
THÈSE de DOCTORAT

presentée par

Claudio LOBOS YÁÑEZ

pour obtenir le grade de

DOCTEUR de l’UNIVERSITE JOSEPH FOURIER

Spécialité: Modèles, Méthodes et Algorithmes en Biologie, Santé et
Environnement.

Amélioration des Techniques de Génération
de maillages 3D des structures anatomiques

humaines pour la Méthode des Éléments
Finis

Soutenue le 5 mars 2009, devant le jury composé de :

J. TROCCAZ Directeur de Recherche CNRS Présidente
P. FREY Professeur des Universités CNRS Rapporteur
S. COTIN Directeur de Recherche INRIA Rapporteur
Y. PAYAN Chargé de Recherche CNRS Co-directeur de thèse
N. HITSCHFELD Professeur à l’Université du Chili Co-directeur de thèse
F. JAILLET Maître des Conférences des Uni-

versités
Examinateur

Thèse préparée au sein du laboratoire TIMC–IMAG

Équipe: Gestes Médico–Chirurgicaux Assistés par Ordinateur

te
l-0

03
71

21
2,

 v
er

si
on

 1
 - 

26
 M

ar
 2

00
9

http://tel.archives-ouvertes.fr/tel-00371212/fr/
http://hal.archives-ouvertes.fr


te
l-0

03
71

21
2,

 v
er

si
on

 1
 - 

26
 M

ar
 2

00
9



Amélioration des Techniques de Génération de
maillages 3D des structures anatomiques humaines

pour la méthode des Éléments Finis
Résumé

La Méthode des Éléments Finis (MEF) est probablement la technique la plus
utilisée pour la modélisation du comportement mécanique des solides. Elle
s’appuie pour cela sur une discrétisations du domaine modélisé en éléments
géométrique simples. Cette partition porte le nom de maillage. La solution
numérique calculée par la MEF dépend directement du maillage utilisé.

Dans le domaine médical, les solides modélisés sont de géométrie complexe.
De ce fait, nous privilégions une génération de maillage par recalage élastique.
Cette méthode permet d’adapter un maillage prédéfini (atlas) aux données du pa-
tient afin de représenter le domaine à modéliser. Le recalage élastique applique un
déplacement aux sommets de l’atlas sans en changer sa topologie. Les méthodes
de recalage élastique ne prennent cependant pas en considération les éléments, par
conséquent il est possible de produire des éléments invalides et de mauvaise qual-
ité. Cette thèse présente une méthode de réparation des éléments après application
d’un recalage élastique.

Les méthodes de recalage élastique peuvent être limitées lorsque, pour une ré-
gion spécifique du domaine modélisé, une discrétisation plus fine est requise alors
qu’elle ne figure pas dans le maillage atlas. Par exemple dans le domaine de la
neurochirurgie, un maillage d’une densité plus importante peut être nécessaire
dans la région de la voie d’abord, entre la craniotomie et la tumeur car dans cette
région d’intérêt une précision accrue de la simulation est requise. Nous proposons
dans cette thèse une méthode de génération de maillage comportant un raffinement
local. Cette méthode est appliquée à la neurochirurgie.

Mots clés Éléments Finis, génération des maillages 3D, réparation des mail-
lages 3D, modélisation biomechanique des structures anatomiques humaines.
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Improved Techniques for the Generation of 3D Finite
Element Meshes of Human Anatomical Structures

Abstract

The Finite Element Method (FEM) is probably the most used strategy to sim-
ulate physical phenomena in a domain. The method needs a subdivision of the
domain into simpler geometrical structures. This subdivision is known as a mesh.
The numerical solution computed by the FEM directly depends on the employed
mesh.

In the medical field, the domains to simulate are complex geometries. Due
to this complexity, it is preferred to use Registration Methods (RMs) to produce
the mesh of the domain to be simulated. The RMs are a family of strategies that
“adapt” a predefined mesh (the atlas) to patient data in order to represent the target
domain. A RM reallocates the nodes of the atlas without changing the topology
of it. Unfortunately, the RMs don’t consider element information; therefore it
is possible to produce invalid and poor quality elements. This thesis proposes
reparation methods to achieve validity and improve the quality of the elements in
the mesh after registration. Results are presented for femur and face model.

