by a hyperbolic force-
velocity term (Laboissière et al., 1996; Payan & Perrier, 1997). This term enhances the damping 
characteristics of the model: 
 

F=Fpassive+Factive_Feldman*(f1+f2tan-1(f3+f4v/l0)+f5v/l0) (3.8) 
 
where l0 is the resting length i.e. the length at which the muscle can generate its maximum voluntary 
force, and f1 to f5 are constants used to fit the force-velocity characteristics of the muscle. In this model 
the velocity in hyperbolic term is the current value of the velocity and not a delayed value as in 
equation (3.7). A 3D (force-length-velocity) comparison between the original Feldman model and this 
new version is provided in figure 3.16a. In the left panel (Figure 3.16b) the classic Feldman model is 
plotted without the velocity effect on threshold length as well as the new version. As it can be seen 
there are few differences between the two cases (Figures 16a and b) in the range of values reported for 
damping coefficient µ. As it can be seen for the new version of the model, the effect of the velocity 
term in displacing the threshold length can be neglected, since this effect is taken into account by the 
hyperbolic force term. Another comparison between the original Feldman model (with a high damping 
coefficient value µ) and the new version reveals that the damping effect added by the hyperbolic force-
velocity term can be removed since this damping effect is already included in the original version 
(Figure 3.17). For this reason, it should be better to keep only one damping term. 
 

(a) 
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(b) 
 

Figure 3.14 Feed-forward inhibition provided through inhibitory interneurons release the 
antagonist muscle and agonist muscle moves freely except against the passive property of 
antagonist muscle (part A in both figures); feedback inhibition through Renshaw cells controls 
the oscillatory movement of a muscle and protects the muscle from spasm (part B in both 
figures) (from Kandel et al., 2000) 

 

Figure 3.15 Feldman muscle invariant characteristics (IC) at a given velocity; Red path shows an 
example of a voluntary contraction of muscle when motor commands (starting lengths) are 
decreased. 
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(a) 

(b) 
 

Figure 3.16 Comparison of classic Feldman model with the new version proposed by Laboissière 
et al. (1996) (a) new model which takes into account the effect of velocity on both starting length 
(b) a Feldman model without velocity effect on threshold length. 

 
The comparison between Feldman muscle model and a Hill type muscle model (Figures 3.4a and b) is 
shown in Figure 3.18. As can be seen the interpretation of voluntary movement between a Feldman 
model and an additive hill model, especially in the concentric part, is not very different.  
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In the next section a distributed version of Feldman muscle model is introduced which is more suitable 
for the use in a discretized modeling framework such as finite element method (FEM). 
 

Figure 3.17 Comparison between new Feldman model with highly damped classic model; few 
differences are observed between a highly damped classic model and the new version introduced 
by Laboissière et al. (1996). 

 

(a) 
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(b) 
 

Figure 3.18 Comparison between Feldman and Hill-type model (a) multiplicative scaling Hill-
type model and (b) additive scaling Hill-type model. 

 
3.7 A Distributed Feldman Model (DFM) 

Extension of a one dimensional muscle model spatially to three dimensions necessitates the design of a 
distributed version of that model. In a distributed model all lumped quantities are replaced with their 
distributions:  

- force terms are replaced with Cauchy stresses which are the ratio of force in muscle fibers to 
their current cross sectional area (σ= lim(∆F⁄∆A) ∆A→ 0 ) ;

- length quantities are replaced with stretch values which are the ratio of current muscle lengths to 
their initial lengths (λ=l/l0).  

Starting from equation 3.7, the active Cauchy stress in the so-called Distributed Feldman Model 
(DFM) becomes: 
 

σactive_Feldman=σmax (Apcsa/A)(exp([λ(t-td)-λthreshold+µv(t-td)]+ (l0/lc))-1) (3.9) 
 

In this relation σmax=Fmax/Apcsa is the maximum stress generation capacity of the muscle. As said 
above, the threshold length is replaced with threshold stretch ratio (λthreshold=lthreshold/l0) and the velocity 
term becomes the strain rate (1⁄sec).
In this form the ratio l0/lc shows that how many characteristic lengths are incorporated in the initial or 
resting length. In the literature the characteristic length varies between 9 mm (Laboissière et al., 1996) 
and 25 mm (Buchaillard et al., 2010) with a role that is to stabilize the model. Since this ratio l0/lc also 
influences the stiffness of the muscle during the stretch reflex action (gradient of the invariant 
characteristic), the ratio implicitly takes into account the type of the muscle from the speed of 
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contraction point of view (fast or slow muscle). It can be enunciated that when a muscle rest length 
contains more characteristic lengths it reacts faster. 
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Chapter Four: Face Model: Shaping and Dynamics3

"One often makes a remark and only later sees how true it is." 
Ludwig Wittgenstein 

 
In this chapter the face mesh and its properties are introduced. Following that the finite element model 
features is presented. The muscle modelling through cable elements and how they behave is the subject 
of next section. The stress stiffening effect of muscle behaviour and modelling the stiffness change of 
muscles due to activation is introduced next. Then the effect of dynamics on face movement and its 
consequence in comparison to a quasi-static one is studied. The chapter will conclude with a 
discussion of shaping by stiffening and its impact on lip movements during protrusion and rounding. 
 
4.1 Face Mesh 

The main mesh is a Finite Element (FE) discretization of the volume defined by the facial tissues 
located between the skull and the external skin surface of the face. It is based on a previous continuous 
face model developed by Chabanas et al. (2003) in the context of computer aided maxillo-facial 
surgery. The outer and inner surfaces of the mesh were extracted from a CT scan of a female adult 
subject. The volume delimitated by these two surfaces was then manually meshed, as regularly as 
possible, with hexahedral and wedge elements (Figure 4.1). Anatomically, the face can be considered 
as the superposition of three distinct layers of tissues, namely (from the internal to the external layer) 
the hypodermis, dermis and epidermis (Stranding 2005). The mesh is thus also built in three discrete 
layers of elements. The external one corresponds to the epidermis (very thin) and dermis parts while 
the two internal layers model the hypodermis, which will later include the facial musculature. The 
mesh is composed of 6342 brick elements (6024 hexahedrals and 318 wedges) based on 8720 nodes. 
In order to reduce the number of DOF during simulation the mesh was assumed to be symmetrical 
along the sagittal plane, which seems reasonable in the context of speech production. 
4.2 Finite element model 

To produce facial gestures the mesh introduced in last section is used in a finite element solver 
(ANSYS software). The different parts of finite element model are explained in the following. 
4.2.1 Elements and their mechanical property 

A 3D solid element (SOLID185) which is an isoparametric element is assigned to elements of face. 
This element is a linear Lagrangian element. Nodes in this element type have three displacement 
degrees of freedom (translations). Element material properties are assumed to follow a hyperelastic 
law (Fung 1993) and to behave isotropically. A simplified 5 parameters Mooney-Rivlin model 
(Mooney, 1940; Rivlin, 1948) is used, which is based on a strain-energy function W defined by: 

W=c10(I1-3)+c01(I2-3)+c20(I1-3)2+c11(I1-3)(I2-3)+c02(I2-3)2+((J-1)2/d) (4.1) 
 

3 This chapter has been published in a slightly different form in two different papers, namely Nazari et al., (2010) that 
focused on biomechanical aspects and general assessment of facial mimics, and Nazari et al. (2011) that focused mainly on 
the influence of stiffening on lip protrusion shaping and on its control for speech production. 
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where I1 and I2 are respectively the first and second invariants of the right Cauchy-Green strain tensor, 
Jacobian J is the determinant of the elastic deformation gradient, and d=(1-2ν)/(c10+c01) with ν the 
Poisson’s ratio.  
 

(a) (b) 
 

Figure 4.1 Face mesh (rest position); mesh has three layers and is symmetrical with respect to 
mid-sagittal plane and consists of 6342 hexahedral elements and 8720 nodes, (a) front view (b) 
profile view. 

 
The derivatives of W with respect to strain give stress: 

Sij=2∂W/∂Cij (4.2) 
 
Sij are the components of the second Piola-Kirchhoff stress tensor and Cij the components of the right 
Cauchy-Green deformation tensor. (A complete discussion about the related theory can be found in 
chapter 5). 
In this model a simplified version of the strain-energy function W is used with only two constants, c10 

and c20, different from zero (Gerard et al. 2005; Buchaillard et al. 2009). According to Tracqui and 
Ohayon (2004), linearization of strain energy gives: c10≈E/6 where E is the equivalent Young’s 
modulus. The two coefficients c10 and d have been calculated from the values reported in Payan and 
Perrier (1997), with the assumption of mechanical linearity and incompressibility of tissues, namely 
E=15 kPa and ν=0.499. The c20 coefficient has been adapted from the values proposed for tongue 
tissues by Buchaillard et al. (2009) based on indentation measures from a cadaver’s tongue (Gerard et 
al., 2005). The computed constants are shown in table 4.1. 
 

Table 4.1 Constants of the simplified 5-parameter Mooney-Rivlin model for passive tissues 

c10 (MPa) c20 (MPa) d (1/MPa) 
2.5e-3 1.175e-3 0.8 

The density of face tissues is set to ρ=1.04E-6 kg/mm3 (Buchaillard et al. 2006). The effect of gravity 
has not been considered. In fact the effect of the gravity on the body appears as a pretension effect on 
tissues, hence not considering the effect of gravity is equivalent to neglecting the effects of pretension. 
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4.2.2 Boundary conditions and contact surfaces 

Nodes of the internal layer of the mesh corresponding to the face tissue attachments to the skull are 
fixed. The other nodes are free. 
During speech and facial mimics, many contacts regions created. These regions are between the upper 
and lower lip, and between the lips and the teeth. They are extremely important in lips shaping. The 
teeth surfaces on mandible and maxilla, segmented on CT images, have been approximated with spline 
surfaces, and then meshed with quadrilateral undeformable elements (Figure 4.2). Contacts are 
handled using surface to surface contact elements which provide collision detection and sliding 
reaction, considered here without friction (MU=0). There is no initial interpenetration between all the 
contact surfaces. 
 

(a) (b) 
Figure 4.2 Contact surfaces: (a) lip-lip contact (b) lip-teeth contact. 

 
4.2.3 Muscle contractile fibers 

The muscular structure of the face enables huge possibilities of movements, in speech, eating and 
facial expressions, with a great dexterity. Its complex structure can be divided in two groups of 
muscles (Stranding 2005). Muscles of mastication are the deep, strong muscles that generate the 
movement of the mandible. Since the mandible is not handled yet in our modelling, we have only 
focused on the other group, the muscles of the lip region, namely the superficial muscles involved in 
facial mimics (Hardcastle 1976). Most of them are bilateral, symmetrical, gathered around the lips 
with one bony insertion and the other within the facial tissues. A notable exception is the orbicularis 
oris, a specific constrictor muscle embedded in the lips without bony insertions. 
In order to ensure anatomical and physical reliability, muscles courses and insertions were directly 
defined from medical images and anatomical charts, with the help of a maxillofacial surgeon.  
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(a) 

(b) 
 

Figure 4.3 Macrofibers of orofacial muscles extracted from CT data shown on (a) CT scan (b) 
face mesh. 

Table 4.2 Orofacial Muscle fibers for half of the face 
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Muscle Name Abbreviation Number of 
Fibres 

Total Number of 
Cable Elements 

Levator Labii Superioris 
Alaeque Nasi 

LLSAN 2 12 

Levator Anguli Oris LAO 1 9 
Zygomaticus (major and 
minor) 

ZYG 2 15 

Risorius RIS 1 6 
Buccinator BUC 2 12 
Depressor Anguli Oris DAO 2 12 
Depressor Labii Inferioris DLI 2 11 
Mentalis MENT 2 11 
Orbicularis Oris 
Peripheralis (Inferioris 
and Superioris) 

OOP 2 14 

Orbicularis Oris 
Marginalis (Inferioris and 
Superioris) 

OOM 2 14 

Figure 4.4 Naming of orofacial muscle fibers. 

The locations of points describing the muscle fibres were measured in the different CT scan slices. The 
number of fibres per muscle depends on its extent and size. Figure 4.3 and table 4.2 show the ten 
orofacial muscles that are modelled. In figure 4.4 naming of the muscle tracks is shown. 
Muscle fibres are embedded in the facial mesh as continuous sets of uniaxial cable elements. Since 
each cable is a line in 3D space, their number per fibre increases as a function of the muscle fibre 
curvature, to model this curvature smoothly. These cable elements (LINK10 in ANSYS) act in 
tension only and will become slack under compression. Such properties are consistent with the 
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observations that in the fibre direction a muscle can resist only tensile forces and not compressive 
forces (Loocke et al. 2006). 
End points of the cable elements are defined independently of the level of refinement of the main 
mesh. They correspond to anatomical landmarks located in reference to the skull. This approach 
enables to refine or modify the mesh without requiring any change in the definition of muscle courses. 
To couple the fibres with the main mesh, point to surface contact elements are used. The points (pilot 
nodes) are the extremities of the cable elements. They are bilaterally linked to the surfaces of the mesh 
elements which their centroids are the closest to the cable extremity. Figure 4.5 displays the cable 
elements and the corresponding coupling elements for the muscles in half of the face. The no-
displacement boundary condition is also applied to the ends of cable elements that correspond to the 
muscles insertions on the skull. 
 
4.2.4 Loading: Muscle activation 

The cable elements generate the active force Factive of each muscle, following the relation: 
 

Factive=AEcable(ε-α∆T) (4.3) 
 
where A is the cable cross sectional area, ε its strain, and Ecable its Young’s modulus. In standard 
ANSYS  use, parameter T is equivalent to the temperature of the element, and α to the thermal 
coefficient of expansion of the cable. In our case, we have used parameters T and Ecable to specify the 
level of activation. Parameter Ecable is a scaling factor specifying the gradient of muscle force. Ecable is 
increasing in parallel to activation to simulate the muscle behaviour as close as it possible. 
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Figure 4.5 Coupling elements between the piece-wise fibres of cable elements and the main mesh. 

 
Parameter T is used to control the level of activation within the muscle specific maximal range of 
variation. Thus, parameter T can be considered as a normalized control parameter of muscle 
activation. Decreasing T leads to a shortening of the cables lengths, which therefore exert forces on the 
main mesh through the coupling elements. The activation level is then a decreasing function of 
parameter T. The value of α is arbitrarily set to 0.001. This muscle model is a type of adjustable 
starting length (see chapter 3) model. The force in the muscle varies linearly with respect to length and 
it can be called a sliding spring model (Shapiro & Kenyon, 2000) (Figure 4.6). Setting the parameter T
specify the starting point on horizontal axis or zero-force length of muscle. The final force in muscle in 
a pseudo-static analysis is equal to the force generated in surrounding tissues due to their passive 
mechanical property. The intersection of blue curves and red curve shows the stress-stretch relation 
that the muscle produces in a voluntary action. Of course this path in a dynamical process, including 
inertia and damping, won’t be like that. Since in a dynamical process muscle force should overcome 
both surrounding tissues resistance and dynamical loadings. 
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Figure 4.6 Muscle model; the force in the muscle varies along straight lines (blue lines) and the 
final muscle force in a pseudo-static analysis is equal to force in surrounding tissues (intersection 
of blue lines with red curve). 

 
4.3 Stress stiffness effect and its implementation in muscle model 

Muscles behave like a transversely isotropic material, with an isotropic behaviour in the directions 
orthogonal to the muscle fibres. This means that mechanical properties in the direction of muscle fibres 
are different from the ones in the cross-fibre direction. Due to force generation in the fibres direction 
and to the fibres tensile characteristics, the transversal bending stiffness increases with the tensile force 
(similarly to the stress stiffening phenomenon in cable members or membranes).  
This is illustrated in Figure (4.7) with a simple example of a virtual point P inside a muscle fibre 
originally at equilibrium under constant muscle activation (force F1) and then displaced (by δ) because 
of the action of a force F applied in the muscle transversal direction. Once the new equilibrium is 
reached (Figure 6 lower panel), assuming a linear relationship between force and displacement, we 
have: 
 

F=2F1(δ⁄l1)(1/√(1+(δ⁄l1)2) (4.4) 
 
This means that, when δ is negligible as compared to l1 the muscle transversal stiffness dF/dδ is 
proportional to muscle force F1.
When a muscle is activated, its fibres generate forces that resist to elongation, according to a certain 
tension-length relation (see chapter 3), and in a way that increases when activation increases. In real 
muscle the fibres distribution is so dense, that the resistance to elongation of the whole muscle body 
increases with elongation in the fibres direction.  In our model, muscle fibres are not represented in all 
their details. They are modelled by a limited number of localized macrofibers (typically from one to 
three). When the muscle is activated, each of these macrofibers generates a force and resists to the 
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elongation, but since the fibres are localized, this resistance does not apply to the whole body of the 
muscle.  
 

Figure 4.7 Stress stiffening effect; the horizontal tension F1 in the member increases its stiffness 
in transverse direction. 

 
This would not be a realistic behaviour. In order to compensate for this drawback, the stiffness in the 
body elements of the muscles increases with muscle activation in the fibres directions. Hence, muscle 
activation is associated both with a resistance to stress in the direction orthogonal to the fibre direction 
(the stress stiffening effect) and with a resistance to elongation in the fibre direction. Consequently, it 
is modelled by an isotropic increase of the tissues stiffness, implemented by modifying the parameters 
of the passive constitutive law (equation (4.1)). 
 
4.3.1 Muscle region: neighbourhood algorithm 

Once the fibres are set, the body of the muscles can be defined in the main mesh. A neighbourhood is 
determined around each fibre by an algorithm considering a sphere, which radius is equal to an 
estimation of the muscle cross-sectional dimension, running along the cable elements lines. Each 
element of the main mesh intersecting the sphere is then labelled as a part of the muscle body. The 
resulting bodies of the muscles in the mesh are displayed in Figure 4.8 for the left half of the face. 
Although this definition of the muscle body is a rough approximation, it is enough so far for our use, 
which is to account for the stress stiffening effect. 
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Figure 4.8 Muscle regions (half of face); the elements surrounding a cable in a spherical 
neighbourhood are assigned as corresponding muscle region. 

 
4.3.2 Modelling muscle’s stress stiffening effect 

To account for the stress stiffening effect, the constitutive law of the elements of a muscle body varies 
with the level of muscle activation specified with T. In agreement with Buchaillard et al. (2009), 
parameters c10 and c20 of the passive hyperelastic law are hence linearly scaled as an increasing 
function of the activation, which is a decreasing function of T (Figure 4.9). When different muscles are 
activated simultaneously, the stiffness of the main mesh elements which are common to these muscles’ 
bodies change as a function of the most activated muscle, and not as the result of an accumulation of 
the stiffness changes associated with each individual muscle activation. The proposed stress stiffening 
modelling is functionally correct, except for the resistance to compression in the fibres direction. 
Indeed, it is known that this resistance varies with the strain rate and is close to zero when this rate is 
low (Loocke et al. 2006). Further improvements will be provided along this line in future works. 
The muscle activation varies in time as a ramp function. In further works that we will develop in the 
context of speech production, these commands will be handled by a motor control mechanism 
integrating voluntary commands and low-level feedback information sent by the muscles (Feldman 
1986; Buchaillard et al. 2006). 
This mechanism of modelling muscle activation is shown in Figure 4.10. As muscle cables are 
activated they introduce compressive stress in surrounding tissues. In Figure 4.10 the red curves show 
the compressive part of curves shown in Figure 4.9. In a pseudo-static problem the muscle force is 
equilibrated with force in surrounding tissues. The intersection of blue and red curves shows the path 
of a voluntary action (compare with Figure 3.15). In this case the intersection of these curves does not 
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stay on one red curve because the mechanical property of surrounding tissues increases when 
activation increases (going to the left). 
In the presented simulations, the activation parameter T is incremented as a staircase function of the 
time, so approximates a linear variation. Since we want to focus on orofacial gestures at the end of the 
movement and not on its time variation during the movement, this simple approach of staircase 
activation seems appropriate. Different amplitudes of the T variation were tested in the simulations: c10 
and c20 are multiplied by a factor ranging from 1 (no change in stiffness) to 10 (strong increase in 
stiffness). Hence, in our simulations two degrees of freedom are manipulated independently: the 
amplitude of the global change in T and the global increase in stiffening. This approach enables the 
influence of two factors to be determined independently: the amplitude of the activation and the 
amplitude of the associated stiffening. It is important to clarify that this approach was set up in order to 
study the response of the model to different activation/stiffening conditions, and not in order to 
account for any physiological process in which stiffening and activation would be decoupled. 
 

Figure 4.9 With increasing the activation (starting length of muscles) the mechanical properties 
of surrounding elements of muscle region increase. 

 
4.4 Damping model: proportional damping 

For dynamic transient analysis, viscosity is modelled using proportional damping: 
 

C=αM+βK (4.5) 

To determine α and β coefficients the first 7000 modes of the main mesh (about a third of the total 
number of free degrees of freedom) were calculated. Simulations were run twice, first with the material 
stiffness used in the absence of muscle activation and then for a high material stiffness level (10 times 
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more). The corresponding natural frequencies vary from 0.5 Hz up to 15 Hz. Within this interval, 
parameters α and β have been tuned such that the damping ratio (ratio of viscous damping factor to 
critical damping) is larger than and near to one. The computed values are α=19 sec-1 and β=0.055 sec.

Figure 4.10 Muscle model with stress stiffening effect; with increase of activation in muscle 
(muscle starting length) the passive property of surrounding tissues (red curves) increases to 
model the stress stiffness effect. 

 
4.5 Simulations and results 

Different muscle activation patterns have been used and their influences on facial gestures and mimics 
evaluated. Both static and transient analyses have been performed. In addition to the static analysis that 
takes into account only the stiffness matrix, dynamic simulations obtained with full transient analysis 
also takes into account the effect of inertia and viscosity. 
 
4.5.1 Simulation of facial mimics4

Activation of muscles taken individually and in coordination has been investigated. In this section, 
only the final shapes of the mesh resulting from these activations are shown. They are the same for the 
static and the full transient analysis. These results well comply with the anatomical predictions in the 
related literature (Standring 2005). 
The result of activating zygomaticus draws the angle of the mouth upwards and laterally (Figure 4.11). 
 

4 Results in this section have been published in Nazari et al. (2010). 
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(a) (b) 
Figure 4.11 Face shaping after activation of the zygomaticus muscle. 

 
Levator labii superioris elevates the upper lip. Acting with other muscles, it modifies the nasolabial 
furrow. In some faces, this furrow is a highly characteristic feature often deepened in expressions of 
sadness or seriousness. The activation of the levator labii superioris with zygomaticus and levator labii 
superioris alaeque nasi in Figure 4.12 well satisfies that hypothesis. 
 

(a) (b) 
Figure 4.12 Face shaping from coordinate activation of the zygomaticus, levator labii superioris 
alaeque nasi and levator anguli oris muscles. 

 
The effect of orbicularis oris peripheralis (OOP) in protruding and rounding the lips has been shown 
(Figure 4.13). The effect of stiffening in producing rounding with protrusion will be discussed in 
section 4.5.3 shaping by stiffening. Without the stiffening, lips are protruded but the amount of lip 
opening is too large. 
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(a) (b) 
Figure 4.13 Face shaping resulting from the orbicularis oris peripheralis activation. 

 
Figure 4.14 shows the consequence of the activation of the risorius and Figure 4.15 the impact of 
activation of the buccinator (BUC). In Figure 4.16 the mimic associated with the coordinated action of 
OOP and BUC is illustrated. In all these figures these actions are qualitatively consistent with 
predictions made from anatomical knowledge.  
 

(a) (b) 
Figure 4.14 Face shaping resulting from the risorius activation. 

 
The risorius is known to stretch the mouth laterally and to retract the corners of the mouth. This is 
consistent with the strain depicted in Figure 4.14.The buccinator has no or little influence on the lips, 
and essentially compresses the cheeks against the teeth (Blanton et al. 1970). Our simulation matches 
quite well these expectations (Figure 4.15): the lips have the same shape as in our model at rest, while 
the strain essentially affects the lower part of the face. 
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(a) (b) 
Figure 4.15 Face shaping resulting from the buccinator activation. 

The OOP has been shown in our model to generate a protrusion and a closing of the lips which is 
consistent with usual hypotheses in the literature (Gomi et. al 2006; Nazari et. al 2008). Meanwhile, 
the coordinated action of the buccinator and the OOP generates a closing of the lips only. It can be 
assumed that the stiffening of the cheeks due to the buccinator activation limits the amplitude of the lip 
protrusion, which would explain that mainly closure is observed. 
 

(a) (b) 
Figure 4.16 Face shaping resulting from the orbicularis oris peripheralis and buccinator co-
activation. 

 
4.5.2 Dynamics versus Quasi-static simulations5

We have studied the effect of dynamic versus quasi-static analysis on the lip protrusion. For this 
purpose both OOP and mentalis (MENT) muscles are activated. The same activation level in both 
dynamic and static analyses is assumed. Figure 4.17 shows the trajectories, for both conditions, of a 
node located on the lower lip in the midsagittal plane. 
 

5 Results in this section have been published in Nazari et al. (2010). 
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Figure 4.17 Comparison between the trajectories of a point on the lower lip in the mid-sagittal 
plane in static and dynamic analysis resulting from an orbicularis oris peripheralis and mentalis 
co-activation (with Ecable=0.3 and T=-500 with spherical neighbourhood radius for OOP 3mm 
and for MENT 2 mm). 

 
While starting and ending points are the same in static and dynamic analysis, the trajectories are 
clearly different. The trajectory obtained with the static analysis is close to a straight line while the 
dynamic trajectory is noticeably curved. This difference is large enough to generate significant 
differences in lip shape variation from the starting point to the ending point, and then to significantly 
influence the acoustic signal. In addition, a large number of human skilled movements have been 
shown to follow curved path (Morasso, 1981). Figure 4.18 shows the tangential velocity profile for the 
same point together with the corresponding activation signal. An asymmetrical bell-shaped velocity 
pattern is generated. This kinematic pattern is typical for lip movements as shown for example by 
Shaiman et al. (1997) for several American English speakers. An asymmetrical bell-shaped velocity 
pattern is generated. This kinematic pattern is typical for lip movements as shown for example by 
Shaiman et al. (1997) for several American English speakers. Both properties, the curved path and the 
bell-shaped velocity profiles, observed in experimental studies and accounted for in dynamic analysis 
and not in quasi-static analysis demonstrates the necessity to integrate dynamic factors, such as inertia 
and damping, to obtain realistic simulations of lip shape variations in speech production. 
To assess more precisely the realism of the trajectories produced by our model, they can be compared 
to lips trajectories measured with video processing (Abry et al. 1996) from a native speaker of French. 
As an illustration, let us consider the sequence /iRy/ embedded in the carrier sentence‘Tu dis “ruise” 
(/tydiRyiz/, you’re saying “ruise”, /). These data was processed with a low-pass linear phase filter (cut-
off frequency 6 Hz). The trajectory of a point located on the lower lip in the mid-sagittal plane has 
been extracted in the temporal section corresponding to lip protrusion from /i/ to /y/ (Figure 4.19). It 
can be observed that the path of this point is qualitatively similar to the path simulated with dynamic 
analysis (Figure 4.17). More specifically, the path is curved, a key feature that could not be predicted 
from the pseudo-static analysis. 
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Figure 4.18 Upper panel: Velocity profile of a point on the lower lip in the mid-sagittal plane 
resulting from the co-activation of orbicularis oris peripheralis and mentalis in dynamic 
analysis. Lower panel: Time patterns of the corresponding activations. (with Ecable=0.3 and T=-
500 with spherical neighbourhood radius for OOP 3mm and for MENT 2 mm). 

 
Figure 4.20 shows the experimental velocity profile: it has, like our simulation, an asymmetrical bell-
shape in agreement with Shaiman et al.’s (1997) data collected from speakers of American English. 
This example of a comparison between simulations and real data confirms the general observation 
made above: contrary to those obtained in the quasi-static analysis framework, the simulations 
obtained in the dynamic analysis framework generate curved paths and bell-shaped velocity profiles 
similar to those observed in experimental lips protrusion movements collected during speech 
production 
The experimental movement and the simulation in dynamic analysis have also similar ranges of 
velocity (maximum velocity 3.9cm/s versus 2.4cm/s), durations (200ms versus 270ms at 20% of the 
peak velocity), and movement amplitudes (4.5mm versus 4mm for the horizontal protrusion). Some 
discrepancies can be noticed between simulations and experimental data. In the experimental data, the 
curved path includes a rising part followed by a short decline. In the simulation this rising/declining 
sequence is also observed, but it is preceded by a horizontal part. It is important to state that these 
differences are not intrinsically due to the characteristics of the model but more factually, to 
differences between the conditions of simulation and the conditions of real speech production. In the 
simulations the movement starts from a zero velocity position and ends at a zero velocity position, 
while experimental data were extracted from a longer speech continuum (Figure 4.19) in which the 
observed section does not start or end with a zero velocity position. 
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Figure 4.19 Experimental data. Top panel: trajectory of a point on the lower lip in the mid-
sagittal plane in /iRy/ sequence; diamond mark is for the starting point and square mark for the 
ending point. Bottom panel: corresponding acoustic signal with phonetic labelling. 

 This phenomenon can be clearly seen in the experimental velocity profile (Figure 4.20), in which 
velocity curve never crosses zero. 
 

Figure 4.20 Experimental data. Tangential velocity profile corresponding to trajectory and the 
acoustic signal displayed in Figure 4.19. 
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4.5.3 Shaping by stiffening6

Static and full transient analyses were carried out in order to test the realism of the model’s behaviour 
in response to various muscle activation patterns. In addition to the impact of tissue elasticity, the 
transient analysis takes into account the effect of inertia and gravity as well as the effect of viscosity. 
Special attention is devoted in this paper to lip protrusion and lip rounding gestures, which are basic 
speech gestures associated with the phonetic characteristics “rounded” versus “spread” lips (IPA 
Handbook, IPA, 1999). Classically these gestures are analysed in the literature as being generated 
mainly with the activation of the Orbicularis Oris (OO) (Delaire, 1977; Abry et al., 1980; Standring, 
2005). So far, to our knowledge, biomechanical models have not been successful in modelling lip 
rounding in a realistic way. To study the potential contribution of muscle stiffening to the achievement 
of this gesture, simulations were run with and without the changes in the constitutive law associated 
with muscle activation. 
Figure 4.21 shows the final lip shape obtained without accounting for the stress stiffening effect 
(multiplication factor of c10 and c20 is equal to 1). 
To observe the effect of stiffening the same simulation was run with the same activation level and the 
same timing on face model for the activation of the OOP associated with the largest stiffening value 
(multiplication factor of c10 and c20 is equal to 10) (Figure 4.22). As compared to Figure 4.1 (rest 
position), both figures show a clear protrusion and a reduction in lip area. This reduction is less strong 
though without stiffening, mainly because the lip height is significantly larger. The lip shape achieved 
without stiffening does not correspond to a prototypical protruded/rounded shape, mainly because of 
this large lip height value. 
 

(a) (b) 
Figure 4.21 OOP activation without stiffening (a) front view, (b) profile view. 

 

6 Results in this section has been published in Nazari et al., 2011 
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(a) (b) 
Figure 4.22 Activation with maximal stiffening (same activation as in Figure 4.21) (a) front view, 
(b) profile view. 

 
Variability of lip shaping due to the different simulated conditions is measured using the parameters 
proposed by Abry & Boë (1986). A description of these parameters in profile view and frontal view is 
shown in Figures 4.23 and 4.24 respectively. They measure the amplitude of the protrusion (lip horn 
depth, lip corner protrusion, upper lip protrusion and lower lip protrusion), the aperture (lip opening, 
lip height, lip area) and the rounding (ratio between lip height and lip width). These three geometrical 
features are basic means to characterize labial speech gestures. They are measured between the rest 
position and the stable shape attained at the end of the movement simulation. 
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Figure 4.23 Lip shape parameters (profile view): lip opening (D), lip horn depth (L), lip corner 
protrusion (C), upper lip protrusion (F1), lower lip protrusion (F2) (Abry & Boë, 1986). 

 
As stated above, the presentation of the results focuses on the role of stress stiffening in the 
achievement of rounded lips. The production of some vowels (called rounded vowels, as opposed to 
spread vowels) requires a small lip area. Classic examples of this vowel category are the French 
vowels /u/, /y/ or /Ο/. For a large majority of subjects, this small area is achieved by protruding the 
lips, in spite of the fact that the protrusion gesture is not the only way to achieve a small lip area. This 
regularity across speakers is interpreted as evidence for the fact that protrusion is an efficient way to 
achieve small lip areas. Our simulations, in the context of the effect of stiffening on shaping, aim at 
further understanding this strategy. The impact of the Orbicularis Oris (OO) activation is analyzed 
with and without the stress stiffening effect. 
The presentation of the results is organized in two main subsections. First we study the impact of the 
OO activation and of the stress stiffening on the lip shape based on the parameters proposed by Abry 
& Boë (1986). Second, an evaluation of the impact of the different simulated lip shapes on the spectral 
properties of the associated acoustic speech signal is performed on the French vowel /u/. In both 
studies, the role of the stress stiffening effect is at the core of the analysis. 
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Figure 4.24 Lip shape parameters (frontal view): lip area (S), lip width (A), lip height (B) (Abry 
& Boë, 1986). 

 
4.5.3.1 Lip protrusion and rounding gesture 

Two preliminary conclusions can be drawn from these first qualitative observations: (1) in our model 
the Orbicularis Oris Peripheralis simultaneously generates a protrusion and a narrowing of the lips; (2) 
accounting for the stress stiffening effect significantly influences lip shaping and it reinforces the 
efficiency of the protrusion gesture in achieving a small lip area, which are the key characteristics of 
rounded lips. In order to further assess these preliminary conclusions and to do so quantitatively, four 
sets of simulations were run. In two sets (Table 4.3) the stress stiffening level varied in 10 regular steps 
from its minimum (factor equal to 1) to its maximum (factor equal to 10) while the activation level was 
set either to its minimum (Table 4.3a) or to its maximum (Table 4.3b). In two other sets of simulations 
(Table 4.4), the activation level varied in twelve regular steps from its minimum (0.1) to its maximum 
(0.4) while the stress stiffening level was set either to its minimum (Table 4.4a) or to its maximum 
(Table 4.4b). The results of Tables 4.3a and 4.3b are depicted in Figures 4.25 and 4.26 respectively. 
These figures show that for both levels of muscle activation, while the majority of the geometrical lip 
parameters tend to globally vary linearly with the increase in stress stiffening, the lip area and the lip 
height follow a clear non-linear variation. 
 

Table 4.3a Different lip parameters with respect to different stiffness levels at minimum 
activation 
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Stiffness 

CORNER LIP 
PROTRUSION 
(mm) 

LIP HORN 
DEPTH 
(mm) 

LIP AREA 
(mm2)

LIP 
HEIGHT 
(mm) 

LIP WIDTH 
(mm) 

LIP 
OPENING 
(mm) 

LOWER LIP 
PROTRUSION 
(mm) 

UPPER LIP 
PROTRUSION 
(mm) 

Maximum 
Force (N) 

1 7.08 8.29 23.98 2.52 14.00 16.93 3.35 4.30 2.39

2 6.61 8.55 20.23 2.15 13.77 15.73 3.07 3.58 2.79

3 6.22 8.73 19.19 1.96 14.10 15.09 2.87 3.20 3.16

4 5.84 8.17 18.85 1.87 14.44 14.64 2.70 3.03 3.41

5 5.51 8.32 18.75 1.82 14.66 14.32 2.56 2.76 3.57

6 5.21 8.72 19.39 1.83 15.61 14.10 2.48 2.57 3.75

7 4.94 8.88 19.31 1.81 15.65 13.92 2.38 2.44 3.88

8 4.69 9.04 19.36 1.80 15.88 13.76 2.29 2.34 3.95

9 4.47 9.19 19.36 1.76 15.84 13.62 2.22 2.27 4.04

10 4.30 9.31 19.46 1.75 15.96 13.51 2.15 2.21 3.91

Table 4.3b Different lip parameters with respect to different stiffness levels at maximum 
activation 

Stiffness 

CORNER LIP 
PROTRUSION 
(mm) 

LIP HORN 
DEPTH 
(mm) 

LIP AREA 
(mm2)

LIP 
HEIGHT 
(mm) 

LIP WIDTH 
(mm) 

LIP 
OPENING 
(mm) 

LOWER LIP 
PROTRUSION 
(mm) 

UPPER LIP 
PROTRUSION 
(mm) 

Maximum 
Force (N) 

1 9.77 6.58 20.39 3.07 10.78 18.99 5.33 7.38 4.65

2 10.19 7.32 17.70 2.59 10.52 17.90 5.25 6.97 5.67

3 10.17 7.63 15.27 2.14 10.59 17.09 5.12 6.53 6.40

4 10.07 7.58 13.47 1.84 10.76 16.48 4.98 6.24 6.95

5 9.97 7.59 12.06 1.62 10.89 16.07 4.85 5.88 7.53

6 9.85 7.61 11.13 1.46 11.00 15.73 4.75 5.71 8.13

7 9.79 7.63 11.23 1.44 11.07 15.58 4.63 5.59 8.61

8 9.64 7.67 10.65 1.35 11.16 15.32 4.53 5.40 9.20

9 9.48 7.73 10.38 1.29 11.21 15.13 4.43 5.25 9.64

10 9.35 7.78 10.23 1.25 11.28 14.96 4.34 5.12 10.00

This non-linearity is characterized by a rapid decrease for low stress stiffening levels followed by 
quasi-stabilization above a certain stress stiffening level (around 4 for low activation and 6 for high 
activation). This corresponds to a saturation effect. For the high activation level, lip horn also shows 
such a saturation effect, but this is not true for the low activation level. Interestingly the two 
parameters that depict a saturation effect independently of the activation level, namely the lip area and 
the lip height, are considered to be crucial for the geometrical characterization of lip shapes in the 
protrusion/rounding condition (Abry & Boë, 1986). In terms of motor control, this saturation effect is 
interesting since it enables the same values for crucial lip shape parameters to be reached over a wide 
range of motor commands. 
 

Table 4.4a Different lip parameters with respect to different activation levels at minimum 
stiffness 
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Activation 

CORNER LIP 
PROTRUSION 
(mm) 

LIP HORN 
DEPTH 
(mm) 

LIP AREA 
(mm2)

LIP 
HEIGHT 
(mm) 

LIP 
WIDTH 
(mm) 

LIP 
OPENING 
(mm) 

LOWER LIP
PROTRUSION 
(mm) 

UPPER LIP 
PROTRUSION 
(mm) 

Maximum 
Force (N) 

0.1 7.08 8.29 23.98 2.52 14.00 16.93 3.35 4.30 2.39

0.125 7.67 8.14 23.55 2.58 13.62 17.29 3.68 4.86 2.72

0.15 8.20 7.97 23.11 2.62 13.44 17.58 3.94 5.38 3.05

0.175 8.72 7.82 22.76 2.69 13.10 17.89 4.25 5.93 3.42

0.2 9.06 7.70 22.39 2.72 13.06 18.06 4.39 6.23 3.67

0.225 9.34 7.66 22.57 2.89 12.50 18.38 4.64 6.53 3.90

0.25 9.45 7.64 22.21 2.95 12.53 18.46 4.75 6.67 4.03

0.275 9.70 7.57 21.43 2.98 11.93 18.64 4.93 6.96 4.28

0.3 9.59 7.09 20.65 3.04 11.45 18.86 5.18 7.19 4.42

0.325 9.85 6.96 21.34 3.06 11.78 18.83 5.08 7.16 4.42

0.35 9.90 6.93 21.51 3.12 11.66 18.87 5.12 7.22 4.47

0.38 9.77 6.58 20.39 3.07 10.78 18.99 5.33 7.38 4.65

0.4 10.25 6.57 18.97 3.15 10.82 19.37 5.69 7.96 5.22

Table 4.4b Different lip parameters with respect to different activation levels at maximum 
stiffness 

Activation 

CORNER LIP 
PROTRUSION 
(mm) 

LIP HORN 
DEPTH 
(mm) 

LIP AREA 
(mm2)

LIP 
HEIGHT 
(mm) 

LIP WIDTH 
(mm) 

LIP 
OPENING 
(mm) 

LOWER LIP 
PROTRUSION 
(mm) 

UPPER LIP
PROTRUSION 
(mm) 

Maximum 
Force (N) 

0.1 4.30 9.31 19.46 1.75 15.96 13.51 2.15 2.21 3.91

0.125 5.05 9.63 17.37 1.65 15.61 13.63 2.47 2.58 4.68

0.15 5.73 8.68 15.54 1.52 14.48 13.74 2.76 2.86 5.54

0.175 6.46 8.36 13.66 1.43 13.50 13.88 3.06 3.26 6.37

0.2 6.90 8.19 12.47 1.31 13.32 13.99 3.26 3.53 6.92

0.225 7.48 7.94 11.49 1.26 11.88 14.16 3.51 3.91 7.58

0.25 7.80 7.78 10.92 1.22 11.78 14.25 3.65 4.12 8.02

0.275 8.25 7.53 10.33 1.19 11.65 14.42 3.86 4.47 8.60

0.3 8.68 7.97 9.93 1.19 11.49 14.60 4.06 4.78 9.09

0.325 8.73 7.94 9.75 1.17 11.47 14.61 4.09 4.81 9.27

0.35 9.01 7.86 10.50 1.26 11.40 14.82 4.16 5.08 9.52

0.38 9.35 7.78 10.23 1.25 11.28 14.96 4.34 5.12 10.00

0.4 9.89 7.59 9.83 1.24 11.09 15.18 4.64 5.53 10.89
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Figure 4.25 Variation in lip parameters as a function of stiffness with minimum activation. 