The most important limitation of RMs is that sometimes the focus of the sim-
ulation is given on a particular region. An example of this is the brain tumor
resection surgery. In this case, a mesh with higher density of nodes is needed on
the region between the opening skull point and the location of the tumor. It is on
this region where the simulation must be more precise. Unfortunately an “atlas”
mesh cannot be produced for each single case. Therefore a mesh generation tech-
nique with region refinement is also proposed on this thesis. Results are shown
over neurosurgery.

Keywords Finite Element Model, 3D mesh generation, 3D mesh reparation,
human anatomical structures modelling.
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Contexte général de cette thèse

Motivation
Si un modèle est une simplification d’un objet réel, une simulation est la simpli-
fication des interactions réelles entre un objet et son environnement. Les simu-
lations sont utiles pour prédire le comportement d’un objet suivant les lois qui
définissent le système dans lequel l’objet se trouve.

Dans notre cas, l’objectif est de simuler des structures anatomiques humaines
dans un contexte de simulation médicale et de chirurgie assistée par ordinateur.
Dans ce cadre, les objets sont régis par des lois mécaniques. Ces lois peuvent se
traduire par un système d’Équations aux Dérivées Partielles (EDP) qui permettent
de prédire le comportement de l’objet.

Les lois mécaniques (décrites par les EDP) agissent sur la structure à simuler.
Cette structure est un domaine continuum Ω ⊂ R3. Malheureusement il n’est
pas possible de trouver une solution analytique pour les EDP sauf dans le cas où
le domaine à simuler est un corps géométrique simple. Comme ceci n’est pas
le cas des structures anatomiques humaines, une discrétisation de Ω en formes
géométriques simples doit être effectuée. Ces formes géométriques sont appelées
éléments qui peuvent être, dans R3, des tétraèdres, des pyramides, des prismes et
des hexaèdres.

Ensuite, une solution au système d’EDP va être calculée pour chaque sommet
des éléments qui décrivent Ω. La solution pour n’importe quel point de Ω va
alors être une interpolation des solutions trouvées aux nœuds des éléments. Cette
méthode d’approximation s’appelle Méthode des Éléments Finis (MEF).

La représentation d’un domaine continu Ω à partir d’une simplification géo-
métrique est connue sous le nom de maillage. En ce qui concerne le premier
paragraphe de cette introduction, les lois de notre réalité simplifiée sont calculées
à l’aide de la MEF et notre objet simplifié (sur lequel est calculée la MEF) corre-
spond au maillage.

Cette thèse est donc focalisée sur la production des maillages des structures
anatomiques humaines. Comme le domaine de la génération de maillages est
vaste, il est nécessaire de placer les choses dans un contexte plus spécifique.

1
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Le recalage de maillages correspond à une famille de techniques de génération
de maillages dans le domaine médical. Le concept général peut être considéré
comme le processus visant à “adapter” un maillage générique existant, l’atlas, à
un autre domaine cible Ω (voir la section 2.3). Dans un processus de recalage, les
sommets du maillage source sont déplacés dans le but de représenter le domaine
cible Ω. Cependant, la topologie1 du maillage reste la même. L’objectif du re-
calage est de représenter le plus fidèlement possible Ω. Toutefois en faisant cette
“adaptation” élastique de l’atlas, les éléments peuvent devenir invalides (voir la
sous-section 1.3.2) ou présenter une mauvaise qualité (voir la sous-section 3.2.1 et
3.2.2). Certaines solutions ont été étudiées afin de garantir la validité du maillage
[44, 27], mais à notre connaissance, aucun travail n’a été effectué en se basant sur
les mesures de qualité citées précédemment.

Notre conviction est que les techniques de recalage peuvent trouver une solu-
tion adéquate pour plusieurs problèmes de modélisation dans le domaine médical.
Malheureusement, des maillages de patients qui prennent en compte des don-
nées spécifiques au problème à résoudre, sont parfois nécessaires. Prenons par
exemple le cas de la résection chirurgicale de la tumeur d’un organe. Dans ces
cas, l’emplacement de la tumeur change d’un patient à l’autre et donc le mail-
lage générique utilisé dans la technique de recalage ne peut plus correspondre
à l’objectif du modèle, c’est-à-dire la simulation de la résection de la tumeur.
Enfin, pour des cas comme la modélisation de la résection per–opératoire d’une
tumeur, le maillage à utiliser doit prendre en compte les contraintes de temps de
calcul (c’est-à-dire le temps dont la MEF a besoin pour produire une solution
numérique), ainsi que d’autres caractéristiques qui seront expliquées dans la sec-
tion 3.3.

Travail développé

Deux méthodes de réparation de maillages sont proposées dans cette thèse. La
première permet de produire un maillage valide et la seconde vise à produire un
maillage de bonne qualité. Le paramètre le plus pertinent pour contrôler la validité
et la qualité des éléments est donné par la matrice Jacobienne, representative du
niveau de dégradation d’un élément. Un deuxième paramètre de qualité est égale-
ment utilisé. Ce paramètre mesure le niveau de co-planarité des sommets dans
une face. Notre technique est un processus itératif et suit une approche numérique
effectuée en deux étapes. Tout d’abord, elle réalise un état de validité du maillage
(à partir de ce point, la MEF est capable de calculer une simulation numérique) et

1La relation entre la quantité et la connectivité des sommets, des arêtes, des faces et des élé-
ments d’un maillage.
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en second lieu, elle améliore la qualité du maillage, rendu valide à l’étape précé-
dente. Cette dernière étape augmente la précision de la solution trouvée par la
MEF. En effet, grâce à l’amélioration de la qualité des éléments, l’erreur réalisée
lors de l’intégration sur les éléments par la MEF est réduite.

Le deuxième type de problème étudié dans cette thèse est la génération de mail-
lages pathologie–spécifiques pour les procédures per-opératoires. Dans ce cas,
un nouveau maillage doit être généré afin de prendre en compte le cas partic-
ulier de chaque patient. La situation per-opératoire se traduit par une contrainte
sur la durée du temps de calcul nécessaire à la mise en œuvre de la MEF. Le
temps nécessaire, requit par la MEF, pour produire une solution est directement
lié à la quantité de sommets (c’est-à-dire des degrés de liberté) du maillage. Par
conséquent, l’objectif est de produire un maillage qui est raffiné dans une région
d’intérêt et peu dense ailleurs. Ainsi, la MEF est en mesure de calculer une so-
lution sans perdre de précision dans la région d’intérêt. De plus, la réduction du
nombre de sommets en dehors de la région d’intérêt permet à la MEF de calculer
plus rapidement une solution que dans les cas où le maillage a un même niveau de
raffinement à l’intérieur du volume modélisé. Pour ce faire, une approche fondée
sur les octree est aussi proposée dans cette thèse.

Organisation de la thèse
Le chapitre 1 donne une introduction à la modélisation par la MEF. Le but de
ce chapitre est de comprendre la pertinence des maillages et l’influence de leur
qualité sur les résultats de la simulation. Le concept de “maillage” est expliqué
ainsi que les propriétés de validité et de qualité. L’utilisation de différents types
d’éléments est également analysée, et enfin la notion de “précision” du maillage
est également expliquée.

L’état de l’art est discuté dans le chapitre 2 où deux idées principales sont
étudiées: le recalage de maillages et les techniques de génération de maillages, il-
lustrées dans le contexte des applications au domaine médical. Une classification
des travaux présentés se trouve à la fin du chapitre.

Les techniques proposées pour l’amélioration du maillage après le recalage
et la génération de maillages pathologie–spécifique pour les simulations per–
opératoires, sont présentées dans le chapitre 3.

Les techniques développées peuvent être appliquées à plusieurs problèmes de
simulation et le chapitre 4 montre les résultats obtenus pour les deux problèmes
analysés. La technique de Mesh–Matching, qui est une méthode de recalage, est
utilisée pour produire des maillages de fémurs ainsi que des modèles du visage.
Les méthodes proposées pour produire un maillage valide et de bonne qualité
sont ensuite appliquées pour améliorer l’état du maillage. En ce qui concerne la
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méthode de génération de maillages, le problème clinique connu sous le nom de
“brain-shift” (au cours d’une intervention neuro–chirurgie) est étudié. Le but de
cette simulation est de prédire les déformations du cerveau pendant la résection
chirurgicale de tumeurs cérébrales.

4
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Global context of this thesis

Motivation
While a model is a simplification of a real object, a simulation is the simplification
of real interactions between the object and its environment. Simulations are useful
to predict the behavior of an object following some laws that define the system.