Would a control of the activation amplitude be as efficient as the stiffening? To answer this question, 
the next two sets of simulations are very informative. The results, listed in Tables 4.4a and 4.4b, are 
plotted respectively in Figures 4.27 (no stiffening) and 4.28 (maximal stiffening). In the absence of 
stiffening (Figure 4.27) all the measured lip characteristics vary linearly with the activation level. No 
saturation is observed, even for high activation levels. For the maximum stress stiffening level (Figure 
4.28) clear saturation effects are observed  above the activation  level 0.3 for 4 parameters, lip area, lip 
height, lip width and lip horn depth. In addition, the decrease in the lip area reached for a given level 
of activation is much larger with stiffening than in the absence of stiffening. When the stress stiffening 
effect is taken into account, an increase in activation is associated with a decrease in lip height. This 
behaviour is consistent with a prototypical protrusion/rounding gesture. In contrast, when the stress 
stiffening effect is not modelled, increasing the activation generates an increase in lip height, a result 
which is in opposition to the characteristics of a lip protrusion/rounding gesture. These results are in 
complete agreement with the impressionistic conclusions made from Figures 4.21 and 4.22.  
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Figure 4.26 Variation in lip parameters as a function of stiffness with maximum activation. 

The reduction in lip area without a saturation effect and with an increase in lip height observed in the 
non-stiffening conditions suggests that modelling the stress stiffening effect is extremely positive for 
an efficient control of lip shaping, especially regarding the rounding associated with protrusion. The 
increase in the activation level is “as efficient as the stiffening” only if stiffening is taken into account. 
The effect of stiffening on lip protrusion/rounding is confirmed.  
The realism or absence of realism of the different accounts of the protrusion/rounding gesture given in 
the different simulation conditions can be quantitatively assessed thanks to the experimental 
observations provided by Abry & Boë (1986). These authors present (see Figure 3 of their paper) a law 
that describes how the lip area (S), lip height (B), and lip width (A) are linked with each other: S= 
0.75*A*B. An additional way to evaluate our results is to test whether one of the simulation conditions 
gives results compatible with Abry & Boë’s experimental findings. Figures 4.29 and 4.30 present the 
results of this evaluation. In Figure 4.29, the dashed line shows the lip area function that would result 
from our lip height and width measurements according to Abry & Boë’s law while the solid line 
corresponds to the measured area function. Figure 4.30 shows the ratio between the calculated and the 
measured area. It can be observed that in the absence of stiffening, the ratio is significantly larger than 
one. Hence, the simulated lip shapes do not match the experimental observations. This ratio decreases 
dramatically as soon as stiffening is taken into account.  
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Figure 4.27 Variation in lip parameters as a function of activation with no stiffness change. 

When stiffening increases, the ratio continues to decrease, almost linearly, with the multiplying factor, 
but significantly less strongly. The ratio becomes very close to one when the multiplying factor is 
equal to 10. This shows that with the inclusion of stiffening, the relation between lip parameters is in 
agreement with the experimental observations. Thus, including stiffening enables the generation of 
more natural lip shapes. 
 
4.5.3.2 Impact of the stress stiffening effect on the spectral properties of the acoustic speech signal: 
The example of the vowel /u/ 

To study the effect of stiffening on the frequency content of the speech signal, we generated synthetic 
speech waves from a vocal tract in which the lip characteristics were those generated with our model in 
both stiffened and non-stiffened cases. The vocal tract geometry corresponded to the French vowel /u/, 
which is a classic example of a rounded vowel. For this purpose we took the data proposed for this 
vowel in Figure 1 of Apostol et al. (2004). Then we replaced the geometrical characteristics of the 
sections corresponding to the lips with the data extracted from our model. The addition of lip corner 
protrusion to lip horn depth (L in Figure 4.23) defines the length of the lip tube, and the lip area (S in 
Figure 4.24) is used for the cross-section of this tube. As an example an area function is show in 
Figure 4.31. This area function is then used as an input function for a Kelly-Lochbaum digital speech 
synthesis model (Kelly & Lochbaum, 1962; Story, 2005). The speech signal generated with this model 
(Story, 2005) is then analysed in the spectral domain. With the help of the Linear Prediction Analysis, 
the spectral envelope of this signal is extracted (Figure 4.32).  
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Figure 4.28 Variation in lip parameters as a function of activation with maximum stiffness 
change. 

 
The spectral peaks correspond to formants, which are crucial for the perceptual quality of the vowels. 
For the French vowel /u/ the key spectral characteristic is that the first two formants F1 and F2 are in 
the low frequency domain [300 Hz 700 Hz]. Savariaux et al. (1999, Figure 3) show that the perceptual 
quality of this vowel improves when F2 decreases within this range to become closer to F1. In a 
Standard French /u/, such as the one modelled in Apostol et al. (2004), F1 mainly depends on the 
geometry of the back part of the vocal tract and F2 is mainly influenced by the front part and by the 
lips. The analysis of F1-F2 narrowing, and especially of the F2 decrease, thus provides a suitable basis 
to investigate acoustically the effect of stiffening in the modelled protrusion/rounding gesture. 
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Figure 4.29 Lip area as a function of stiffness: calculated using Abry & Boë’s formula (dashed 
line) and measured from our simulations (solid line). 

 
The variation in the first two formants is extracted for different lip shape parameters corresponding to 
an increase in the stiffness level (with minimum and maximum activation levels) (Figure 4.33) and to 
an increase in the activation level (with minimum and maximum stiffening values) (Figure 4.34). 
As Figure 4.33 shows, when the stress stiffening effect is modelled, while the activation level is kept at 
its maximum (bold line), the second formant decreases and converges towards the first formant, which 
remains fairly constant. This F2 decrease is consistent with a more rounded and protruded lip shape. It 
is not observed for the minimum activation level (solid line). Figure 4.34 shows that an increase in the 
activation level induces a decrease in F2 only if it is accompanied by stiffening (bold line). In the 
absence of stiffening (solid line) increasing activation has no spectral consequences. 
Thus, the acoustic simulation suggests that the association of muscle activation increase and stiffening 
enables the production of more canonical spectral patterns for the French vowel /u/. 
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Figure 4.30 Lip area as a function of stiffness: the ratio of calculated to measured area. 

 

Figure 4.31 Study of spectral properties of a synthetic French vowel /u/: an example of area 
function. 

 



67 

 

Figure 4.32 Study of spectral properties of a synthetic French vowel /u/: the spectral envelope of 
a signal produced from this area function computed using the Linear Prediction Analysis (the 
crosses show the speech formants). 

 

Figure 4.33 The variation in the first two speech formants (F1 and F2) corresponding to the 
French vowel /u/ for different stiffness levels (the bold lines correspond to maximum activation 
levels). 
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Figure 4.34 The variation in the first two speech formants (F1 and F2) corresponding to the 
French vowel /u/ for different activation levels (the bold lines correspond to maximum stiffening 
values). 

 
4.6 Conclusion 

The use of a realistic dynamical biomechanical model of the face has allowed simulating a number of 
facial movements comparable to those occurring during the production of speech or of facial mimics in 
non-verbal communication. 
Studies in the literature have shown that articulatory dynamics has a major impact on the temporal 
patterning of speech movements. Time characteristics are important in speech perception. We have 
shown that lip movement patterns are indeed different in quasi-static and dynamic simulation 
frameworks. Interesting results, close to experimental observations, have been obtained for the 
dynamic framework, and not for the quasi-static one, such as the generation of curved paths and bell-
shaped velocity profiles classically observed in unperturbed skilled human movements (Morasso 
1981). The clear differences observed between the trajectories simulated with dynamic and static 
analysis demonstrate that the usage of dynamic analysis is a requirement for speech production studies.  
The role of dynamics has also been studied in the literature for non-speech movements. Ambadar et al. 
(2005) observed for example that recognition of subtle facial expressions by watching the evolution of 
facial gestures in time is much easier than by looking at static shots. Hence, in modelling studies, if 
temporal patterning of movements integrates dynamic constraints like inertia and viscosity; synthetic 
facial expressions will be deciphered faster and easier.  
On the basis of simulations carried out with a finite element biomechanical model of the face, the 
impact of the stress stiffening effect (i.e. of the tissue stiffening associated with muscle activation) was 
studied for the protrusion/rounding gesture of the lips. The lips’ protrusion/rounding gesture was 
generated by activating the upper and lower parts of the OOP. It was found that the stress stiffening 
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effect significantly influences shaping. Acoustic simulations showed that the differences in lip shaping 
corresponded to differences in spectral patterns. 
Stiffening in the lip protrusion/rounding gesture significantly changes the shape of the lips: in the 
absence of stiffening, protrusion is produced and is associated with a reduction in the lip area, but the 
achieved lip shape does not match experimental data on rounding because of the lip height. Protrusion 
is associated with a clear reduction in lip height only if stiffening is taken into account. Hence, in the 
case of the lips, it can be concluded that stiffening is useful for shaping. This finding could be one 
explanation for the fact that, to our knowledge, the protrusion/rounding gesture has never been 
achieved with biomechanical models with the activation of the Orbicularis Oris alone (see for example 
the analysis proposed by Gomi et al. (2006) of their own simulation results). 
In addition, our simulations have shown that when the stress stiffening effect is modelled, a saturation 
effect exists when the activation level increases. From a motor control perspective, this result is very 
interesting since it suggests that a simple strategy to generate protruded and rounded lips could be to 
activate the Orbicularis Oris while stiffening the tissues. 
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Chapter Five: Muscle model as a constitutive law 

“People’s behavior makes sense if you think about them” 
“in terms of their goals, motives and needs.” 

Thomas Mann 
 
Modeling the behavior of different materials is a well developed topic and covers a wide range of 
materials from linear elasticity to smart materials. What is usually expected from a material model is 
the imitation of the material’s behavior as closely as it is possible. A material may behave differently 
depending on the level and the type of external action. Limited usage of material also limits the range 
of material reaction. Hence it can be said that a model imitates the behavior of a material in the range 
of its usage. Therefore in a process of modeling some simplifications are usually made since the 
coverage of the full range of material behavior is not necessary. A material model is usually called a 
constitutive law.
For muscles a two-term constitutive law is needed. The first term models the passive behavior of the 
muscle and the second term describes its active behavior. In context of the finite element model, its 
numerical implementation and the model itself will be explained in this chapter. 
 
5.1 Muscle’s constitutive law 

Muscle passive behavior is generally modeled as a hyperelastic material (Fung, 1993). Hyperelastic 
materials are materials for which the work done by external load is independent of the load path. It is 
therefore possible to define a stored energy function, called the strain energy (W). According to the 
first and second laws of thermodynamics, the change in internal energy per unit volume (dE) is: 
 

dE=dW+δQ=dW+TdS (5.1) 
 

where δQ is the increment in heat transferred to the body per unit volume and dW is the change in 
strain energy per unit volume. When there is no internal entropy production, the change in specific 
entropy dS (entropy per unit volume) at temperature T is equal to: δQ⁄T. With the definition of 
Helmholtz free energy (H) as H=E-TS, and if the entropy remains unchanged it can be concluded: 
 

dH=dW-SdT (5.2) 
 

Hence we can say that the stored mechanical energy per unit volume (W) is equal to the internal energy 
(E) in an isentropic process (adiabatic process) or the free energy (H) in an isothermal process. This 
mechanical stored energy is due to the work done by external forces acting on the body. The 
mathematical form of the strain energy in terms of stress and strain in finite strain elasticity depends on 
the definition of strain and stress. In large deformation framework, various definitions of stress and 
strain exist. These are reviewed in the next section (for a complete discussion see among the others 
Holzapfel (2000); Fung and Thong (2001); Belytschko (2000)). 
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5.1.1 Kinematics and kinetics of finite elasticity 

In this section a review of different types of strains is first presented. Then the strain rate is explained. 
Stress and its various types come next. Different types of stress rates are described at the end of this 
section. 
5.1.1.1 Strain 

In large deformation elasticity or as it is called “finite elasticity”, the body before deformation at time 
t=0 is at position B and after deformation at time t it occupies the position ϕ(B) (Figure 5.1). The 
points at initial position are shown by vector X and in the current position by vector x=ϕ(X,t). 
 

Figure 5.1 Kinematics of finite strain elasticity; polar decomposition of deformation gradient 

Deformation gradient is a transformation that transforms an initial incremental material line segment 
dX to its current position (dx): 
 

dx=FdX (5.3a) 
Hence 

F=∂x⁄∂X (5.3b) 
 

With J=det(F), an area dA is transformed to (Nanson’s formula): da=nda=JF-TNdA=JF-TdA (with F-

T=(F-1)T and superscript T indicates transpose operation, N and n are normal unit vectors to areas dA
and da respectively) and a volume dV is moved to dv=JdV.
In the large deformation framework the square of differential line segments, dx2 and dX2, cannot be 
neglected as is the case in linear analysis. These can be evaluated as: 
 

dx2=dx⋅dx=FdX⋅FdX=dX⋅FTFdX (5.4a) 
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dX2=dX⋅dX=F-1dx⋅F-1dx=dx⋅F-TF-1dx (5.4b) 
 

(⋅ is vector dot product). With the introduction of two symmetric strain tensors C=FTF and B=FFT,
which are the right and left Cauchy-Green strain tensors respectively, equations (5.4) becomes: 
 

dx2= dX⋅CdX (5.5a) 
 

dX2=dx⋅B-1dx (5.5b) 
 

As it can be seen the Euclidean distance in a deformed/undeformed geometry, becomes a non-
Euclidean one in undeformed/deformed geometry with metric tensors C/B-1. In fact C is a Lagrangian 
strain tensor referring to undeformed configuration and B-1 is an Eulerian strain tensor referring to a 
deformed configuration. The nomenclature of these strain tensors as being left or right comes from the 
polar decomposition of the deformation gradient. Deformation in general can be decomposed into a 
rigid body rotation and a stretch tensor (Figure 5.1). The order of these two transformations can be 
exchanged. Showing the rotation tensor by R, with the property RRT=RTR=I, then the polar 
decomposition of deformation gradient gives: 
 

F=RU=VR   (5.6) 
 

where U and V are the right and left symmetric stretch tensors, respectively. Hence the Cauchy-Green 
strain tensors become: 
 

C=U2 (5.7a) 
B=V2 (5.7b) 

 
The displacement vector field is the difference between the position vectors of the current 
configuration and the initial one: u=x-X. A displacement vector has the same value in initial and 
current configurations. The increment in displacement du in terms of the deformation gradient, F,
becomes: 

du=dx-dX=(F-I)dX (5.8) 
 
Therefore displacement gradient, H, can be expressed as: 
 

H=∂u⁄∂X=F-I (5.9) 
 

The right Cauchy-Green strain tensor with respect to displacement gradient becomes: 
 

C=FTF=HTH+H+HT+I (5.10) 
 
Another important strain tensor is defined with respect to the difference in the square of differential 
line segments. From equation (5.5a) results: 
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dx2-dX2=dX⋅CdX-dX⋅dX=dX⋅(C-I)dX=dX⋅2EdX (5.11) 
 

where E=(C-I)/2 is the Green strain tensor. It can be expressed with respect to displacement gradient 
as: 
 

E=(HTH+H+HT)⁄2 (5.12) 
 
In the small strain framework when the displacement gradient is small, the Green strain tensor 
becomes the linear strain tensor, ϵ:

ϵ=(H+HT)⁄2 (5.13) 
 
Corresponding to the Green strain tensor which is a Lagrangian strain tensor, its equivalent in an 
Eulerian framework is called the Almansi strain tensor e:

e=(I-B-1)⁄2 (5.14) 
 
5.1.1.2 Strain rate 

Velocity of a point is the derivative of its position vector with respect to time, hence: 
 

v=Dx⁄Dt=∂x⁄∂t (5.15) 
 

This velocity with the help of transformation x=ϕ(X,t) can be expressed in Lagrangian description 
v(x,t)=V(X,t). The velocity gradient, L, is the derivative of velocity with respect to Eulerian 
coordinates: 

 
L=∂v⁄∂x (5.16) 

 
Hence from equation (5.3b) the time derivative of the deformation gradient can be expressed as7:

DF⁄Dt=∂v⁄∂X=LF  (5.17) 
 
With this definition different types of strain rates can be computed. The right Cauchy-Green strain rate 
tensor is: 
 

∂C⁄∂t=FTLF+FTLTF=FT(L+LT)F=2FTDF  (5.18) 
 

7 The care should be taken with the time derivatives. D( )/Dt means the derivative with respect to the time when X is fixed, 
but ∂( )/∂t means the derivative with respect to the time when the rest of variables, except time, are fixed. So for a scalar 
function like Γ(X,t), we have: D(Γ(X,t))/Dt=∂(Γ(X,t))/∂t (the same result holds for all the Lagrangian quantities), but for a 
function like γ(x,t), we have: D(γ(x,t))/Dt=∂(γ(x,t))/∂t+∂(γ(x,t))/∂x⋅∂x/∂t and since v=∂x/∂t, then we obtain: 
D(γ(x,t))/Dt=∂(γ(x,t))/∂t+∂(γ(x,t))/∂x⋅v. For example for the deformation gradient we have: DF/Dt=∂F/∂t.
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where D=(L+LT)⁄2 is the symmetric part of the velocity gradient and is called the deformation or 
stretching rate tensor. The skew-symmetric part of the velocity gradient is called the spin tensor: 
Ω=(L-LT)⁄2. From equation (5.18) the Green strain rate tensor can be found: 

 
∂E⁄∂t=FTDF (5.19) 

This shows that the time derivative of the Green strain tensor is the pull back8 of deformation rate 
tensor to initial configuration. 
To compute the time derivative of quantities expressed in current configuration, a special derivative 
called Lie derivative (shown as �v ) is used. In calculating the Lie derivative we first pull back the 
quantities expressed in the current configuration to the initial one. After taking their time derivative the 
result is pushed forward to the current configuration. For example the Lie derivative of the Almansi 
strain tensor gives: 
 

�ve=F-T(D(FTeF)/Dt)F-1=F-T∂E⁄∂tF-1=D (5.20) 
 

To get this result we used the fact that the time derivative of Lagrangian quantities is the same as their 
material time derivative. 
 
5.1.1.3 Stress 

Stress is used to express force distribution inside a body. The stress in large deformation is defined 
with respect to the current or the initial configurations. Hence various definitions of stress can be 
presented. Before introducing these definitions, we need to differentiate between stress vector and 
stress tensor. A stress vector at a point is the force density per unit of area of a plane passing through 
that point. It is a function of the normal (n) to this plane. While having the stress tensor at a point 
means that the state of stress at this point is completely known. This means that it is possible to find 
the stress vectors on all planes passing that point. Hence Cauchy stress vector (σc) at a point inside a 
body is: 
 

σc=dfc⁄da (5.21) 
 

where fc is the force vector on area a. This stress is defined with respect to the current configuration 
(Figure 5.2). The Cauchy stress tensor (σ) at a point is defined via three stress vectors with respect to 
the three orthogonal planes passing through the point. Cauchy stress is a symmetric tensor. Cauchy 
formula relates Cauchy stress vector to Cauchy stress tensor through: 
 

8 Pull-back of a quantity means expressing a physical quantity which has been defined in current configuration, back to 
initial configuration. Pull-back operator working on a contravariant second order tensor τ in current configuration gives: 
T=F-1τF-T and for a covariant one: T=FTτF. In this regard, τ is push-forward of tensor T from the initial configuration to the 
current one. Most of the strains are covariant tensors and most of the stresses are contravariant tensors (see Appendix A in 
Wriggers 2008). 
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σc=σn (5.22) 
 

where n is a unit normal vector to the plane. Hence the force vector is: 
 

dfc=σcda=σnda=σda (5.23) 
 

where da is area vector. 
 

Figure 5.2 Cauchy stress representation 

 
If we assume that the same force acts on area dA in undeformed position, this new stress  is called first 
Piola-Kirchhoff stress tensor (P) and it is obtained: 
 

dfc=PdA (5.24) 
 
With the help of Nanoson’s formula and equation (5.23) follows: 
 

P=JσF-T   (5.25) 
 

The first Piola-Kirchhoff stress tensor is not symmetric and is a mixed Lagrangian-Eulerian stress 
tensor since the force vector in the current configuration is applied on the original undeformed area in 
the initial configuration. Hence a second Piola-Kirchhoff stress tensor (S) is introduced in which the 
force vector is transformed to the initial configuration by the deformation gradient: 
 

dFc=F-1dfc=SdA (5.26) 
 

Hence we obtain: 
 

S=F-1P=JF-1σF-T (5.27) 
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This means that S is a symmetric Lagrangian stress tensor. This tensor is also a pull-back (refer to 
footnote in section 5.1.1.2) of the Kirchhoff stress tensor defined by: τ=Jσ.
Another useful stress tensor is corotational stress tensor or Green-Naghdi stress tensor (σco). This stress 
is obtained by expressing the Cauchy stress in a coordinate system which rotates by the rotation part 
(R) of the deformation gradient. This coordinate system is related to the global coordinate system 
through the rotation part of the deformation gradient as (Figure 5.3): 
 

xco=RTX (5.28) 
 

The transformation equation for corotated force vector is then expressed as: 
 

dfco=RTdfc=RTσnda=RTσRncoda (5.29) 
 

In a corotated coordinate system the Cauchy stress becomes corotated stress. Equation (5.22) gives: 
 

dfco=σconcoda (5.30) 
 

By comparing equations (5.28) and (5.29), and using (5.26) and (5.6) we obtain: 
 

σco=RTσR=J-1USU  (5.31) 
 

Hence for a body that undergoes a rigid body motion, the stress tensor in the corotated frame remains 
constant. 
 