In our case, the goal is to simulate human anatomical structures in the frame-
work of medical simulation and computer assisted surgery. In this context, the
objects are governed by mechanical laws. These laws can be translated into a sys-
tem of Partial Differential Equations (PDEs) that allow to predict the behavior of
the object.

The mechanical laws (represented by a system of PDEs) take effect over the tar-
get structure to simulate. This structure is a continuum domain Ω ∈ R3. Unfortu-
nately it is not possible to find an analytical solution to the system of PDEs unless
the domain to simulate be a simple geometrical body. As no human anatomical
structure corresponds to a simple geometrical body, a discretization of the continu-
ous domain Ω, into simpler geometrical forms, must be performed. These simpler
geometrical forms are called elements and in R3 they correspond to tetrahedra,
pyramids, prisms (or wedges) and hexahedra.

A soultion to the system of PDEs can be computed at each node of the elements
representing Ω. The solution to any point in Ω is then obtained as an interpolation
of the solutions found for each node of the elements. This approximated solution
(to the PDEs) is named the Finite Element Method (FEM).

The representation of a continuum domain Ω through simpler geometrical bod-
ies is known as a mesh. Regarding the first paragraph of this introduction, the
laws of our simplified reality are computed using the FEM and our simplified
object (over which the FEM is computed) corresponds to the mesh.

This thesis is focused on producing meshes for the anatomical structures to be
simulated. As the meshing techniques domain is large, it is necessary to put this
in context.

Registration corresponds to one family of meshing techniques in the medical
field. The general concept can be seen as the process to “adapt” a generic existing

5
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mesh (atlas) to another target domain Ω (see section 2.3). In a registration pro-
cess, the nodes of the source mesh are reallocated in order to represent the target
domain Ω. However the topology2 of the mesh remains the same. The goal of the
registration is to represent as close as possible Ω. However, by doing this elastic
“adaptation” of the atlas, elements might become invalid (see subsection 1.3.2) or
present poor quality (see subsection 3.2.1 and 3.2.2). Some solutions have been
given regarding the validity of a mesh [44, 27], but to our knowledge, no work has
been done regarding the quality measures cited before.

Is to our belief that registration techniques achieve a proper solution for several
modeling problems in the medical field. Unfortunately, sometimes meshes that
include patient-specific data are also needed. Take for example the case of tumor
resection surgery from a particular organ. In those cases the location of the tumor
changes from one patient to another and therefore the generic mesh used in the
registration technique does not longer properly represent the goal of the model, i.e.
the simulation of the tumor resection. Finally, for cases such as tumor resection
simulation that need an “interactive” use of the FEM for intra-operative assistance,
the mesh must efficiently take into account the constraints of time-computation
(i.e. the time the FEM needs to produce a solution for the simulation).

Developed work
Two reparation methods are proposed in this thesis. The first is to produce a
valid mesh and the second to achieve good quality. The most relevant parameter
to control validity and quality is given by the Jacobian matrix which allows to
measure the level of the degradation of an element. A second quality parameter
is also used. This parameter measures the level of co-planarity of the nodes in
a face. Our proposed technique is an iterative numerical approach and is carried
out in two independent stages. First, it achieves a valid state of the mesh (from
this point the FEM is able to compute a result for the simulation) and second,
it improves the quality of the (already valid) mesh. This last step increases the
accuracy of the solution given by the FEM, i.e., by improving the quality of the
elements, the integration over the elements by the FEM reduces its error.

The other type of problem studied in this thesis corresponds to the generation
of pathology-specific meshes for intra-operative procedures. In this type of cases,
a new mesh must be generated regarding the particular case of each patient. The
intra-operative condition is traduced in a constraint of finding a fast simulation so-
lution via the FEM. The time needed by the FEM to produce a solution is directly
related to the quantity of nodes (i.e. degrees of freedom) the mesh has. Therefore

2The quantity and connectivity relationships between nodes, edges, faces and elements in a
mesh.
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the goal is to produce a mesh that is refined in a particular region of interest and
coarse elsewhere. By this, the FEM is able to compute a solution without loosing
precision in the region where the focus of the modeling is. Moreover, the reduc-
tion of nodes in coarse regions allow the FEM to perform a faster solution than
using a mesh with the same precision (quantity of nodes and elements) over the
entire domain Ω. In order to do so, an octree-based approach is proposed.

Organization of this thesis
Chapter 1 gives an introduction to modeling using the FEM. The goal of this chap-
ter is to understand the relevance of the meshes in the simulation field and how a
“good” mesh can produce an important difference in the simulation results. The
concept of “mesh” is explained as well as validity and quality mesh properties.
The use of different types of elements is also analyzed and finally the concept of
“precision” of the mesh is also explained.

The state of the art is discussed on chapter 2. Here two main threads are studied:
the mesh registration and the mesh generation techniques, both with applications
to the medical field. A classification of the reviewed works is presented at the end
of the chapter.

The proposed techniques for both, the improvement of the mesh after registra-
tion and the generation of pathology-specific meshes for intra-operative simula-
tions, are presented in chapter 3.

The developed techniques can be applied to several simulation problems and
chapter 4 shows the results obtained for the two analyzed problems. The Mesh-
Matching technique, which is a registration method, is used to produce meshes of
femur and face models. The reparation and quality improvement technique is then
applied to improve the state of the mesh. Regarding the proposed mesh generation
technique, the problem known as the “brain-shift” during neuro-surgery is studied.
The goal of this simulation is to consider the deformations of the brain during
tumor resection surgery.
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Chapter 1

Introduction to meshing in medical
applications

Chapitre 1: Introduction au maillages dans le domaine médical

Abstract

This chapter introduces the reader to modelling problems in the context
of biomechanical simulations. The key idea is to explain the global context
of this thesis by introducing the reader into the field of medical applications.

It starts with the general context of this thesis. Then there is a global
introduction to the Finite Element Modelling and finally there is a brief dis-
cussion in terms of well defined and good quality Finite Element meshes.

1.1 Continuum mechanics
Continuum mechanics (CM) is a branch of mechanics that deals with the analysis
of the kinematics1 and mechanical behavior of materials modeled as a continuum,
e.g., solids and fluids (i.e., liquids and gases). In a nutshell, CM assumes that
matter is continuous (ignoring the fact that matter is actually made of atoms). This
assumption allows the approximation of physical quantities over the materials,
such as energy and momentum, at the infinitesimal limit. Differential equations
can thus be employed in solving problems in CM.

Let Ω be a volumetric domain defined in R3 and Pi a set of points inside Ω.
A deformation occurs in Ω as external forces Fext (surfacic or volumetric) are
applied to some Pi ∈ Ω. If Ω is considered as an elastic body, the deformation is
characterized by:

1A branch of dynamics that describes the motion of objects without consideration of the cir-
cumstances leading to the motion
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• a displacement vector field ~u caused by Fext applied over one or more Pi.

• an internal state of deformation, mathematically defined by a “strain tensor”
for each Pi ∈ Ω.

• the “force reaction” of the body to the external forces; this reaction is math-
ematically defined by a “stress tensor” for each Pi ∈ Ω.

The Local Equilibrium of the Medium (LEM) is an expression defined for each
Pi ∈ Ω that links the displacement, the strain and the stress tensor through Partial
Differential Equations (PDE). In order to do so, an analytical relationship is as-
sumed between the strain and the stress tensors, known as the Constitutive Law
of the material.

Figure 1.1: Displacement vs deformation. Top: Initial system. Bottom left: the
displacement (a difference regarding the x and y axes). Bottom right: the defor-
mation (a difference regarding the r and s axes).

The difference between displacement and deformation is made in function of
the Reference System (RS) used to measure each one of them. The first one is
made regarding the overall RS. The second one, uses a relative RS associated to
the domain. Figure 1.1 illustrates the initial state of the system at the top; at the
bottom left panel a displacement is produced as the coordinates of point P change
to P ′ regarding the x and y axes, however no deformation is presented in the
r and s axes. At the bottom right panel the inverse situation is produced as no
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displacements of P is presented in the x and y axes. In the other hand, point P has
a severe deformation regarding the r and s axes.

The strain level measures the domain deformation regarding the relative posi-
tion of Pi ∈ Ω. Let ~a be the initial position of Pi and ~b be the position of Pi after
the deformation in the relative axes: r, s. The strain level is then defined as:

|‖~a‖ − ‖~b‖|
‖~a‖

The importance of measuring the strain level is that when it is inferior to 10%
the “small strain” hypothesis can be made, which assumes a linear geometrical
resolution of the PDEs. Otherwise, a “large strain” framework is necessary, which
means a much more complex resolution of the system.