Figure 5.3 Corotated framework 
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5.1.1.4 Stress rate 

In the incremental form of constitutive equations, the stress rate is of significance. The stress rate for 
the Lagrangian stress tensors (like the second Piola-Kirchhoff stress tensor) can be obtained simply by 
taking their derivative with respect to time. But for the Eulerian stress tensor like the Cauchy stress 
tensor; this derivative has to be taken while holding X fixed which is called material time derivative. 
The material time derivative of Cauchy stress gives: 
 

σ�=Dσ⁄Dt=∂σ⁄∂t+∂σ⁄∂x:v  (5.32) 
 
where v is the velocity vector, and : denotes contraction which in this equation is between a third order 
tensor and a vector such that: ∂σ⁄∂x:v=(∂σij⁄∂xk)vk.(summation over equal indices implied). All these 
material time derivatives are non-objective. Objectivity means frame indifference and is a necessary 
requirement for constitutive laws. To explain objectivity we consider that the coordinate system 
follows a rigid body transformation like xr=Qx+c with rotation matrix Q and translational part c. A
physical quantity is objective when it does not change under this transformation or it transforms as 
follows:  
for a vector quantity 

 
vr=Qv   (5.33a) 

and for a second order tensor 
 

Gr=QGQT (5.33b) 
 

It can be shown that the Lagrangian tensors (like the right Cauchy-Green strain tensor, the Green strain 
tensor and the right stretch tensor) are objective since they do not change with a rigid body 
transformation. The Eulerian tensors (like the left Cauchy-Green strain tensor, the Almansi strain 
tensor, and the left stretch tensor) are also objective tensors. For example Cauchy stress is an objective 
quantity because: 
 

σrnrda=dfcr=Qdfc=Qσnda=QσQTQQTnrda=QσQTnrda (5.34) 
 
in which we have used the orthogonality of rotation matrix Q and the objectivity of the incremental 
force vector and unit normal vector n. The mixed Lagrangian-Eulerian tensors like the deformation 
gradient or first Piola-Kirchhoff are objective because the Lagrangian part remains unchanged and the 
Eulerian part changes like a vector (equation (5.33a)), so since the whole transformation is like a 
vector, hence we can consider them as objective. For example since for the deformation gradient we 
have: dx=FdX, then following the rigid body transformation dxr=Qdx, the new deformation gradient 
becomes: Fr=QF and we have dxr=FrdX. As it can be seen it behaves like a vector and hence it is 
considered as an objective quantity (Holzapfel, 2000). 
Velocity gradient, L, and spin tensor, Ω, are not objective whereas the stretching rate tensor, D, is 
objective. In fact it can be shown that the Lie derivative produces an objective vector. Taking the Lie 
derivative of the Cauchy stress tensor gives: 
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�vσ=F(D(F-1σF-T/⁄Dt)FT (5.35) 
 

In this equation time derivative is taken with respect to the reference frame so it is a material time 
derivative. This equation can be expanded using time derivative of the inverse of the deformation 
gradient which can be found by taking time derivative of F-1F=I as: 
 

∂F-1⁄∂t=-F-1L (5.36) 
 
Hence we have: 
 

�vσ=σ �-Lσ-σLT (5.37) 
 
With the help of L=D+Ω, this derivative can be written as: 
 

�vσ=σ �-Dσ-σD-Ωσ+σΩ=σ∇J-Dσ-σD (5.38) 
 
In this equation another objective derivative is introduced, σ∇J=σ �-Ωσ+σΩ, which is called the Jaumann 
derivative of the Cauchy stress tensor. Taking the material time derivative of the corotational Cauchy 
stress, σco, gives: 
 

σ�co=∂RT⁄∂tσR+RTσ �R+RTσ∂R⁄∂t=RT(σ �-ωσ+σω)R (5.39) 
 
where ω=(∂R⁄∂t)RT=-R(∂RT⁄∂t) and it is called the skew matrix. σ�co is not an objective quantity but the 
term inside parenthesis introduces an objective quantity and it is called Green-Naghdi or corotational 
derivative: 
 

σ∇co=σ�-ωσ+σω (5.40) 
 
For a rigid body rotation, where stretching rate tensor is zero, D=0, the spin tensor equals ω, and 
corotational rate of stress equals Jaumann rate of stress tensor.9

Now that all the mathematical foundations of finite elasticity have been introduced, the notion of 
constitute law can be better explained. 
 
5.1.2 Constitutive law 

A constitutive law relates the state of stress in the body as a function of an arbitrary deformation of 
that body. Since we are working with homogenous bodies, the stress is only a function of the 
deformation gradient, F, not of the position within the body, X. The constitutive law takes different 
forms depending on the behavior of the material and on the material usage. In the following the focus 
 

9 This fact is used in those numerical methods working with corotational stress, because in each small numerical increment 
step, the stretch rate can be neglected. 
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is on finite elasticity. In finite elasticity or finite hyperelasticity the behavior of a material is elastic but 
the level of the strain is not small in contrast to linear elasticity. Hyperelastic materials are materials 
for which the work done in a closed deformation path is zero and hence a strain energy can be defined. 
The energy stored in the volume dv (in the current configuration) per unit time can be computed as: 
 

δP=(σ:D)dv=(σ:(L-Ω))dv=(σ:L)dv (5.42) 
 
where P is the power or the strain energy per unit of time. In equation (5.42) the symmetry of the 
Cauchy stress tensor and the mathematical properties of tensor contraction have been used, which for 
an anti-symmetric tensor Ω yields: σ:Ω=0 (for a review of tensor analysis among others Lebedev & 
Cloud, 2003; Kintzel & Basar, 2006). Therefore this power takes the following forms for different 
stress definitions: 
for first order Piola-Kirchhoff stress with help of equations (5.25) and (5.17): 
 

δP=(J-1PFT:∂F⁄∂tF-1)JdV=(P:∂F⁄∂t)dV (5.43) 
 

and for second order Piola-Kirchhoff stress with help of (5.42)1 and equations (5.19) and (5.27):  
 

δP=(J-1FSFT: F-T∂E⁄∂tF-1)JdV=(S: ∂E⁄∂t)dV (5.44) 
 

and for corotational stress with help of equation (5.31): 
 

δP=(RσcoRT:D)dv=(σco:RTDR)dv (5.45) 
 
Since for a hyperelastic material the stored energy should be independent of the path, the increment in 
power should be a complete differential. Noting the differential change of stored energy per unit 
volume as dw=δPdt/dv, or with respect to the reference volume dW=Jdw=δPJdt/JdV=δPdt/dV, this 
strain energy should be a function of the deformation gradient as it can be written according to the 
chain rule: 
 

dW⁄dt=(∂W⁄∂F):∂F⁄∂t (5.46) 
 
It is assumed that the strain energy should be an objective quantity. Hence it should be independent of 
a rigid body motion. This implies that it should be independent of the rotational part of deformation 
gradient (in other words it should be only a function of its stretch part). Therefore it can be concluded 
that the strain energy is a function of the Cauchy-Green or Green strain tensors. This gives: 
 

dW⁄dt=(∂W⁄∂E):∂E⁄∂t (5.48) 
 
Therefore the first order Piola-Kirchhoff stress for a hyperelastic material can be extracted from the 
stored energy by comparison with equation (5.43): 
 

P=∂W⁄∂F (5.48) 
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It can also be extracted from equation (5.44) using the definition of the Green strain tensor and the 
second order Piola-Kirchhoff stress tensor for a hyperelastic material: 
 

S=∂W⁄∂E=2∂W⁄∂C (5.49) 
 
The Cauchy stress can be computed from equation (5.27). 
A hypoelastic constitutive law is a relation in which the stress rate is expressed as a function of stretch 
rate or deformation rate. A general linear hypoelastic law can be stated as: 
 

σ∇=ℂ:D (5.50) 
 
where ℂ is a fourth order tensor and is called material Jacobian or elasticity tensor, σ∇ denotes the 
objective rate of the Cauchy stress tensor and : is the tensor contraction between a fourth order tensor 
and a second order tensor such that in index notation: ℂ:D=ℂijklDkl. This relation states that increments 
in stress linearly related to increments in strain and upon unloading are recovered. This relation not 
necessarily conserves the energy in large deformation and the work done in a closed path is not 
necessarily zero. The material Jacobian is stated between two objective quantities since it will be an 
objective quantity. The relation between different material Jacobians for different stress rates is 
explained below. If ℂ� , ℂ∇J and ℂ∇Co are the material Jacobian for the Lie derivative, Jaumann and 
corotational stress rates respectively, we have: 
 

�vσ=ℂ�:D  (5.51) 
σ∇J=ℂ∇J:D  (5.52) 
σ∇co=ℂ∇co:D  (5.53) 

 
The relation between different material Jacobians from equations (5.38) and (5.40) and from tensor 
algebra (see appendix A) becomes: 
 

ℂ∇J=ℂ�+1⁄2(I⨀σ+σ⨀I+σ▭I+I▭σ) (5.54) 
ℂ∇co=ℂ∇J+ℂω (5.55) 

 
where ℂ∇J  and ℂ∇co are the Jaumann and corotational material Jacobian respectively, and ℂω:D=σ(ω-
Ω)-(ω-Ω)σ, the ⨀ and ▭ are showing operations on second order tensors such as: (a⨀b)ijkl=ailbjk and 
(a▭b)ijkl=aikbjl (for their properties refer to appendix A). 
The material Jacobian for the second-order Piola-Kirchhoff stress is obtained from: 
 

∂S⁄∂t=ℂS:∂E⁄∂t=ℂS:(1/2)∂C⁄∂t (5.56) 
 

Having ℂS, then material Jacobian for the Lie derivative can be computed using: 
 

∂S⁄∂t=D(JF-1σF-T)⁄Dt=JF-1[tr(D)σ+�vσ]F-T=JF-1[(σ⨂I+ℂ�):D]F-T (5.57) 
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where the equation (5.36) and the derivative of Jacobian (∂J⁄∂t=Jtr(D)) are used. Using equation 
(5.19), from the equations (5.56) and (5.57) we have: 
 

�:D=(σ⨂I+ℂ�):D=(1⁄J)F(ℂS:FTDF)FT=(1/J)(F▭F):(ℂS:FTDF)= 
(1/J)(F▭F):(ℂS:(D:(F▭F))=(1/J)(F▭F):(ℂS:((FT▭FT):D ) (5.58) 

 
where � is spatial equivalent of ℂS and is called Truesdell material Jacobian. In this relation the 
properties of ▭ and fourth-order tensors have been used (see Appendix A). Hence we obtain: 
 

�=σ⨂I+ℂ�=(1/J)(F▭F):ℂS:(FT▭FT) (5.59) 
 
According to (5.39) and having D=RDcoRT, σ�co can be written as: 
 

σ�co=ℂco:Dco=RT(ℂ∇co :D)R=RT(ℂ∇co:RDcoRT)R (5.60) 
 

With the same way as in (5.58) we can find: 
 

ℂco=(RT▭RT):ℂ∇co:(R▭R) (5.61) 

5.1.3 Hyperelastic Materials 

For isotropic materials for which the material properties are independent of directions, the strain 
energy is insensitive to rotations and only dependents on the invariants of the Cauchy-Green strain 
tensors (Gurtin 1981): 
 

W=W(I1, I2, I3) (5.62) 
 
The invariants of a second order tensor like C are: 
 

I1=tr(C)=λ1+λ2+λ3 (5.63a) 
I2=½[(tr(C))2+tr(C2)]=λ1λ2+λ2λ3+λ1λ3 (5.63b) 
I3=det(C)=λ1λ2λ3 (5.63c) 

where λi i=1,2,3 show the eigenvalues of tensor C. For a fully incompressible material the volume 
does not change under deformation, hence according to dv=JdV, the Jacobian of the deformation tensor 
is equal to one and hence I3=J2=1. Therefore the strain energy is not a function of I3. For nearly 
incompressible materials, the deformation gradient F is multiplicatively split into deviatoric or 
distortional part (or isochoric) and volumetric or dilatational part. According to Flory (1961): 

F=FvolFdev=(J1/3I)F¯ (5.64) 
 

With this decomposition the invariants can also be decomposed as: 
 

Ii=J2i/3I¯i i=1,2,3  (5.65) 
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The I¯i are invariants of the deviatoric part of C. In a transversely isotropic material there is a fiber 
direction along which the material property is different from transverse directions. If this direction is 
represented at an arbitrary material point by a unit vector a0 in the initial configuration, and by a unit 
vector a in deformed configuration, the two vectors are related by the deformation gradient as follows: 
 

Fa0=λa (5.66) 
 
where λ is the stretch ratio along fiber direction. This stretch ratio can be computed through vector 
inner product as: 
 

λ2=Fa0⋅Fa0=a0⋅Ca0 (5.67) 

Spencer (1984) has shown that the invariance of strain energy to this material symmetry direction can 
be defined through the following two extra invariants: 
 

I4=a0⋅Ca0=λ2 (5.68a) 
I5=a0⋅C2a0 (5.68b) 

 
For a nearly incompressible material the decomposition of these invariants to their dilatational and 
distortional parts gives: 
 

I¯4=a0⋅C¯a0=λ¯2=J-2/3I4 (5.69a) 
I¯5=J-4/3I5 (5.69b) 

 
Hence the strain energy for a nearly incompressible transversely isotropic hyperelastic material will be 
in the following form: 
 

W=Wdev(I¯1,I¯2,I¯4,I¯5)+Wvol(J) (5.70) 
 
where Wdev is the strain energy corresponding to the isochoric part of deformation and Wvol the strain 
energy due to change of volume. The second Piola-Kirchhoff stress tensor for a hyperelastic material 
from equation (5.49) using the chain rule can be written as: 
 

S=2Σi(∂W⁄∂I¯i)∂I¯i ⁄∂C+2(∂Wvol⁄∂J)∂J⁄∂C=Sdev+Svol (5.71) 
 
In this equation we need the derivatives of invariants with respect to the right Cauchy-Green strain 
tensor. These derivatives are (Holzapfel, 2000; Kintzel and Basar, 2006): 
 

∂I1⁄∂C=∂(tr(C))/∂C=∂(I:C)⁄∂C=I:∂C⁄∂C=I:1/2(I▭I+I⨀I)=I (5.72a) 
∂I2⁄∂C=tr(C)I-C=I1I-C (5.72b) 
∂J⁄∂C=JC-1/2          (5.72c) 
∂I4⁄∂C=∂(a0.Ca0)⁄∂C=∂((a0⨂a0):C)⁄∂C=(a0⨂a0):1/2(I▭I+I⨀I)=a0⨂a0 (5.72d) 
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∂I5⁄∂C=∂(a0.C2a0)⁄∂C=a0⨂Ca0+Ca0⨂a0 (5.72e) 
 
For computing ∂I¯i/∂C, we can use the above relations simply by replacing C with C¯ to compute ∂I¯i

⁄∂C¯, using the chain rule it gives: 
 

∂I¯i/∂C=(∂I¯i ⁄∂C¯):(∂C¯⁄∂C) (5.73) 
 
knowing that: 
 

∂C¯⁄∂C=C⨂∂J-2/3⁄∂C+J-2/3/2[I▭I+I⨀I]=J-2/3[1/2(I▭I+I⨀I)-1/3(C⨂C-1)] (5.74) 
 
Combining equations (5.73) and (5.74) and using the symmetry of C gives: 
 

∂I¯i/∂C=J-2/3[∂I¯i ⁄∂C¯-1/3(∂I¯i ⁄∂C¯:C¯)C¯-1] (5.75) 
 
Hence from equations (5.71), (5.72c) and (5.75), it is obtained: 
 

Sdev=2J-2/3Σi(∂W⁄∂I¯i)DEV(∂I¯i ⁄∂C¯)=2J-2/3DEV(∂W⁄∂C¯) (5.76a) 
Svol=(dWvol⁄dJ)JC-1 (5.76b) 

 
where the operator DEV extracts the deviatoric part of a second order tensor (O) is expressed in the 
initial configuration: 
 

DEV(O)=[O-1/3(O:C)C-1]=O:[1/2(I▭I+I⨀I)-1/3(C⨂C-1)]  (5.77) 

In the above equation C can be replaced with C¯. We have Sdev:C=0.
The Cauchy stress from (5.17) can be written as: 
 

σ=J-1FSFT=(∂Wvol⁄∂J)JI+(2/J) Σi(∂W⁄∂I¯i) [F¯∂I¯i ⁄∂C¯F¯T-1/3(F¯∂I¯i ⁄∂C¯F¯T:I)I]= 
(∂Wvol⁄∂J)JI+(2/J) Σi(∂W⁄∂I¯i) dev[F¯∂I¯i ⁄∂C¯F¯T]=σvol+σdev (5.78) 

Hereby the operator dev is like DEV but in the spatial configuration, namely: 
 

dev(o)=[o-1/3(o:I)I]=o:[1/2(I▭I+I⨀I)-1/3(I⨂I)] (5.79) 
The trace of the deviatoric stress tensor is 0, and we have: σdev:I=0. 
The material Jacobian corresponding to the second-order Piola-Kirchhoff (which is not an objective 
quantity) can simply be computed from (5.49) by using the chain rule as: 
 

∂S⁄∂t=(∂2W⁄∂E∂E):∂E⁄∂t=4(∂2W⁄∂C∂C):(1/2)∂C⁄∂t (5.80a) 
ℂS=(∂2W⁄∂E∂E)=4(∂2W⁄∂C∂C) (5.80b) 

 
Therefore for a transversely isotropic nearly incompressible hyperelastic material, we have: 
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ℂS=ℂS
vol+ℂS

dev (5.81) 
 
where: 
 

ℂS
vol=2∂Svol⁄∂C=J(Jd2W⁄dJ2+dWvol⁄dJ)C-1⨂C-1+2(dWvol⁄dJ)J∂C-1⁄∂C (5.82) 

 
in which regarding symmetry of C we have (see Appendix A): 
 

∂C-1⁄∂C=-1/2(C-1▭C-1+C-1⊙C-1) (5.83) 
 
and: 
 

ℂS
dev=2∂Sdev⁄∂C=4[(-J-4/3/3)DEV(∂W⁄∂C¯)⨂C¯-1+J-2/3∂DEV(∂W⁄∂C¯)⁄∂C] (5.84) 

 
In equation (5.84) we can write: 
 

∂DEV(∂W⁄∂C¯)⁄∂C=∂DEV(∂W⁄∂C¯)⁄∂C¯:(∂C¯⁄∂C)=
[∂2W⁄∂C¯∂C¯-1/3C¯-1⨂(C¯:∂2W⁄∂C¯∂C¯+∂W⁄∂C¯)-1/3(∂W⁄∂C¯:C¯)∂C¯-1⁄∂C¯]:(∂C¯⁄∂C)

(5.85) 
 
In (5.85) we have: 
 

∂2W⁄∂C¯∂C¯=Σi[∂I¯i ⁄∂C¯⨂∂(∂W⁄∂I¯i)⁄∂C¯+∂W⁄∂I¯i(∂2I¯i⁄∂C¯∂C¯)]  (5.86) 
 
where: 
 

∂(∂W⁄∂I¯i)⁄∂C¯=Σj(∂2W/∂I¯j∂I¯i)∂I¯j ⁄∂C¯ (5.87) 
and 

∂2I¯2⁄∂C¯∂C¯=I⨂I-1/2(I▭I+I⨀I) (5.88a) 
∂2I¯5⁄∂C¯∂C¯=1/2[(a0⨂a0)⨀I+I⨀(a0⨂a0)+(a0⨂a0)▭I+I▭(a0⨂a0)] (5.88b) 

 
5.1.4 Muscle strain energy 

Fiber like structure of a muscle and its nonlinear mechanical behavior, make the transversely isotropic 
hyperelastic constitutive law a good candidate for modeling its passive behavior. Since water is the 
main constituent of a muscle, the nearly incompressible constraint is also chosen. Finding a suitable 
strain energy for a hyperelastic material is a complex task. This task can be less complex if the 
parameters of the strain energy function have a physical meaning. Criscione et al. (2001) have 
introduced a set of new invariants for transversely isotropic hyperelastic materials which carry a 
physical meaning. These invariants and their relations with respect to former invariants are as follows: 
 

β1=ln(J) (5.89a) 
β2=(3ln(I4)-2ln(J))/4  (5.89b) 
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β3=ln((I1I4-I5)/2√(J2I4)-√(((I1I4-I5)/2√(J2I4))2-1))=
ln((I¯1I¯4-I¯5)/2√(I¯4)-√(((I¯1I¯4-I¯5)/2√(I¯4))2-1)) (5.89c) 

β4=√((I5/I4
2)-1)=√((I¯5/I¯42)-1) (5.89d) 

 
β2 represents strain in fibers due to distortion, β3 is related to the cross-fiber shear strain and β4 shows 
the along-fiber shear strain.  
The strain energy proposed for the passive behavior of a muscle is a combination of a (1) neo-Hookean 
term for taking into account the effect of connective tissues of a muscle and (2) the strain energy used 
in Blemker et al. (2005) to take into account the effect of interaction between muscle fibers and 
connective tissues: 
 

Wpassive=c0(I¯1-3)+c1(β3)2+c2(β4)2+Wvol(J) (5.90) 
 
According to a study of convexity of different models for volumetric part of strain energy by 
Hartmann & Neff (2003), the following form proposed by Simo and Taylor (1985) is used: 
 

Wvol(J)=(K/4)[(J-1)2+(lnJ)2] (5.91) 
 
To model the active behavior of the muscle, no direct energy term is introduced. The force generated 
in the muscle is expressed in terms of the Cauchy stress and is assumed to be driven from its 
corresponding strain energy (Wactive). The Cauchy stress along the fiber direction according to (5.78) 
can be expressed as: 
 
σf=(2/J)(∂Wactive ⁄∂I¯4)I¯4[(a⨂a)-I/3]=(1/J)(∂Wactive ⁄∂λ¯)λ¯[(a⨂a)-I/3]=(1/J)σf[(a⨂a)-I/3] (5.92) 

The tensile stress in fiber direction is made of two components: one active and one passive component 
(see chapter 3). According to muscle structure the fibers can only withstand a tensile force hence the 
passive component models this behavior (note that this is different from the passive part due to 
connective tissues which is modeled through a neo-Hookean term). The value of Cauchy stress along 
the fiber (equation (3.4b)), is therefore expressed as (Wilhelms-Tricario, 1995; Yohansson et al., 2000; 
Blemker et al. 2005): 
 

σf=FCE/A=(Fmax /Aofl)(f(λ,v,A)+fpassive))(Aofl/A)=σmax(f(λ,v,Ac)+fpassive))(Aofl/A) (5.93) 
 
where σmax is the maximum voluntary force (MVF) a muscle can produce and A is the physical cross 
sectional area of the muscle in its current position. The MVF of the muscle happens at the optimal 
fiber length (λofl) and at the cross sectional area Aofl. The ratio Aofl/A is replaced with λ⁄λofl to satisfy the 
assumption of incompressibility (see the appendix in Blemker et al., 2005): 
 

σf=σmax(f(λ,v,Ac)+fpassive)(λ⁄λofl) (5.94) 
 
The passive fiber force according to Weiss and Gardiner (2001) for collagen fibers is: 
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fpassive=0   λ≤ λofl (5.95a) 
fpassive=c3(exp(c4(λ-λofl))-1) λofl<λ<λ* (5.95b) 
fpassive=c5λ+c6 λ≥λ* (5.95c) 

 
where λ* is the stretch ratio at which the fibers straightened and force-stretch relationship becomes 
linear. c5 and c6 are determined so that the force at λ* is continuous and smooth.  
The active fiber force depends on the functional model of the muscle. For a Hill-type muscle model the 
active force is separated multiplicatively (see equation (3.5)) as: 
 

f(λ,v,Ac)=Acfactive(λ)g(v) (5.96) 
 

Force-stretch ratio in the above equation is modeled by a polynomial curve fitting of experimental 
data. A parabolic curve proposed by Blemker et al. (2005) is used: 
 

factive(λ)=9((λ/λofl)2-0.4) λ≤0.6λofl (5.97a) 
factive(λ)=1-4(1-(λ/λofl)2) 0.6λofl<λ<1.4λofl (5.97b) 
factive(λ)=9((λ/λofl)2-1.6) λ≥1.4λofl (5.97c) 

 
For the Feldman model the equation (3.9) for stress in active fibers is used. 
 