If the Constitutive Law can be assumed to be linear another simplification can
be made: an elasticity tensor is computed to link the stress and strain tensors. On
the contrary, if a linear law does not account properly for the mechanical behav-
ior of the tissues, a non-linear law can be chosen to account for the hyperelastic
behavior of soft tissues (see [8] for more details).

Most of the modeling works proposed in the literature assumed both, the small
strain and the linearity of the constitutive law hypotheses. The term “linear elas-
ticity” is then commonly used, i.e. assuming linearity of the geometry and the
mechanics. In that case, it can be shown that the constitutive behavior of the ma-
terial can be characterized by only two parameters: the Young’s modulus that
depends on the stiffness of the material, and the Poisson’s ratio that is related to
the compressibility of the material.

Whatever the modeling assumptions are, the PDEs that govern CM cannot be
analytically solved over the full domain. They are therefore numerically solved
over a piecewise discretization of the domain, usually by means of the Finite
Element Method (FEM), the Finite Difference Method and the Finite Volume
Method. This thesis focuses on the use of the FEM since most of the modeling
works in the biomechanical field use this method.

The name FEM is due to the principle that the continuous space is subdivided
in a finite number of smaller and simpler geometries, namely the elements. This
subdivision of the continuous space is called the mesh. This thesis is about ana-
lyzing, producing and repairing meshes for the FEM.

1.2 Constructing the solution of the FEM
The finite element method requires the discretization of the spatial domain Ω with
“finite elements” interconnected at points called “nodes”. The PDE of the CM can
then be solved inside each element which geometry is quite simple and regular.
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For two dimensional problems, triangles and rectangles are commonly used while
in three dimensions tetrahedral and hexahedral elements are very popular. As
compared to finite difference methods, the finite element mesh may be entirely
unstructured, which makes the modeling of complicated and irregular geometries
more convenient.

Altogether, the elements should cover the entire domain as accurately as possi-
ble. For a given set of boundary conditions (i.e. forces and constraints applied on
nodes) and assuming an analytical constitutive law, the unknowns of the systems,
i.e. node’s displacements, are solved for each element. Then, thanks to interpo-
lation “shape functions” (usually linear or quadratic), displacements, strains and
stresses can be computed at each point inside the elements. Because of element in-
terconnections and continuity of the shape functions from one element to another
one, the FEM provides solutions of the system inside the full domain.

Figure 1.2: An example of a deformed domain simulated with the FEM. Left:
the initial system. Right: the domain is deformed by the influence of an external
force.

Figure 1.2 shows an example of FEM over an arbitrary domain. In this example,
an external force fext is applied over node A. Node B is considered as fixed (this
is an example of constraint applied over a node). The position of the other nodes
in the mesh is obtained in function of fext and all the modeling parameters in
each node (strain, stress and constraints). Finally the position of each point in the
domain is obtained by the interpolation function over each element.

1.3 Meshing

1.3.1 What is a mesh?

Several definitions can be found to this question. In this thesis a mesh shall be
seen as a partition of an arbitrary domain into simpler geometrical objects (or
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elements). Those elements are compound of nodes, edges, faces and the relations
between them.

Probably the most common definition is “a mesh is a tessellation of the space”,
which is equivalent to our definition since a tessellation is a collection of non-
overlapping elements that fill a domain.

Achieving this subdivision of the space is not an easy task, therefore many ways
to produce this tessellation have been proposed. Chapter 2 will give a reference
over the most popular and useful ones to the medical domain.

1.3.2 What is a valid mesh?

The FEM can be seen as an integration problem (a system of PDE). The computa-
tion of this integration is produced over the elements that describe the domain. An
element is invalid when the area or volume that it describes is malformed. Two
types of malformations can be presented in the mesh:

• Edge inversion: this involves several elements and it is produced when the
intersection of neighbor elements has a positive volume.

• Concave element: this is a local problem and it is produced when one or
more faces of the element are concave (this problem cannot be produced in
triangle faces).

In both cases, the area or volume described by the elements is artificially in-
creased and do not represents the current state of the domain causing an integra-
tion over a “phantom” sub-domain. The case of “edge inversion” is presented in
2D in figure 1.3. In this case, the domain is represented by two triangles t1 and t2.
Node A, that belongs only to t1 is dragged into the region defined by t2. In this
new scenario the domain corresponds to the shaded area. If the mesh defined by
t1 and t2 is used to represent this new state of the domain, the integration should
be over t2 − t1. However, it occurs over t2 + t1.