5.2 Implementation of a constitutive law in ANSYS finite element software 

The muscle constitutive law in the ANSYS program has not been developed yet. But this software has 
the capability of implementing a new user defined constitutive law (USERMAT). In ANSYS an 
updated Lagrangian formulation is used, hence a user defined subroutine should provide the Cauchy 
stress and the corresponding material Jacobian in Voigt notation. ANSYS also uses corotational 
coordinates therefore the Cauchy stress provided in a USERMAT should be a corotated Cauchy stress 
(equation (5.31)) and the corresponding material Jacobian needs to be ℂco (equation (5.61)). 
With a given strain energy the Cauchy stress (equation (5.78)) and its corotated part can easily be 
computed from the deformation gradient that is provided by the ANSYS program. For computation of 
material Jacobian the numerical perturbation method proposed by Miehe (1996) and explained in 
detail by Sun et al. (2008) is used. In this perturbation technique the element kl of the deformation 
gradient is perturbed: 
 

Fpert=F+∆Fkl=F+(ϵ/2)(ek⨂el+el⨂ek) (5.98) 

where ϵ is the perturbed value (according to Miehe (1996) this is the square root of the machine 
epsilon; for example of a machine epsilon of 10-16 this is 10-8) and the vectors ei are the basis vectors of 
spatial coordinates.  
With this Fpert the perturbed value of this Cauchy stress is computed: 
 

∆σkl=σkl-σ (5.99) 
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And the Jaumann material Jacobian ℂ∇J(i,j,k,l) is equal to: 
 

ℂ∇J(i,j,k,l)=∆σkl/ϵ (5.100) 
 
When the stretch rate tensor (D) is small, the spin tensor (Ω) is nearly equal to the skew tensor ω and 
therefore the corotational material Jacobian ℂ∇co is approximated by Jaumann material Jacobian (see 
equation (5.55)): 
 

ℂ∇co≅ℂ∇J (5.101) 
 
With this method there is no need to perform cumbersome calculations needed in equation (5.84). 
Within USERMAT the force-velocity dependence of a muscle cannot be implemented directly. Thus, 
the USERMAT implementation of the muscle constitutive law only models the force-length 
characteristics. The inclusion of velocity dependence is performed in the ANSYS USERELEM 
capability will be detailed in the next chapter. 
 
5.3 Verification process 

Within the process of construction of a new constitutive law, the existing transversely hyperelastic 
model of ANSYS software was modeled. The exact match between ANSYS computations and the 
results provided by our USERMAT implementation for one element model under uniaxial loading, 
shear loading and biaxial loading with USERMAT was observed (Figure 5.4).  
 

(a) 
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(b) 

(c) 
Figure 5.4- Comparison between ANSYS’ transversely hyperelastic model and its equivalent 
USERMAT implementation for a one-element model under (a) uniaxial loading (b) biaxial 
loading and (c) shear loading. 

 
Then the behavior of a muscle model was qualitatively observed. For this the deformation of a simple 
fixed-end bar with a row of muscle elements on top of the bar (red elements) is examined (Figure 5.5). 
As expected the change of muscle fiber direction from a longitudinal direction (Figure 5.5a) to a 
diagonal direction (Figure 5.5b) causes the twisting of the bar. 
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(a) (b) 
 

Figure 5.5 The activation of muscle elements (red elements) on top of a simple fixed-end bar 
shows (a) a bending with muscle fibers in longitudinal direction and (b) a twisting action with 
muscle fibers in a diagonal direction. 

 
5.4 Muscle constitutive law used in the face model 

This active muscle constitutive law is used in the face model to produce facial gestures. In chapter 4, 
the focus is on the lip area and those muscles that are mostly involved in speech production. The fiber 
directions for each muscle element are derived from the fiber directions in the previous face model 
explained in chapter 4 (Figure 5.6). 
 

(a) (b) 
Figure 5.6 Muscle mechanical properties assigned to elements to model (a) part of orbicularis 
oris peripheralis (OOP) and (b) OOP with part of buccinator (BUC) muscle. Different colors 
correspond to different fiber direction in the course of muscle. 

 
The activation of these muscles produces facial gestures related to speech production (Figure 5.6).  
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(a) (b) 
Figure 5.7 The resulting deformations following the activation of muscles shown in figure 5.6. 
The process is a moving process and the results depend on the time pattern of activation 
especially when two muscles act together like in (b). 

 
5.5 Conclusion 

Assuming a transversally isotropic behavior matches well the fiber-like structure of the muscle. 
Nonlinear elastic behavior of the tissues can be modeled with the hyperelastic assumption. Since the 
main component of the tissues is water, the property of nearly incompressibility should be included in 
the constitutive behavior of the muscle tissue. A new strain energy for the passive behavior of the 
muscle is presented. This strain energy contains a neo-Hookean term for the connective tissues around 
the fibers in the muscle. The other terms in the passive strain energy, model the interaction between 
muscle fibers and connective tissues. This interaction is modeled through shear behavior along the 
fiber direction and cross fiber direction. This constitutive law provides a basis for inclusion of velocity 
dependent term in muscle model which is the subject of next chapter. The effect of this model on face 
and its qualitative results show stable behavior as it creates reasonable facial gestures.  
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Chapter Six: Muscle element: Force-Velocity Characteristics 

“Slow down and enjoy life. It's not only the scenery you miss by going too fast; you also” 
“miss the sense of where you are going and why.” 

Eddie Cantor 
 

Damping behavior of a muscle is a major feature of a muscle especially when it moves fast. This 
characteristic has been first studied by Hill (1938). He investigated the relation between muscle force 
and shortening velocity of a tetanically simulated muscle. He modelled this property as a nonlinear 
viscous damping in his functional model. This property plays an important role in studying muscle 
fatigue, cardiac muscle and the fast and fine muscle movements as in speech production. Most of 
muscle models in the literature use the same force-velocity curve but with different interpolation 
functions (Zajac, 1989; Botinelli et al. 1996; Brown et al., 1996; Cheng et al. 2000).  
In muscle modelling by finite element methods both force-length and force-velocity characteristics 
should be included in the muscle model. Modeling only force-length characteristics is usually 
performed through a constitutive law (see chapter 5) (Yucesoy, 2002; Blemker 2005) and it is useful in 
models which can be treated pseudo-statically. Of course modelling as a constitutive law can be used 
in a dynamic simulation and the damping property of the muscle can be included through a viscoelastic 
model (Holzapfel and Gasser, 2001; Holzapfel, 2003). Due to the nonlinear nature of damping 
behaviour of a muscle, finding an equivalent viscoelastic model is a difficult task, hence usually the 
damping behaviour of the muscle is taken into account directly through the functional muscle model 
and its effect as the force-velocity characteristics (Wilhelms-Tricario, 1995; Johansson et al., 2000; 
Lemos et al., 2004; Martins et al., 2006; Tang et al., 2009). 
In this chapter we first review the differential equations of motion in finite elasticity and its equivalent 
variational weak form. We then explain in brief the linearization process which is essential in 
obtaining solutions of a nonlinear equation as for example in Newton-Raphson method. After that we 
review the finite element solution of equations of motion and their linearized form. (For a complete 
discussion see Belytschko et al., 2000 or Wriggers, 2008.)  
Following that we explain how the linearization needed in the solution of finite element equations for 
the force velocity term in muscle model ends to a virtual time-varying damping matrix. Finally we 
explain how the Feldman model which includes a force-delayed velocity term creates a virtual time-
dependent inertia matrix. A validation example for a Hill-type muscle model wraps up this chapter. 
 
6.1 Equations of motion in finite elasticity and their equivalent variational form 

In solid mechanics we assume that mass is conserved during deformation (Figure 6.1). This means that 
for an arbitrary infinitesimal mass the following equality holds for reference and deformed 
configuration: dm=ρ0dV=ρdv. Since we have dv=JdV, it holds true that: 
 

ρ0=Jρ (6.1) 
 
Taking the time derivative of the total mass m=∫B ρ0dV gives: 

Jρ�+DJ⁄Dt ρ=Jρ �+Jdiv(v)ρ=0 (6.2) 
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In this equation we have of the fact knowing ∂J⁄∂F=JF-T from which follows that: 
 

DJ⁄Dt=JF-T:DF⁄Dt=Jdiv(v) (6.3) 
 

where div(v) is divergence operator in current configuration. In equation (6.3) the chain rule and 
equation (5.17) have been used. So we have: 
 

ρ�+div(v)ρ=0 (6.4) 
 
Now according to the conservation of linear momentum we have: 
 

∫ϕ(B) ρvdv=∫B ρ0vdV=∫B JρvdV (6.5) 
 
The equation of motion (Newton’s second law) states that the time derivative of the linear momentum 
is equal to external forces. External forces in general are either body forces which their intensity per 
unit mass is b, and/or traction forces with intensity t (force per unit area) on deformed surface ϕ(∂B)
(Figure 6.1). Thus, using equations (6.2), (6.3) and (5.22) we have: 
 

D(∫B JρvdV) ⁄Dt=∫B Jρv�dV=∫ϕ(B) ρbdv+∫ϕ(∂B) tda=∫ϕ(B) ρbdv+∫ϕ(∂B) σnda (6.6) 
 
According to divergence theorem we have: 
 

∫ϕ(∂B) σnda=∫B div(σ)dv (6.7) 
 
Using the above equation and dv=JdV in (6.6), the differential equations of motion can be written as: 
 

div(σ)+ρb=ρv � (6.8) 
 

Figure 6.1 Body force b is acting through the volume and traction t on external surface 
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The boundary conditions for this equation is a displacement (geometric or Dirichlet) boundary 
condition on a displacement boundary ϕ(∂Bu) as u=uext and a force (natural or Neumann) boundary 
condition on a traction boundary ϕ(∂Bσ) as σn=text.
The equation of motion written in the initial configuration can be obtained from equation (6.6) by 
using equations (5.25) and (6.1), divergence theorem, using Nanosn’s formula da=nda=JF-TNdA and 
replacing dv=JdV, which gives:  
 

Div(P)+ρ0b=ρ0v� (6.9a) 
 
where P is first Piola-Kirchhoff stress tensor and Div is divergence operator in initial configuration. 
Using P=FS the above equation can be written in terms of the second Piola-Kirchhoff stress tensor as: 
 

Div(FS)+ρ0b=ρ0v� (6.9b) 
 
The boundary equation for the equations (6.9) can be stated as: u=u0

ext on ∂Bu as displacement 
(geometric or Dirichlet) boundary condition and PN=FSN=t0

ext on ∂Bσ as force (natural or Neumann) 
boundary condition. 
The variational form for equations of motion can be found in different ways: by weighted residual 
methods or by variational principle or with Hu-Washizu principle (Washizu, 1975; Bathe, 1996). We 
use the weighted residual method to find the weak or variational form.  
If an approximation function for body displacement (u0

h) is assumed, the equations of motion cannot 
be exactly satisfied. Inserting the assumed approximate displacement field into the equations of 
motion, the residual in initial configuration becomes: 
 

Rh=Div(P)(u0
h)+ρ0b-ρ0v�h=Div(FS)(u0

h)+ρ0b-ρ0v�h (6.10a) 

and in current configuration we have: 
 

rh=div(σ)(uh)+ρb-ρv �h (6.10b) 
 
In a weighted residual method we multiply the residual by a weighting function and then we integrate 
the result over the domain of the solution and equate it to zero. Different weights create different 
variational methods. The weights should be differentiable to the same order as the highest order of the 
differential equation. In addition the weights should satisfy displacement (geometric) boundary 
conditions and also the homogeneous natural boundary conditions (i.e. with t0

ext=0). In the Galerkin 
weighted residual method the weights are equal to approximation functions but we assume a Petrov-
Galerkin method in which they are different (Reddy, 2002). Showing the weight function as vector w
then the weighted residual in initial configurations becomes: 
 

∫B Rh ⋅wdV=∫B (Div(P)⋅w+ρ0(b-v�h)⋅w)dV=0  (6.11) 
 
The weight is called test function or virtual displacement. The integration by parts gives: 
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∫B Div(P)⋅wdV=∫∂B w⋅PNdA-∫B P:Grad(w)dV (6.12) 

With replacing (6.12) in (6.11) we obtain: 
 

Ψ=∫B P:Grad(w)dV-∫B ρ0(b-v�h)⋅w)dV-∫∂B w⋅t0
extdA=0 (6.13) 

 
With using P=FS the equation (6.13) can be written as: 
 

Ψ=∫B (S:[FTGrad(w)+Grad(w)TF]/2)dV-∫B ρ0(b-v�h)⋅w)dV-∫∂B w⋅t0
extdA=0 (6.14) 

 
In the above equation, the symmetry of S is used (since the contraction of a symmetric tensor with an 
antisymmetric one is zero). The functional Ψ is the weak form of the equations of motion. The weak 
form in the current configuration can be obtained directly from equation (6.10b) or by pushing forward 
the equations in initial configuration (equations (6.13) or (6.14)). Using equation (6.14) and S=JF-1σF-

T and using the push forward of gradient10 we can write: 
 

ψ=∫ϕ(B) σ:[Grad(w)F-1+F-TGrad(w)T]⁄2dv-∫ϕ(B) ρ(b-v�h)⋅w)dv-∫ϕ(∂B) w⋅textda= 
∫ϕ(B) σ:[grad(w)+grad(w)T]⁄2dv-∫ϕ(B) ρ(b-v �h)⋅w)dv-∫ϕ(∂B) w⋅textda=0 (6.15) 

 
6.2 Linearization 

Solving nonlinear functions usually is performed with a linearization process. Linearization of a 
function like Γ(x) along a direction u, generally can be defined as: 
 

Γ(x+u)=Γ(x)+∆Γ+R=Lin(Γ)+R (6.16) 

where ∆Γ is called linear part of Γ and R is the residual, and Lin(Γ) shows the linearization of Γ. The 
linear part can be computed as: 
 

∆Γ=DΓ.u=dΓ(x+ϵu)/dϵ|ϵ=0 (6.17) 
 
In the following the linear part of some important quantities is computed.  
 
6.2.1 The deformation gradient 

The linear part of the deformation gradient can be calculated as: 
 

∆F=DF.u=dF(x+ϵu)/dϵ|ϵ=0=d[∂(x+ϵu)⁄∂X]/dϵ|ϵ=0=Grad(u) (6.18) 
 

And for its inverse, F-1, using FF-1=I, it can be written as: 
 

10 The push forward of gradient of a scalar α is: grad(α)=F-TGrad(α), and for a vector w is: grad(w)=Grad(w)F-1 
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∆F-1=DF-1.u=-F-1(DF.u)F-1=-F-1(Grad(u))F-1=-F-1grad(u) (6.19) 
 
6.2.2 The strain tensors 

From equation (6.18) and knowing that C=FTF we have: 
 

∆C=DC.u=FTGrad(u)+Grad(u)TF (6.20) 
 

And for the Green strain tensor, E=(C-I)/2, it becomes: 
 

∆E=DE.u=1/2[FTGrad(u)+Grad(u)TF]=1/2FT[grad(u)+grad(u)T]F=FT∇suF (6.21) 
 
where ∇su=1⁄2(grad(u)+grad(u)T) shows the symmetric part of grad(u). It is interesting to note that 
the linearization of E at the origin where F=C=I gives: 
 

Lin(E)=0+1/2[Grad(u)+Grad(u)T]=ϵ (6.22) 
 
which says that linearization of the Green strain tensor at the origin or within the region of small 
deformation is equal to the strain in linear theory. 
The linear part of C-1 can be obtained from CC-1=I and using the definition of C=FTF with the 
definition of push forward of gradient as: 
 

∆C-1=DC-1.u=-C-1(DC.u)C-1=-C-1[FTGrad(u)+Grad(u)TF]C-1=
=-F-1[grad(u)+grad(u)T]F-T (6.23) 

 
6.2.3 The Jacobian 

The linearization of the Jacobian can be found with the help of chain rule and knowing that ∂J⁄∂F=JF-

T:

∆J=DJ.u=∂J⁄∂F:(DF.u)=JF-T:Grad(u)=JI:Grad(u)F-1=JI:grad(u)=Jdiv(u) (6.24) 
 

6.2.4 The strain rates: First and second order 

The linear part of the derivative of the deformation gradient can be written as: 
 

D(DF/Dt).u=Grad(u �)=grad(u �)F (6.25) 
 

And for the velocity gradient, L=(DF/Dt)F-1, its linear part can be written as: 
 

DL.u=grad(u �)-Lgrad(u) (6.26) 

The acceleration of a point of a body is the material time derivative of the velocity vector: 
 

a=Dv/Dt=∂v/∂t+Lv  (6.27) 
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The acceleration gradient can be written as: 
 

A=∂a/∂x=(D2F/Dt2)F-1 (6.28) 
 

Now the linear part of D2F/Dt2 can be written as: 
 

D(D2F/Dt2).u=Grad(u �)=grad(u �)F (6.29) 
 
The linear part of the acceleration gradient using (6.29) becomes: 
 

DA.u=grad(u �)-Agrad(u) (6.30) 
 
The material time derivative of inverse of the deformation gradient is: 
 

D(F-1)/Dt=-F-1L (6.31) 
 

Therefore the material time derivative of the velocity gradient can be written as: 
 

DL/Dt=A-L2 (6.32) 
 
Hence the linearization of L2 and A can be computed as follows: 
 

DL2.u=grad(u�)L-Lgrad(u)L+Lgrad(u �)-L2grad(u) (6.33) 
 

D(DL/Dt).u=grad(u �)-Agrad(u)-grad(u �)L+Lgrad(u)L-Lgrad(u�)+L2grad(u) (6.34) 
 
6.2.5 The kinematic quantities along a fiber direction 

Taking the material time derivative of stretch ratio in fiber direction a0, i.e. λ2=Fa0.Fa0, the velocity in 
the fiber direction becomes: 
 

λ� =λ(a⋅La)=λ(a⋅Da) (6.35) 

where we have used this property: a.Ωa=0. Taking the time derivative of velocity, the fiber 
acceleration is obtained: 
 

λ� =λ � 2⁄λ+λ[a�Aa+a�LTLa-2(a�La)2] (6.36) 
 
The linear part of fiber stretch ratio can be obtained with the help of λ2=Fa0�Fa0 and Fa0=λa and 
equation (6.18) as: 
 

Dλ.u=(2/2λ)Grad(u)a0�Fa0=λ(grad(u)a�a)=λ(a��sua) (6.37) 
 
where from the properties of the vector dot product we know a�1⁄2(grad(u)-grad(u)T)a=0. 
Accordingly we can find: 
 

Da.u=grad(u)a-(a��sua)a (6.38) 
 
Using the above results the linear part of the fiber velocity and fiber acceleration can be written as: 
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Dλ � .u=λ� (a⋅∇sua)+λ[La⋅grad(u)a-2(a⋅∇sua)La⋅a+a⋅∇su�a] (6.39) 

Dλ * .u=λ* (a��sua)+2λ� [La�grad(u)a-2(a��sua)La�a]+   (6.40) 
λ [a��su* a+2La�grad(u�!a-4(a�La)(a��su�a)+

Aa�grad(u)a-4(a�La)(La�grad(u)a)+(a��sua)(8(a�La)2-2a�LTLa-2a�Aa)] 
 

6.2.6 Stress tensors 

Linearization of stress tensors is dependent on the governing constitutive law. Assuming a hyperelastic 
material the linearization of the stress tensor is explained. The linear part of the second Piola-Kirchhoff 
stress tensor with the help of the equation (5.56) becomes: 
 

∆S=DS.u=�
:(1/2)DC.u=�
:(DE.u)=�
:∆E (6.41) 

The linear part of the first Piola-Kirchhoff stress tensor, P=FS, using equation (6.18) becomes: 
 

∆P=DP.u=(DF.u)S+F(DS.u)=Grad(u)S+F(�
:∆E) (6.42) 
 
Therefore the linear part of the Kirchhoff stress tensor, τ=Jσ=PFT=FSFT, using equation (5.58) can be 
written as: 
 

∆τ=Dτ.u=grad(u)τ+F(�
:∆E)FT+τgrad(u)T=[grad(u)τ+τgrad(u)T]+F(�
:FT�suF)FT=
[grad(u)τ+τgrad(u)T]+J���su=J[grad(u)σ+σgrad(u)T+���su] (6.43) 

 
6.2.7 Weak forms 

From equation (6.13) the linear part of the weak form in initial configuration (Lagrangian point of 
view) can be written as: 
 

∆Ψ=DΨ.u=∫B [Grad(u)S:Grad(w)+F(�
:∆E):Grad(w)]dV= 
∫B {Grad(u)S:Grad(w)+(�
:∆E):1/2[FTGrad(w)+Grad(w)TF]}dV= 

∫B {Grad(u)S:Grad(w)+(�
:∆E):δE}dV (6.44) 
 
where the symmetry of the material Jacobian is used and δE=1/2[FTGrad(w)+Grad(w)TF]. The linear 
part of weak form in current configuration (Eulerian point of view) from equations (6.15) and (6.43) 
and dv=JdV may be found as: 
 

∆ψ=Dψ.u=∫+ (D(Jσ).u):[grad(w)+grad(w)T]⁄2dV= 
=∫+ J[grad(u)σ+σgrad(u)T+���su]:�swdV= 

∫�(B) ,grad(u)σ:grad(w)+(���su):�sw}dv (6.45) 
 
where the symmetry of Cauchy stress and the properties of contraction is used. Please pay attention 
that to compute the linear part of weak form in current configuration, the domain of integral first has 
been changed to initial configuration and then the linearization process has been performed and after 
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that the domain has been changed to current configuration. Otherwise in the linearization process we 
should take the volume as a variable.  
 
6.3 Finite element formulation 

Usually it is not possible to obtain analytic solutions for the equations of motion (6.9a) or (6.9b), in 
particular if the domain of solution is geometrically complex or there are nonlinearities in the problem. 
Therefore we resort to the numerical approximations. Two of the most used numerical methods are the 
Finite Difference Method (FDM) and Finite Element Method (FEM). In these methods instead of 
finding the solution at all points inside the solution domain (for a continuum domain they are infinite) 
the problem is transformed to finding the solution at some specified points (they are called nodes). 
Then solution between these points can be interpolated from the solution at the nodes. The solution 
domain in the equations of motion is a space-time domain and in general it is a four dimensional 
domain (3D-1D). The common method to find the time history of motion is to separate discretization 
in space and time such that in space the FEM is used and in time domain the FDM and they are not 
dependent (see for example Bathe, 1996). In finite element methods the solution domain in space is 
discretized to small regions (called elements). Each element consists of a number of nodes. The 
solution within the element is interpolated from the solution at nodes. The type and the order of 
interpolation functions depend on the required precision and the number of nodes per element and the 
required smoothness. To extract the discretized version of equations first they are transformed to a 
variational or weak form. These variational forms should be integrated over the domain of solution. 
Due to this integration and also the derivatives with respect to spatial variables they need a 
presentation of geometrical space. In an isoparametric finite element method the geometry is 
approximated with the same order and smoothness as field variable (which in equations of motion is 
the displacement). For an isoparametric Lagrangian element a reference (or parent) element, Ω0, is 
defined and each element in initial configuration, Ωe; or current configuration; ωe, is obtained from a 
mapping from reference element (Figure 6.2). The coordinate system in the reference element is a local 
orthogonal coordinate system. So for an isoparametric finite element with Lagrangian interpolation 
function the field and geometry discretization can be expressed as: 

Xe=NI(r)XI, xe=NI(r)xI, ue=NI(r)uI (6.46) 
 
where the Einstein’s summation convention (summation over repeating indices up to total number of 
nodes, say q) is used. The NI(r) are the interpolating functions (or shape functions) and ue represents 
the vector of field variables for a point inside an element which in our case is a displacement vector. 
Hence for a general 3D problem all the vectors are 3×1 vectors and NI(r) is a scalar function of the 
reference coordinates r.
Because of the property of integration each of the equations (6.14) or (6.15) can be written as sum over 
the elements. A finite element method that uses equation (6.14) is called total Lagrangian and the one 
which uses the equation (6.15) is called updated Lagrangian. In the following only the updated 
Lagrangian method will be explained. The total Lagrangian method can be extended likewise. For 
equation (6.15) we can write: 
 

∫ϕ(B) ( )dv≈Σe(∫ωe ( )dωe)=0 (6.47) 
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The summation in equation (6.47) is over elements and is not a simple summation. In fact it needs 
assembling of different coefficients at each node because in general each node is common between 
some elements. 

Figure 6.2 Element Ωe in reference configuration is deformed to ωe=ϕ(Ωe) in current 
configuration. All elements in an isoparametric finite element method can be considered as a 
mapped elements form the reference element (Ω0) in its coordinate system (natural coordinates). 

Using the Galerkin method the weights are approximated with the same shape functions, such as: 
 

we=NI(r)wI (6.48) 
Before moving further we show how to calculate the deformation gradient and different gradients 
using the parent element. 
Knowing from tensor analysis (for a complete discussion see Istkov,2009) and using Einstein’s 
summation convention we have: 
for a scalar α:

grad(α)=∇xα=∂α⁄∂xiei (6.49a) 
and for a vector u:

grad(u)=∇x⨂u=∂u⁄∂xi⨂ei==∂uj⁄∂xiej⨂ei (6.49b) 
 

where ei are the base unit vectors in the corresponding coordinate system (here the spatial coordinates 
are used). Therefore the element deformation gradient can be expressed as: 
 

Fe=∂xe⁄∂Xe=(∂xe⁄∂r)∂r⁄∂Xe=jeJe
-1 (6.50a) 

Fe=∂xe⁄∂Xe=xI⨂∇XNI(r) (6.50b) 
 
Using the equations (6.46) and (6.49) it can be written: 
 

je=∂xe⁄∂r=∇r⨂xe=∂xe⁄∂ri⨂ei=(∂NI(r) ⁄∂ri)xI⨂ei=xI⨂(∂NI(r)⁄∂ri)ei=xI⨂∇rNI(r) (6.51a) 
Je=∂Xe⁄∂r=XI⨂∇rNI(r) (6.51b) 

 
This gives: 
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Fe=(xI⨂∇rNI(r))Je
-1=xI⨂Je

-T∇rNI(r) (6.52) 
 

Comparing (6.50b) and (6.52) it can be concluded that: 
 

∇XNI(r)=Je
-T∇rNI(r) (6.53a) 

 
This result can also be obtained from the chain rule and using (6.49a). A similar result can be written 
as: 
 

∇xNI(r)=(∂r⁄∂Xe)T(∂NI(r) ⁄∂r)=je
-T∇rNI(r) (6.53b) 

Accordingly the gradients of virtual displacements (or weights) for an element easily become: 
 

Grad(we)=∂we⁄∂Xe=wI⨂Je
-T∇rNI(r) (6.54a) 

grad(we)=∂we⁄∂xe=wI⨂je
-T∇rNI(r) (6.54b) 
 

In order to carry out the integration in (6.47) over parent element we apply: 
 

dωe=det(je)dΩ0 (6.55a) 
dΩe=det(Je)dΩ0 (6.55b) 

 
which after substitution in equation (6.47) gives: 
 

Σe∫ωe ( )dωe=Σe∫Ω0( )det(je)dΩ0=0  (6.56) 
 

The integration in (6.56) is computed numerically. The current numerical integration method in finite 
element softwares is the Gauss quadrature method. In this method the integral is computed with a sum 
of the weighted integrand evaluated at the Gauss points. So (6.56) can be written as: 
 

∫Ω0( )det(je)dΩ0=ΣΣΣαiαjαk(( )det(je))(ξi,ξj,,ξk) (6.57) 
 

where αi
’s are weights and (ξi,ξj,,ξk) is the coordinate of a Gauss point in natural coordinates. In one 

dimension a polynomial of order (2n-1) is integrated exactly with n Gauss points. In three dimensions 
a Gauss rule of order n uses n3 points. Since the integrand in (6.57) is not a polynomial then it cannot 
be integrated exactly with Gauss quadrature. Full numerical integration is defined as the order which 
gives exact result when the element is an undistorted element (Bathe, 1996). As an example for a 
hexahedral element with 8 nodes a Gauss rule of 2 (with 8 Gauss points) gives the full numerical 
integration. 
From equation (6.15) and (6.56) we have: 
 
Σe∫ωe σ:[grad(we)+grad(we)T] ⁄2dωe+Σe∫ωe ρv �h⋅wedωe=Σe {∫ωe ρb⋅wedωe+∫∂ωewe⋅textdγe} (6.58) 
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For a hyperelastic material the stress tensor can be obtained from the deformation gradient. The first 
term of the left hand side of the equation (6.58) can be rewritten, using (6.54b) and (6.53b) and the 
properties of ⨂ (Istkov, 2009) as well as the symmetry of the stress tensor. This results in: 
 
Σe∫ωe σ:[grad(we)+grad(we)T]⁄2dωe=ΣewI⋅∫ωe σje

-T∇rNI(r)dωe=ΣewI⋅∫ωe σ∇xNI(r)dωe (6.59) 
 
where Einstein’s summation convention over I is assumed. For symmetric tensors, using Voigt 
notation, the components of a second order tensor can be equivalently represented as a 6×1 vector and 
those of a fourth order one by 6×6 matrix. The Cauchy stress in Voigt notation is: 
σe={σ11,σ22,σ33,σ12,σ23,σ13}T. Using this notation equation (6.59) becomes: 
 

ΣewI⋅∫ωe σ∇xNI(r)dωe=ΣewI⋅∫ωeBI
Tσedωe=ΣewI⋅fI

int=w⋅fint (6.60) 

where the 6×3 matrix BI is has the same form as the strain-displacement matrix in linear elasticity 
(Bathe, 1996) but its terms are calculated using the matrix ∇xNI(r). In (6.6) we have introduced an 
element internal force vector as fI

int=∫ωeBI
Tσedωe which after assembling all elements the element 

vectors are assembled to global ones: w and fint. A global vector is an ndof×1 vector, whereby ndof is 
the total number of degrees of freedom in the model. Following the same method the equation (6.58) 
becomes: 
 

w⋅(fint+Mv�)=w⋅fext (6.61) 
 
where M is the mass matrix, v� the acceleration vector and fext is the global external force vector which 
is equal to the total body and traction forces. Since w is an arbitrary displacement (virtual 
displacement) the equation of motions for a finite element model becomes: 
 

fint+Mv�=fext (6.62) 
 

To consider a damping effect it can be implemented in two ways through a constitutive law or with a 
global damping matrix. The damping model with constitutive law shows its effect in the internal force. 
The global damping added to the equations of motions after assembling process. Hence for a global 
damping method the finite element equations of motion become: 
 

fint+Mv�+Cv=fext (6.63) 
 
In a nonlinear problem the force vectors can be a function of the current displacement. In finite 
elasticity or large deformation analysis the internal force is a function of the current displacements. To 
find the solution of equations (6.63) in a nonlinear problem first these equations should be integrated 
in time and then the resulting equations can be solved with a method like the Newton-Raphson 
method. 
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6.4 Time integration 

For the integration of equations of motion in time a finite difference method is used. There are two 
scheme of time integration in the finite element method. In the first group which is called the explicit 
time integration method, the equations of motion at time t are used: 
 

tfint+M tv�+C tv=tfext (6.67) 
 
Then after using a numerical time integration like central difference method the displacement at time 
t+∆t, i.e. Un+1, satisfies a relation like this: 
 

Aun+1=F(un,un-1,∆t) (6.68) 
 

and the solution of this equation can be computed easily. However, these methods suffer from the 
shortcoming that they are not unconditionally stable. Finding the critical time step for these problems 
may not be an easy task(see Belytschko et al., 2000). 
In the second group, called the implicit integration method, the equations of motion at time t+∆t are 
used: 
 

t+∆t fint+Mt+∆tv�+C t+∆tv=t+∆tfext (6.69) 
 
Then time integration methods like those of Houbolt, Wilson or Newmark are applied (Bathe, 1996). 
The Newmark method is explained here as an example. In the Newmark method the time integration 
formulas are: 
 

un+1=un+∆t u�n+ (∆t2/2)[(1-2α)u �n+2αu �n] 0≤α≤0.5 (6.70a) 
u �n+1=u�n+∆t[(1-2δ)u �n+δu �n+1] 0≤δ≤1 (6.70b) 

 
where t+∆tv�=u�n+1 and t+∆tv=u�n+1. Now inserting the above equations in the equation (6.69) gives: 
 

M[a0(un+1-un)-a2u�n-a3u�n]+C[a1(un+1-un)-a4u�n-a5u�n]+fint(un+1)=fn+1
ext (6.71) 

 
where a0=1⁄(α∆t2), a1=δ⁄(α∆t), a2=1⁄α∆t, a3=(1⁄(2α))-1, a4=1-δ⁄α, a5=∆t(1-δ /(2α)). This equation is a 
nonlinear equation and its solution can be found with a solution procedure like the Newton-Raphson 
method. In the Newton-Raphson method the nonlinearities are linearized and in an iteration loop the 
linearized equations are solved. This loop continues up to a point where the difference between the 
value at the first of the loop and the solution at the end of that loop becomes smaller than a tolerance 
value. The increment in iteration ith of this loop is: 
 

ui+1
n+1=ui

n+1+∆ui+1
n+1 (6.72) 

 
The only nonlinear term in equation (6.71) is fint(un+1). The linearization of this term in the ith loop 
gives: 
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fint(ui+1
n+1)=fint(ui

n+1)+(∂fint⁄∂un+1)|(ui
n+1)∆ui+1

n+1=fint(ui
n+1)+KT(ui

n+1)∆ui+1
n+1  (6.72) 

 
where KT is the tangent matrix and it is calculated at ui

n+1. Hence the ith loop iteration of equation 
(6.71) becomes: 
 

M[a0(ui+1
n+1-un)-a2u�n-a3u �n]+C[a1(ui+1

n+1-un)-a4u�n-a5u�n]+fint(ui+1
n+1)=fn+1

ext (6.73a) 
 

or:  
 
[Ma0+Ca1+KT(ui

n+1)]∆ui+1
n+1=fn+1

ext-M[a0(ui+1
n+1-un)-a2u�n-a3u�n]-C[a1(ui+1

n+1-un)-a4u�n-a5u�n]-fint(ui
n+1)

(6.73b) 
 

This equation is solved for ∆ui+1
n+1 and iteration stops when ||fint(ui+1

n+1)||≤ftol or ||∆ui+1
n+1||≤utol. The 

above method shows the essence of using an iteration procedure in an implicit integration scheme. A 
large number of variations of the nonlinear procedure solution method can be found in the literature 
(among the others see Bathe, 1996; Belytschko et al., 2000; Wriggers 2008). In the following we 
describe the linearization of the internal force. 
 
6.5 Linearization of internal force 

The linear part of the internal force for an element: 
 

∆fI
int=DfI

int.∆u=KT∆u (6.74) 
(To be compatible with the results of previous section we have replaced in this equation u by ∆u as it 
was the case in section 1.2). This linearization for an element using the equation (6.45) for an updated 
Lagrangian formulation gives: 
 

wI⋅(DfI
int.∆u)=∫Ω0 {grad(∆u)σ:grad(w)+(�:∇s∆u):∇sw}det(je)dΩ0=wI⋅(KI

geo+KI
mat)∆u

(6.75) 
 

where KI
geo is element geometric stiffness matrix and KI

mat is material stiffness matrix. And we have 
KT=KI

geo+KI
mat. The specifc form of these equations can be found using the equations for gradient in 

an element (Wriggers, 2008). 
 
6.6 Muscle force-velocity implementation 

 
In general the active stress in muscle can be written as (equation (3.4b) and (5.94)): 
 

σactive=σmax(λ⁄λofl)g(λ,λ � ,A) (6.76) 
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In the distributed Feldman model the stretch ratio λ and its time rate λ � appear with a time delay td.
Using a backward difference formula these delayed values can written as: 
 

λ(t-td)=λ(t)-tdλ� (6.77) 
λ� (t-td)=λ �(t)-tdλ� (t) (6.78) 

 
Hence an active force can also be a function of acceleration of stretch in the fiber directions: 
 

σactive=σmax(λ⁄λofl)g(λ,λ �,λ�,A)=f(λ,λ �,λ�,A) (6.79) 
 
The stress tensor corresponding to this stress can be written as (equation 5.92): 
 

σ=σactive(a⨂a) (6.80) 
 
The linear part of this stress can be written as: 
 

∆σ=Dσ.∆u= (Dσactive.∆u)(a⨂a)+σactive D(a⨂a).∆u (6.81) 
 
The first term in the above equation can be written as: 
 

Dσactive.∆u=∂f⁄∂λ Dλ.∆u+∂f⁄∂λ � Dλ�.∆u+∂f⁄∂λ � Dλ �.∆u (6.82) 
 
Using the linearization formulas (6.37), (6.39) and (6.40) the above equation can be expanded into 
known quantities. As can be seen from equations (6.39) and (6.40) can be seen the linearization of 
velocity and acceleration produce ∆u � and ∆u * . The equation (6.19) is rewritten to show this result: 
 

Dσactive.∆u=KT∆u+Cvir∆u � +Mvir∆u* (6.83) 
 
where Cvir is a virtual damping matrix and Mvir shows a virtual mass matrix (see Appendix B). 
Introducing this equation in the equation (6.73a) and noting that : 
 

u � i+1
n+1=u� in+1+∆u� i+1

n+1 (6.84a) 
u * i+1

n+1=u* in+1+∆u* i+1
n+1  (6.84b) 

 
gives: 
 

[(M+Mvir)a0+(C+Cvir)a1+KT(ui
n+1)]∆ui+1

n+1=fn+1
ext-(M+Mvir)[a0(ui+1

n+1-un)-a2u �n-a3u*n]-
(C+Cvir)[a1(ui+1

n+1-un)-a4u �n-a5u*n]-fint(ui
n+1)+Cviru�4n+1+Mviru*in+1  (6.85a) 

The above equation can be simplified: 
 
[(M+Mvir)a0+(C+Cvir)a1+KT(ui

n+1)]∆ui+1
n+1=fn+1

ext-M[a0(ui+1
n+1-un)-a2u�n-a3u*n]-C[a1(ui+1

n+1-un)-a4u�n-
a5u*n]-fint(ui

n+1) (6.85b) 
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Thus, it can be seen that by introducing the force-velocity characteristics an equivalent damping is 
introduced in the model. This idea confirms that of the Hill’s idea about the addition of a viscous 
damping with a nonlinear damping coefficient to his functional model. The delay introduced in the 
velocity in the Feldman model, introduces a virtual inertia.  
 
6.7 Results 

To investigate the effects of introducing the force-velocity relation in the muscle model, the simple 
example presented in chapter 5 (Figure 5.5) is revisited. 
The impact of the Feldman model on OOP activation to produce lip protrusion is also studied. The 
same muscle is being activated using Hill-type muscle. To compare the results of these simulations, 
the second activation using Hill-type model is designed such that it produces approximately the same 
final stress as in Feldman model. 
 
6.7.1 Qualitative assessment: The simple example 

The effect of a Hill-type force-velocity on the simple bar introduced in chapter 5 (Figure 5.5) is 
studied. The same muscle elements are activated once without considering force-velocity relation and 
once with its inclusion. The activation is changing linearly and the level of activation is the same in 
both simulations. As it can be seen considering the force-velocity characteristics causes smaller 
amplitude of deflection of the tip of the beam. This result is compatible with what was expected from 
its effect in concentric part of force velocity relation (Figure 3.7). These results are shown in Figure 
6.3 for final deformation of the beam. 
 

(a) (b) 
Figure 6.3 Effect of force-velocity characteristics in decreasing the final amplitude of 
deformation (a) without the force-velocity effect (maximum deflection is 0.178m) (b) with the 
force-velocity effect (maximum deflection 0.169m). 

 



108 

 

6.7.2 Comparison between Hill-type model and Distributed Feldman Model (DFM) on lip 
protrusion 

To compare the effect of a Hill-type model and DFM on muscle behaviour, the muscle elements 
corresponding to the part of OOP muscle (Figure 5.6a) are activated using these two models. The final 
shape of the face in both models is the same. The stress and stretch data in one element at the corner of 
lips in both simulations are compared. The stress-stretch behavior is shown in Figure 6.4.  
 

Figure 6.4 Stress-stretch curve: comparison between a Hill-type muscle model and DFM. 

 
The time pattern of stress and stretch behavior is shown in Figure 6.5. It can be seen that in spite of the 
identical time variation of the stretch, in comparison to the Hill-type muscle model the level of stress 
during this voluntary motion is larger in DFM.  
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(a) 

(b) 
Figure 6.5 Variation of (a) stress and (b) stretch with respect to time: comparison between Hill-
type muscle model and DFM. 

 
For a final result the effect of these two models on upper and lower lip protrusion (Figure 4.23) are 
shown in Figure 6.6. The amount of protrusion with the Feldman muscle model is less than for the 
Hill-type muscle model. This data should be regarded as the total effect of muscle models and they 
show that the Feldman model behaves stiffer than a Hill-type muscle model.  
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(a) 

(b) 
Figure 6.6 Path of point on (a) upper lip and on (b) lower lip: comparison between a Hill type 
muscle model and DFM. 

 
6.8 Conclusion 

In this chapter, after a general review of nonlinear finite element models, it becomes apparent that 
including the dependence of the muscle force on the velocity creates a virtual damping matrix. This 
damping in concentric contraction behaves like a nonlinear viscous damping with time dependent 
damping coefficients. In the eccentric part the force-velocity term acts as a booster and increases the 
deformations. In DFM, due to the delay in the velocity term, the force is also a function of 
acceleration. This creates a virtual inertia in the formulations. This result matches well with the source 
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of delay in the system. The comparison of Hill-type model and DFM on lip protrusion reveals that the 
DFM acts stiffer which can be due to exponential nature of invariant characteristics in DFM.  
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Chapter Seven: Conclusion 

“Reasoning draws a conclusion, but does not make the conclusion certain, unless the“ 
“mind discovers it by the path of experience.” 

Roger Bacon 
7.1 Main achievements of the thesis work 

This work has its origins in the conviction that the signals of speech communication, i.e. the 
articulatory signals and the acoustic signals, are the result of a complex interaction between, on the one 
hand, high level motor control strategies, which aim at conveying the linguistically relevant 
information toward the listeners as efficiently as possible, and, on the other, physical constraints 
arising from the intrinsic properties of the speech organ. The final product of this interaction consists 
of the spatio-temporal acoustic and/or articulatory patterns that listeners are able to extract from the 
continuous signals in order to recover the linguistic information. How does the interaction operate? 
Are the physical properties learned and stored in internal models in order for the Central Nervous 
System to predict their influence and to determine the control signals on this basis in order to produce 
accurately predetermined spatio-temporal goals? Or do the physical properties largely contribute to 
determine the spatio-temporal patterns and to give them their final shape under the influence of a more 
global control from the Central Nervous System? As stated in the introduction, the debate is still open 
and further work is still required to delve deeper in the study of this issue. This thesis work aims at 
contributing to the debate (1) by providing clear and quantitative information about the potential 
impact of articulatory biomechanics on speech movements, and (2) by contributing to set up a research 
framework in which the hypotheses can be evaluated, quantitatively and systematically. This was done 
by designing and using a realistic dynamical biomechanical model of the face. 
This model is a 3D Finite Element model. It consists of a 3-layer mesh made of isotropic nearly 
incompressible hyperelastic hexahedral and wedge elements. Facial muscles are represented in the 
mesh as subsets of contiguous elements. The main originality in this face model lies in the 
representation of the muscles. First, their anatomical description, which relies on subject specific 
medical images and anatomical landmarks, is specified independently from the finite element mesh. 
This approach enables to easily modify the structure of the mesh, its number or type of elements, 
without losing the anatomical information. The second aspect that makes our model original is the 
modelling of elastic muscle properties and of the impact of muscle activation on these properties. In a 
first stage, for sake of simplicity and in order to provide a first quantitative evaluation of the influence 
of oro-facial muscle activations on oro-facial gestures, a functional muscle model has been used. In 
this model, external fibres (in the form of cable elements) apply forces to the muscle related elements 
of the mesh. Any increase in muscle activation is associated to a change in the isotropic hyperelastic 
stress-strain relation of the muscle elements. This change corresponds to an isotropic increase in 
muscle tissue stiffness. This increase aims to representing functionally the stress-stiffening effect 
naturally associated with muscle activation.  
After this first evaluation, whose results are summarized below in the next paragraph, an improvement 
is provided to the model, in order to propose a significantly more realistic account of the 
biomechanical description of a muscle. This was done by designing an active muscle element in which 
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the stress-strain relation contains an active component in the direction of the fibres (due to contractile 
parts) and a passive (tissue intrinsic) transversally isotropic component. In this element elastic 
properties are isotropic along the directions orthogonal to the fibre direction. Stress-stiffening arises 
naturally from the tension generated in the direction of muscle fibres. Two types of description of the 
contractile parts have also been implemented, namely the Hill type and the Feldman type model. In 
both models the force-velocity relation, which tends to reduce stress when contraction speed of the 
tissues increases, is implemented. The implementation of Feldman’s model has required an adaptation 
of its mathematical formulation, in order to be compatible with a discretization of the muscle into a 
number of finite elements. This adapted representation has been called DFM, which holds for 
“Distributed Feldman Model”. 
The validity of the structure of the face model, i.e. of its elastic properties, of the anatomical muscle 
implementation, and of the muscle fibres directions, has been evaluated and testified with the 
functional muscle model. In doing so, a number of non-verbal facial mimics and speech movements 
have been simulated with the face model. It could be shown that simulated data are qualitatively 
comparable to those occurring during the production of speech or of facial mimics in non-verbal 
communication. 
 
7.2 Soft tissues stiffening and oro-facial gestures  

Results obtained with the functional model of the muscle force generation mechanisms for the lips’ 
protrusion/rounding gesture have shown that the stress stiffening effect significantly influences lip 
shaping. The lips’ protrusion/rounding gesture is required for the production of rounded vowels such 
as /u/ or /y/. It was generated in the model by activating the upper and lower parts of the Orbicularis 
Oris Peripheralis (OOP). Acoustic simulations showed that differences in lip shaping are associated 
with perceivable differences in acoustic spectral patterns. It was found that shape differences 
associated with tissue stiffening correspond to a facilitation of the production of accurate 
protrusion/rounding gestures thanks to a saturation effect in the relation between the level of muscle 
activation and the crucial geometrical characteristics of the lips (Nazari et al., 2010). This ensures the 
production of more canonical acoustic spectral patterns for the rounded vowels.  
This observation raises the following question: would it be possible to control stiffening in the 
Orbicularis Oris Peripheralis? In the literature the classic way to increase stiffness corresponds to a 
coordinated increase in the agonist and antagonist muscle activations. In our simulations of lip 
protrusion/rounding, only the Orbicularis Oris Peripheralis is activated. This muscle consists of two 
parts, the Orbicularis Oris Peripheralis Superior (OOPS) and the Orbicularis Oris Peripheralis Inferior 
(OOPI), which actually collaborate to generate protrusion and rounding, while exerting quasi-
antagonist forces on the lip corner. Hence, even if it does not correspond to the classic 
agonist/antagonist case, simultaneously changing the force generated by the OOPS and the OOPI 
seems to be an appropriate way to control stiffening. In this context, it can be concluded that 
controlling the intensity of the stress stiffening effect of the OO via the control of its activation could 
be an efficient strategy to accurately achieve lips’ protrusion and rounding 
Simulations with this model have also highlighted the indirect role of some face tissues stiffening on 
the way muscles impact lip shape. It was shown that the stiffening of the cheeks due to the activation 
of the buccinator induces a limitation of the amplitude of the upper lip protrusion associated with OOP 
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activation. The role of muscles, which are not directly involved in lip shaping, was thus demonstrated. 
These results, similar to those of Buchaillard et al. (2009) about the role of mouth floor muscles in 
tongue elevation, are encouraging for our modelling approach toward a better understanding of facial 
mimics and facial speech gestures generation mechanisms. 
 
7.3 Advanced muscle model for finite element modeling 

The design of an active muscle element, which accounts for the force generation mechanisms and the 
elastic characteristics of a muscle, includes the definition of a passive hyperelastic transversally 
isotropic constitutive law. This law was implemented thanks to the programming facility USERMAT 
of the ANSYS finite element software. Then, an active stress component was introduced in the muscle 
fibres direction. This active stress component takes into account the damping behaviour of muscles, 
i.e. the reduction of muscle force associated with an increase in speed of muscle length variation. This 
active stress component is applied to tissues characterized by the above mentioned hyperelastic 
transversally isotropic constitutive law that we implemented (see above). This was done with the 
USERELEM programming facility of the ANSYS finite element software.  
This long lasting work has allowed a more realistic account of the mechanisms underlying muscle 
force generation and stress stiffening. Both with the Hill-type model and with the Feldman’s model, 
simulations run with muscle elements embedded in simple bars of soft tissues have shown that this 
muscle model generates realistic patterns of strain and stress. These patterns were also shown to be 
independent from the number of elements in the Finite Element mesh representing the bar. In 
summary, the evaluation of our muscle model on simple bars of soft tissues suggested that this model 
works realistically. 
Unfortunately, because of a lack of time, it was not possible to achieve a precise and systematic 
evaluation of the differences in face/lip gestures associated with the use in the face model of the 
functional versus the physical muscle model. The muscle element was integrated in the face model, 
and two examples of protrusion and lip closing gestures were simulated. They confirm that the 
associated movements are realistic, but more extensive work should be carried out for further 
evaluation. 
A comparison of the Hill-type models with Feldman’s model was possible in this context. It was done 
first with simple bars, and then with the face model. The results show that in the range of strain 
corresponding to normal conditions of movement, these models generate similar patterns of stress and 
strain. This suggests that criticisms of Feldman’s model concerning its inability to account realistically 
for biomechanical facts are not justified. Hence, arguments in the debate about the weaknesses and 
strengths of Feldman’s model should only focus on motor control issues and not on biomechanical 
ones. 
 
7.4 Perspectives  

Future works will first focus on a comprehensive evaluation of the differences obtained with the face 
model according to whether it works with the functional muscle model or with the physical one. This 
shall enable us to provide clear statements about the advantages of using the more realistic muscle 
model when evaluating the influence of biomechanical factors on movements’ characteristics. 
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A more systematic study of the relation between facial movements and muscle activations should also 
be made, and in particular for lips protrusion/rounding and lips spreading. In chapter 4, we have 
presented simulations of lips protrusion/rounding gestures based on the activation of the Orbicularis 
Oris Peripheralis. We project to study more extensively the potential enhancement or perturbation of 
this gesture associated with the activation of other muscles surrounding the lips, more specifically of 
the Orbicularis Oris Marginalis, the Mentalis, the DLI, the LLS and the Risorius, This study should 
shed light on possible synergetic or antagonistic strategies for lips shaping in speech production. This 
would clarify what degrees of freedom are available for the speakers in lips protrusion or lip spreading 
gestures. 
Lips control can strongly vary from a speaker to the next and from a language to the next. Some 
aspects of this variability are certainly due to cultural or social factors. However some other aspects 
could be associated with a variability of the anatomical distribution of the muscles in the lips region. 
We recently started a study along these lines in collaboration with Didier Demolin from Gipsa-lab, 
which aims at clarifying whether some aspects of the variability of lips shaping in speech production 
across languages could have anatomical origins associated with the respective size of the muscles in 
the lips region. 
In addition, the face model will be coupled with the already existing models of the tongue (Buchaillatd 
et al., 2009) and of the jaw (Vogt et al., 2010). In the ANSYS finite element software, simulations 
using the full jaw-tongue-face model are likely to last extremely long (we estimate it close to a factor 
10000 longer than real time simulations). Consequently, trying to reduce the computation time for the 
model is a very important challenge. This aim is at the core of the collaboration that Gipsa-lab has 
established a few years ago with the ArtiSynth group at the University of British Columbia in 
Vancouver (Canada). The ArtiSynth group develops fast algorithms for Finite Element Modeling. Our 
colleagues in Vancouver have thus recently implemented a full-model of the orofacial regions, which 
includes an original jaw model, Gipsa-lab tongue model and an adapted version of our face model. 
This model has not been extensively tested yet, and it does not include our recently developed muscle 
model. Consequently, the development of the full model in the ANSYS environment will be done in 
collaboration with the ArtiSynth research group. 
In parallel, experimental measures of the mechanical properties of the lips and the tongue tissues will 
be carried out in collaboration with the 3S lab in Grenoble, The aim of this experimental study is to 
collect data on the stress/strain relation from cadaver’s human tissues, in order to adapt the parameters 
of the transversally isotropic hyperelastic constitutive law to the characteristics of the main articulators 
of speech production. 
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Appendix A: Tensors: A Review 

A.1 Different types of tensors 

Tensors are quantities that transforms in such a way, when the coordinate system changes its position 
in the space, their definition remains the same in the original coordinates and in the new one. Hence all 
scalars that do not change when the coordinate system change, are tensors. In fact all scalars are zero-
order tensors (in an n-dimensional space the scalars have n0=1 component. Hereafter we use three 
dimensional space, so n=3). Vectors are first-order tensors and in a three dimensional space they have 
three components. The vectors are represented with a column matrix and they are written with bold 
lower-case letters. For example vector a represents: a=[a1 a2 a3]T ([ ]T shows the transpose operation). 
When the coordinate system transforms orthogonally as: x=QX+c then vector a in the X coordinates 
changes to: a �=QTa+c in the x coordinates. A second order tensor is a linear map from a vector space to 
another vector space. Second order tensor in a three dimensional space have 9 (=32) components. The 
second-order tensors are shown with a 3×3 matrix and by bold upper-case letters. The second order 
tensor T linearly transforms a vector a to a vector b such as: 
 

b=Ta  (A.1) 
 
A special second order tensor is the tensor product or dyad of two vectors and is defined as: 
 

Ta=(u⊗v)a=u(v⋅a) (A.2) 
 
where ⋅ shows the dot or inner product of two vectors, which is equivalent in matrix notation to: 
v⋅a=vTa. Dyad tensor in matrix notation can be expressed as: 
 

T=uvT (A.3) 
 
This corresponds, in component form, to: Tij=uivj. Using matrix notation the equation (A.2) can be 
verified as: Ta=uvTa=u(vTa)=u(v⋅a). Trace of a dyad is: tr(u⊗v)=tr(uvT)=u⋅v. The transpose of a 
second order tensor can be defined as the transpose of its corresponding matrix. Hence the transpose of 
the dyad tensor is: 
 

TT=vuT=v⊗u (A.4) 
 
Identity second order tensor, I, can be represented as a 3×3 identity matrix. One of the useful 
applications of a dyad is for projection. If a dyad is produced from a unit vector a as: 
 

P=a⊗a=aaT (A.5) 
 
When this special dyad tensor applies on a vector b, it produces a vector which is collinear with a and 
its magnitude equals the projection of a on b:

Pb=(a⊗a)b=aaTb=(a⋅b)a (A.6) 

Hence P creates the projection of b along a. If a physical quantity (like stress) is expressed as a dyad 
like σ(a⊗a) (σ is a scalar) then it means that it gets its maximum value, σ, along a and it becomes zero 
in the direction normal to a.
If the coordinate system rotates as x=QX, then according to (A.1) we have: 



118 

 

b � =T�a� (A.7) 
 
With transforming back the vectors to original coordinates we get: 
 

QTb=T �QTa (A.8) 

Knowing the orthogonality of the transform, i.e. QTQ=QQT=I, and from (A.8) and (A.1) we obtain: 
 

T �=QTTQ (A.9) 
 
A general second order tensor can be expressed with the help of dyads of the base vectors of the 
coordinate system, i.e. ei, using Einstein summation convention over repeated indices as: 
 

T=Tijei⊗ej (A.10)  
 
(Here we don’t make any distinction between the covariant and contravariant base vectors. In fact in an 
orthonormal coordinate system they are equivalent.) With this generalization, higher order tensors can 
be defined as: 
 

�=Aijk…lmnei⊗ej⊗ek⊗…el⊗em⊗en (A.11) 
 
Now we focus on the properties of fourth-order tensors. Fourth-order tensors have 34=81 components 
in the three-dimensional space. The fourth order tensors are shown with math blackboard upper-case 
letters as �=Aijklei⊗ej⊗ek⊗el. Like second order tensors, the fourth order tensors can be generated 
using tensor products of second order tensors. There are three different tensor products between the 
second-order tensors. These products with two second order tensors, A and B, are defined as (Kintzel 
and Basar, 2006): 
 

ℂ=A⊗B=AijBklei⊗ej⊗ek⊗el (A.12a) 
�=A⊙B=AilBjkei⊗ej⊗ek⊗el (A.12b) 
�=A▭B=AikBjlei⊗ej⊗ek⊗el (A.12c) 

 
Three different identity tensors of fourth order can be introduced: 
 

�⊗=I⊗I=δijδklei⊗ej⊗ek⊗el (A.13a) 
�⊙=I⊙I=δilδjkei⊗ej⊗ek⊗el (A.13b) 
�▭=I▭I=δikδjlei⊗ej⊗ek⊗el (A.13c) 

 
where δij represents the Dirac’s delta function. Different transpose operations can be defined on fourth 
order tensors which for brevity we consider only two of them: 
 

�T=Ajilkei⊗ej⊗ek⊗el (A.14a) 
�t=Alkjiei⊗ej⊗ek⊗el (A.14b) 

 
Hence the following transpose operations on fourth order tensor products can easily be verified: 
 

(A⊗B)T=AT⊗BT (A.15a) 
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(A⊙B)T=B⊙A (A.15b) 
(A▭B)T=B▭A (A.15c) 
(A⊗B)t=BT⊗AT (A.15d) 

(A⊙B)t=AT⊙BT (A.15e) 
(A▭B)t=BT▭AT (A.15f) 

 
A.2 Contraction 

Contraction means specifying two indices and sum over these indices. Contraction of two vectors is 
the dot product of these vectors: 
 

u⋅v=uivi (A.16) 
 
Contraction of a second order tensor and a vector has been defined in (A.1). Simple contraction of two 
second order tensors is obtained with multiplying their corresponding matrices: 
 

AB=AimBmjei⊗ej (A.17) 
 
Double contraction of two second order tensors gives a scalar and is defined as: 
 

A:B=tr(ATB)=tr(BTA)=B:A=AijBij (A.18) 
 
In fact double contraction of two second order tensors is the sum of the product of their corresponding 
rows. Simple contraction of a dyad and a second order tensor gives: (u⊗v)A=uvTA=u(ATv)T=u⊗ATv
and A(u⊗v)=AuvT=(Au)⊗v. Double contraction of a dyad, u⊗v with a second order tensor gives: 
(u⊗v):A=tr(uvTAT)=tr(u(Av)T)=u⋅Av.
Simple contraction between a fourth order tensor and a second order tensor is defined as: 
 

ℂ=�B=AijkmBmlei⊗ej⊗ek⊗el (A.19a) 
ℂ=B�=BimAmjklei⊗ej⊗ek⊗el (A.19b) 

 
The simple contraction and tensor products give: 
 

(A⊗B)C=AijBkmCmlei⊗ej⊗ek⊗el=A⊗BC (A.20a) 
C(A⊗B)=CimAmjBklei⊗ej⊗ek⊗el=CA⊗B (A.20b) 
(A⊙B)C=AimBjkCmlei⊗ej⊗ek⊗el=AC⊙B (A.20a) 
C(A⊙B)=CimAmlBjkei⊗ej⊗ek⊗el=CA⊙B (A.20b) 
(A▭B)C=AikBjmCmlei⊗ej⊗ek⊗el=A▭BC (A.20a) 
C(A▭B)=CimAmkBjlei⊗ej⊗ek⊗el=CA▭B (A.20b) 

 
This contraction produces another fourth order tensor. Double contraction between a fourth order 
tensor and a second order tensor produces another second order tensor such that: 
 

C=�:B=AijklBklei⊗ej (A.21a) 
D=B:�=AklijBklei⊗ej (A.21b) 

 
Using the definition of the transpose of a fourth order tensor, equations (A.14), we can write: 
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D=B:�=�Tt:B (A.22) 
 
It is possible to define two other double contractions that won’t be considered consider in this study. 
Now using different fourth order tensor products, we can verify the following relations11:

(A⊗B):C=AijBklCklei⊗ej=(B:C)A (A.23a) 
C:(A⊗B)=CklAklBijei⊗ej=(C:A)B (A.23b) 
(A⊙B):C=AilBjkCklei⊗ej=ACTBT (A.23c) 
C:(A⊙B)=CklAkjBliei⊗ej=BTCTA (A.23d) 
(A▭B):C=AikBjlCklei⊗ej=ACBT (A.23e) 
C:(A▭B)=CklAkiBljei⊗ej=ATCB  (A.23f) 

 
Using the above equations and equation (A.18) some useful relations using the fourth order identity 
tensors and double contraction can be extracted as12:

�⊗:A=(I⊗I):A=(I:A)I=tr(A)I (A.24a) 
�⊙:A=(I⊙I):A=AT (A.24b) 
�▭:A=(I▭I):A=A (A.24c) 

 
Double contraction between two fourth order tensors creates another fourth order tensor and there are 
various contraction definitions which here one form is explained: 
 

�:�=AijmnBmnkl ei⊗ej⊗ek⊗el (A.25) 

Some properties of double contraction containing different tensor products are  
 

(A⊗B):(C⊙D)=AijBmnCmlDnkei⊗ej⊗ek⊗el=A⊗(DTBTC) (A.26a) 
(A⊗B):(C▭D)=AijBmnCmkDnlei⊗ej⊗ek⊗el=A⊗(CTBD) (A.26b) 
(A⊗B):(C⊗D)=AijBmnCmnDklei⊗ej⊗ek⊗el=(B:C)A⊗D (A.26c) 
(A⊙B):(C⊙D)=AinBjmCmlDnkei⊗ej⊗ek⊗el=AD▭BC  (A.26d) 
(A⊙B):(C▭D)=AinBjmCmkDnlei⊗ej⊗ek⊗el=AD⊙BC  (A.26e) 
(A▭B):(C▭D)=AimBjnCmkDnlei⊗ej⊗ek⊗el=AC▭BD  (A.26f) 
(A▭B):(C⊙D)=AimBjnCmlDnkei⊗ej⊗ek⊗el=AC⊙BD  (A.26g) 

 

A.3 Tensor Differentiation 

Differentiating a scalar α with respect to a vector a gives another vector: ∂α/∂a=[∂α/∂a1 ∂α/∂a2 ∂α/∂a3
]T. Derivative of a scalar-valued function of a second order tensor with respect to its second order 
tensor gives another second order tensor and each element is the derivative of that scalar with respect 
to the corresponding element of the tensor: 
 

∂α/∂T=∂α/∂Tij ei⊗ej (A.27) 
 

11 Equations (5.58) and (5.61) have been extracted using the equations (A.23e), (A.23f), (A.22), (A.15c) and (A.15f). 
Equation (5.54) has been extracted using equations (A.23c) to (A.23f) and using the definition of a symmetric tensor: A=AT

which we can write: A=(A+AT)/2.
12 In the literature � is usually used for �▭ to be consistent with the meaning of the identity tensor as in the second order 
tensors. 
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Some important scalars are the invariants of a second order tensor. 
 
A.3.1 First Invariant 

The first invariant of a second order tensor is the trace of the tensor: 
 

I1=tr(T)=Tii (A.28) 
 
The derivative of I1 with respect to its tensor, gives: 
 

∂I1/∂T=∂Tij/∂Tiiei⊗ej=I (A.29) 
 
The derivative of a vector valued function with respect to its argument (like deformation gradient) 
gives a second order tensor: 
 

∂a/∂b=∂ai/∂bjei⊗ej (A.30) 
 
Differentiation of a second order tensor function with respect to another second order tensor function 
gives a fourth order tensor. There are different definitions. Here we present the common definition: 
 

∂A/∂B=∂Aij/∂Bklei⊗ej⊗ek⊗el (A.31) 
 
We should be aware that different formulations could be used in the literature. 
Now we present some important relations. We have: 
 

∂(αA)/∂C=∂(αAij)/∂Cklei⊗ej⊗ek⊗el=[(∂α/∂Ckl)Aij+α∂Aij/∂Ckl]ei⊗ej⊗ek⊗el=
A⊗∂α/∂C+α∂A/∂C (A.32) 

 
The derivative of the double contraction of two second order tensors based on equation (A.21b) gives: 
 

∂(A:B)/∂C=∂(AijBij)/∂Cklek⊗el= A:∂B/∂C+B:∂A/∂C (A.33) 
 
The derivative of a second order tensor and its transpose with respect to itself, using equations (A.13), 
gives: 
 

∂A/∂A=∂Aij/∂Aklei⊗ej⊗ek⊗el=δikδjlei⊗ej⊗ek⊗el=I▭I=�▭ (A.34a) 
∂AT/∂A=∂A/∂AT=∂Aij/∂Alkei⊗ej⊗ek⊗el=δilδjkei⊗ej⊗ek⊗el=I⊙I=�⊙ (A.34b) 

 
Using AA-1=I, A2=AA, A3=A2A the derivative of A-1 and A2 with respect to A can be written as: 
 

∂A-1/∂A=-A-1▭A-T (A.35a) 
∂A2/∂A=I▭AT+A▭I (A.35b) 
∂A3/∂A=I▭(A2)T+A▭AT+A2▭I (A.35c) 

 
It should be taken care of the fact that the derivative with respect to a second order tensor has been 
taken in a general case. However, for symmetric and skew-symmetric tensors, the above relations 
should be written considering this fact that these tensors have only six independent variables. In the 
following the case of symmetric tensors are explained. The skew-symmetric case can be extracted in 
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the same way. First we should write the chain rules for the derivative with respect to a second order 
tensor. From equations (A.27) and (A.21b) for a scalar the chain rule can be written: 
 

∂α/∂T=(∂α/∂Skl)(∂Skl/∂Tij)ei⊗ej=(∂α/∂S):(∂S/∂T) (A.36) 
 

And for a second order tensor using (A.25) and (A.31) we have: 
 

∂A/∂B=(∂Aij/∂Cmn)(∂Cmn/∂Bkl)ei⊗ej⊗ek⊗el=(∂A/∂C):(∂C/∂B) (A.37) 
 
For symmetric second order tensors we can assume that the corresponding function is a function of the 
symmetric part of the tensor, i.e. (A+AT)/2. Then using chain rules and equations (A.34) we can write: 
 

∂A/∂B=(∂A((B+BT)/2)/∂((B+BT)/2)):(∂((B+BT)/2)/∂B)=(∂A/∂B):(∂((B+BT)/2)/∂B)= 
(∂A/∂B):(I▭I+I⊙I)/2=(∂A/∂B):(�▭+�⊙)/2  (A.37) 

 
So we can use the results for general case and then using double contraction with the operator 
(�▭+�⊙)/2 we can write the equations for the symmetric case. In fact the left double contraction of this 
operator on a second order tensor creates the symmetric part of that tensor (see equations (A.24b) and 
(A.24c)). And its left double contraction on a symmetric tensor acts as an identity tensor. Now with 
this introduction we write the equations (A.34) and (A.35) for a symmetric second order tensor (using 
equations (A.26)): 
 

∂A/∂A=(I▭I):(I▭I+I⊙I)/2=(I▭I+I⊙I)/2  (A.38a) 
∂AT/∂A=∂A/∂AT=(I⊙I): (I▭I+I⊙I)/2=(I⊙I+I▭I)/2=∂A/∂A (A.38b) 
∂A-1/∂A=(-A-1▭A-1):(I▭I+I⊙I)/2=-(A-1▭A-1+A-1⊙A-1)/2  (A.38c)13 

Following the same analogy for a skew-symmetric tensor the corresponding operator becomes: (I▭I-
I⊙I)/2. 
 
A.3.2 Second Invariant 

The second invariant of a second order tensor is defined as: 
 

I2=[(trT)2-tr(T2)]/2  (A.39) 
 
The derivative of I2 with respect to T using the chain rule and equations (A.29), (A.23) and (A.35b) 
becomes: 
 

∂I2/∂T=(trT)I-I:(I▭AT+A▭I)/2=(trT)I-AT (A.40a)  
 
For a symmetric tensor this derivative becomes: 
 

∂I2/∂T=((trT)I-A):(I▭I+I⊙I)/2=(trT)I-A (A.40b) 
 

13 Equation (5.83) in the text corresponds to this equation. 
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A.3.3 Third Invariant 

The third invariant of a second order tensor is its determinant (I3=det(A)). According to Cayley-
Hamilton equation, each square matrix satisfies its own characteristic equation (characteristic equation 
of a matrix is obtained with: det(A-λI)=0). Hence for a second order tensor we can write: 
 

A3-I1A2+I2A-I3I=0 (A.41) 
 
From equation (A.41) using the trace definition we can write: 
 

I3=[tr(A3)-I1tr(A2)+I2tr(A)]/3=[tr(A3)-3tr(A) tr(A2)/2+tr(A)3/2]/3  (A.42) 
 
Taking the derivative of I3 with respect to A and using the chain rules and equations (A.35), (A.40) 
and (A.41) we obtain: 
 

∂I3/∂A=(A2)T-I1AT+I2I=I3A-T (A.43) 
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Appendix B: Virtual Damping and Virtual Inertia Matrices 

In chapter 6 the linearization of the fiber stretch, its velocity and its acceleration along the muscle 
fibers’ direction ended with relations that listed hereafter: 
 

[ ]uaau sD ∇⋅= λλ. (6.37) 
 

[ ] [ ]auauaaLaaaugradLauaau &&& sssD ∇⋅+∇⋅⋅−⋅+∇⋅= ))((2)(. λλλ (6.39) 
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After the linearization of the Cauchy stress along the muscle fibers’ direction, we have: 
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For velocity and acceleration we consider only equations (6.39) and (6.40). Within the framework of 
Flory’s (1961) deformation gradient decomposition (Equation (5.64)) should be written with respect 

to λλ 3
1

J= . The result of this modification will produce: 
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Each term in equation (6.82) should be multiplied by 







−⊗

3
Iaa , and then the result in the weak form 

(6.45) should be double contracted with the symmetric part of the gradient of weight which is: ws∇ .
The final result becomes: 
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The terms in equations (B.1) and (B.2), which contain u, participate in the tangent stiffness matrix 
(KT) (see equation (6.83)), the terms in u& generate the virtual damping matrix (Cvir) and the terms 
containing u&& produce the virtual inertia matrix (Mvir). (It should be noted that in linearization relations 
u shows increment ∆u.)
In the following the method used to derive these matrices is explained. There are some terms which 
contain trace operator. One of these terms is explained here and in analogy this method can be used for 
the rest. Showing aaQ ⊗= , for Lugrad )((tr we have: 
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The summation is over the number of nodes in element. Each term in summation contributes to the 
(I,K) position in the corresponding matrices for an element. INx∇ and KNx∇ are gradients of the shape 
function with respect to current position. Assembling all terms will give the corresponding matrices. 
The terms like uaa s∇⋅ result in: 
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Writing: ( ) )(:)( ugradaLaaugradLa ⊗=⋅ and ( ) )(:)( ugradaAaaugradAa ⊗=⋅ , the result in (B.5) can be 
used easily to find their corresponding matrices. 

In the above equations the quantities a, L, A, λ
& , and λ&& are known.  
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Abstract 
 
To address motor control issues in speech production a 3D finite element model of the face has been constructed. This model is made of 
a mesh that consists of hexahedral and wedge elements. The mesh has three distinctive layers and is symmetrical about the mid-sagittal 
plane. Face muscles are anatomically represented in the mesh as subsets of contiguous elements. The elements of the mesh have elastic 
properties described by an isotropic nearly incompressible hyperelastic constitutive law. In order to study the global effects of muscles on 
facial mimics and lips gestures, and more specifically on speech gestures like protrusion and rounding, a simple linear muscle model has 
been first designed. The impact on facial gestures of stiffness changes in soft tissues is studied. Stiffening in soft tissues is indeed 
concomitant with muscle activation due to stress stiffening effect. This effect is accounted for in the muscle model through a variation of 
the hyperelastic constitutive law. Special attention is also devoted to the production of protruded and rounded lips which are required for 
the production of rounded vowels particularly in French. It is shown that stiffening helps the achievement of an accurate 
protrusion/rounding gesture thanks to the existence of a saturation effect in the relation between the muscle activations and the 
acoustically relevant geometrical characteristics of the lips. 
The result shows the importance of the dynamical properties of the articulators in the achievement of speech production gestures. Having 
been incited to improve the modeling of the main source of the force in speech movements, namely the muscles, a more realistic muscle 
model including a new constitutive law corresponding to a transversely isotropic nearly incompressible hyperelastic material and a Hill-
type muscle model is designed in the ANSYS® finite element software thanks to the USERMAT programming facilities of this software. 
To account for a full Hill-type muscle model a force-velocity characteristic is then included in the new muscle element, thanks to the 
USERELEM facilities of ANSYS®. The implementation of this force-velocity characteristic introduces a damping effect on muscle 
movement due to a decrease of the muscle force when muscle compression velocity increases.  
The designed structure of the muscle element is general enough to enable studying other muscle models. Hence, Feldman’s muscle 
model, which has been extensively used in former modelling works at Gipsa-lab, is implemented. In a bid to integrate the Feldman’s 
model in a finite element structure a distributed formulation of this model has been proposed. The Hill-type and the Feldman-type muscle 
element are included in the face model to replace the first simple linear muscle model. The first simulations of lips protrusion/rounding 
gesture show realistic results. A comparison of the results obtained with the Hill-type model with those obtained with the Feldman’s 
model is also conducted which shows that the final face shapes are very similar to those of these two models. 
 
Keywords: speech production; muscle biomechanics; Feldman’s muscle model; large deformation elasticity; nonlinear finite element 
method; motor control; biomechanical face modeling 
 

Résumé 
 

Un modèle tridimensionnel du visage a été élaboré, dans la perspective de contribuer à l’étude de questions importantes sur le contrôle 
moteur de la production de la parole. Ce modèle est construit sur un maillage constitué d’éléments hexahédraux et de clavettes, qui 
comporte 3 couches distinctes et est symétrique par rapport au plan medio-sagittal. Les muscles faciaux sont représentés dans le maillage 
par un sous-ensemble d’éléments contigus. Les propriétés élastiques des éléments du maillage sont décrites par une loi de comportement 
de type isotrope quasi incompressible et hyperélastique. Dans une première phase de ce travail, pour étudier les conséquences globales de 
l’activation des muscles oro-faciaux sur les mimiques faciales et les gestes labiaux, et plus particulièrement sur les gestes labiaux en 
parole, un modèle linéaire de muscle a été élaboré. L’influence des variations de la raideur des tissus mous sur les gestes faciaux a été 
étudiée. En effet, l’activation des muscles entraîne un raidissement des tissus mous musculaires concernés. Cet effet est pris en compte 
dans le modèle de muscle par un changement de la loi de comportement hyperélastique avec l’activation musculaire. Une attention 
particulière a été portée dans cette étude à la production du geste de protrusion/arrondissement des lèvres qui est un geste fondamental 
dans la production des voyelles arrondies, en particulier en Français. Nous montrons que le raidissement des tissus mous musculaires 
facilite la production précise de ce geste grâce à l’existence d’un effet de saturation dans la relation entre les activations musculaires et 
les paramètres géométriques des lèvres qui sont pertinents acoustiquement.  
Ce résultat souligne l’importance des propriétés dynamiques des articulateurs dans la production des gestes de la parole, et il nous a 
incités à améliorer encore la modélisation de la source principale de force en production de la parole, c’est-à-dire les muscles. C’est 
pourquoi, un modèle de muscles plus réaliste a été élaboré qui se fonde sur une loi de comportement transversalement isotrope quasi 
incompressible et hyperélastique et sur un modèle de muscle de type Hill. Ce modèle a été implémenté dans le logiciel éléments finis 
ANSYS® grâce à sa fonction de programmation USERMAT. La prise en compte supplémentaire d’une loi caractéristique force-vitesse a 
permis la modélisation complète d’un modèle de muscle de type Hill. Ceci a été fait sous ANSYS® grâce à sa fonction de 
programmation USERELEM. Cette loi caractéristique force-vitesse introduit un effet d’amortissement dans le mouvement du muscle du 
fait d’une atténuation croissante de la force musculaire lorsque la vitesse de compression du muscle augmente. 
Ce nouvel élément de type muscle a été conçu de manière telle qu’il est possible d’implémenter d’autres modèles de muscles que le 
modèle de type Hill. C’est pourquoi nous avons aussi implémenté le modèle de Feldman, qui a été utilisé de manière importante à Gipsa-
lab dans les dernières années. L’intégration du modèle de Feldman dans une structure à éléments finis a nécessité une reformulation de 
façon à le rendre compatible avec une modélisation distribuée. Les modèles de Hill et de Feldman ont ensuite été incorporés dans le 
modèle de visage pour remplacer le modèle linéaire initial. Dans ces conditions les premières simulations du geste de 
protrusion/arrondissement labial ont donné des résultats réalistes. Finalement une comparaison des résultats obtenus avec le modèle de 
Hill avec ceux qui génère le modèle de Feldman montrent que les formes labiales finales sont très similaires pour les deux modèles. 
 


	Chapter One: Introduction: Speech Production, Motor Control and Biomechanics
	1.1 General scientific context, goals and challenges
	1.2 Stiffness: biomechanical and motor control perspectives
	1.3 Biomechanical face model: modelling issues and goals
	1.4 Structure of the manuscript
	1.4.1 First part
	1.4.2 Second part
	1.4.3 Third part


	Chapter Two: Anatomical review of orofacial muscles
	2.1 Orofacial Muscles: Generalities
	2.2 Upper Lip Levators
	2.3 Mouth Angle Mobilizers
	2.4 Lower Lip Mobilizers
	2.5 Oral Fissure Constrictors
	2.6 Specific Muscle: Buccinator
	2.7 Masseter and Platysma
	2.8 Orofacial fibers characteristics and their motor units
	2.9 Synergies and antagonism in orofacial muscles for lips movements; the role of the modiolus

	Chapter Three: Biomechanics of Striated Muscles: A Literature Survey and Distributed Feldman Model (DFM)
	3.1 Crossbridge theory
	3.2 Force-length characteristics of a muscle
	3.3 Force-velocity characteristics of a muscle
	3.4 Functional models of muscle
	3.5 Activation Mechanism
	3.5.1 α-γ Co-activation
	3.5.2 Stretch Reflex
	3.5.3 Golgi tendon organ inhibition (reflex stiffness)
	3.5.4 Inhibition (feedforward and feedback)

	3.6 Comparison between adjustable stiffness and adjustable starting length models
	3.7 A Distributed Feldman Model (DFM)

	Chapter Four: Face Model: Shaping and Dynamics�
	4.1 Face Mesh
	4.2 Finite element model
	4.2.1 Elements and their mechanical property
	4.2.2 Boundary conditions and contact surfaces
	4.2.3 Muscle contractile fibers
	4.2.4 Loading: Muscle activation

	4.3 Stress stiffness effect and its implementation in muscle model
	4.3.1 Muscle region: neighbourhood algorithm
	4.3.2 Modelling muscle’s stress stiffening effect

	4.4 Damping model: proportional damping
	4.5 Simulations and results
	4.5.1 Simulation of facial mimics�
	4.5.2 Dynamics versus Quasi-static simulations�
	4.5.3 Shaping by stiffening�
	4.5.3.1 Lip protrusion and rounding gesture
	4.5.3.2 Impact of the stress stiffening effect on the spectral properties of the acoustic speech signal: The example of the vowel /u/


	4.6 Conclusion

	Chapter Five: Muscle model as a constitutive law
	5.1 Muscle’s constitutive law
	5.1.1 Kinematics and kinetics of finite elasticity
	5.1.1.1 Strain
	5.1.1.2 Strain rate
	5.1.1.3 Stress
	5.1.1.4 Stress rate

	5.1.2 Constitutive law
	5.1.3 Hyperelastic Materials
	5.1.4 Muscle strain energy

	5.2 Implementation of a constitutive law in ANSYS finite element software
	5.3 Verification process
	5.4 Muscle constitutive law used in the face model
	5.5 Conclusion

	Chapter Six: Muscle element: Force-Velocity Characteristics
	6.1 Equations of motion in finite elasticity and their equivalent variational form
	6.2 Linearization
	6.2.1 The deformation gradient
	6.2.2 The strain tensors
	6.2.3 The Jacobian
	6.2.4 The strain rates: First and second order
	6.2.5 The kinematic quantities along a fiber direction
	6.2.6 Stress tensors
	6.2.7 Weak forms

	6.3 Finite element formulation
	6.4 Time integration
	6.5 Linearization of internal force
	6.6 Muscle force-velocity implementation
	6.7 Results
	6.7.1 Qualitative assessment: The simple example
	6.7.2 Comparison between Hill-type model and Distributed Feldman Model (DFM) on lip protrusion

	6.8 Conclusion

	Chapter Seven: Conclusion
	7.1 Main achievements of the thesis work
	7.2 Soft tissues stiffening and oro-facial gestures
	7.3 Advanced muscle model for finite element modeling
	7.4 Perspectives

	Appendix A: Tensors: A Review
	A.1 Different types of tensors
	A.2 Contraction
	A.3 Tensor Differentiation
	A.3.1 First Invariant
	A.3.2 Second Invariant
	A.3.3 Third Invariant


	Appendix B: Virtual Damping and Virtual Inertia Matrices