Figure 1.3: At left a valid 2D mesh. At the right an invalid mesh where shaded
triangles have a negative area.
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The same problem can be expanded to 3D with hexahedra. Figure 1.4 shows
an example of a concave hexahedron. A valid hexahedron (left) is transformed
by the displacement of point A (right) in such a way that it turns into an invalid
configuration. The rendering of the hexahedron is shown as a prism (wedge)
defined by the triangle B,C and D and its projection through the z axis. The final
numerical integration occurs over the domain described by this prism (while the
actual domain is the concave hexahedron).

Figure 1.4: Left: a valid hexahedron. Right: a concave hexahedron considered as
an invalid configuration.

The Jacobian matrix of an element can be used to determine if an element is
valid or not (subsection 2.3.4 will explain in details this problem).

Note that in the literature, a valid mesh can be also named as a regular mesh
[45].

1.3.3 What is a good mesh?

Two aspects should be considered to determine if a mesh is good or not. The first
has to deal with the representation level of the domain (RLD). This variable is
measured as the difference between the areas or volumes of the actual domain and
the final mesh.

The second aspect is the quality. The perfect element can be described regarding
some relations between the angles, edge’s length, distance between specific ele-
ment points, circum-circle, etc. Unfortunately, no “magic” quality measurement
exists for an element, because it depends on the numerical method been used and
on the problem being solved.
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In the case of tetrahedra, the work of Shewchuk in [61] is probably the most
relevant article concerning mesh quality. Note that in his web page2 an unpub-
lished article of 66 pages (just about tetrahedrons quality) can be found. The idea
of putting a lot of emphasis in quality is because bad quality elements can lead to
several computational errors in the simulation.

In order to illustrate some quality measures, let’s describe briefly some classi-
cal quality criteria, namely the aspect ratio, the warping factor and the dihedral
angle.

To obtain the aspect ratio (AR) of an element, the distances between element’s
faces must be computed. The AR for the element is then defined as the ratio be-
tween the maximal and the minimal distance. Therefore, an AR = 1 corresponds
to an ideal element and as the AR reaches high values, the element becomes in-
creasingly distorted. See [40] for more details.

The warping factor (WF) is a quality measure over the element’s faces. For
each face, the distances of the face’s nodes to an average plane are computed. If
all the nodes are co-planar, then the WF is 0 and the face is said to be “perfect”.
As the WF increases, the quality of the face (thus the element) decreases. Note
that WF is out of context for triangle faces as 3 nodes are always co-planar.

The Dihedral Angle (DA) is the angle formed between two planes. There-
fore several DA values are computed for each element (all the angles between
connected faces). The DA of the element is the “worst” value among all the cal-
culated DA. Note that for each type of element the optimal DA is different: 60◦ for
the tetrahedron and 90◦ for the hexahedron. Therefore, the quality of the element
decreases when the “worst” DA of it moves further from the optimal value.

Figure 1.5: Bad elements regarding (a) aspect ratio, (b) dihedral angle and (c)
warping factor.

Note that improving some of these quality measures doesn’t necessarily pro-
duce a “good” element. For example, if only WF and DA are considered as quality

2http://www.cs.berkeley.edu/~jrs/
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measures then the element in figure 1.5 (a) would be considered as perfect. How-
ever in terms of AR, this element has a very poor quality. Following the same
principle, figure 1.5 (b) has a poor DA but a perfect WF and a good AR, and (c)
has a poor WF and acceptable DA and AR.

1.4 Choosing the type of element

In this section the advantages and disadvantages of using the different types of
elements in a mesh are presented. Three categories will be analyzed: tetrahedral,
hexahedral and mixed-element meshes. As it will be shown in chapter 2, most of
the meshing techniques proposed in the medical field produce tetrahedral meshes.
Some works are done with hexahedra and just a few with mixed-elements.

As this thesis is focused in medical simulations, many works in this field con-
sider deformable domains. A very important work over model deformations has
been done by Benzley et al in [6] from the mechanical point of view. This work
showed the difference obtained by using tetrahedral or hexahedral meshes in terms
of incompressibility and plasticity abilities of each type of element. In this study a
simple bar, fixed at one end, with a rectangular cross-section was used to compare
the performance of linear and quadratic displacement assumption over tetrahedra
and hexahedra meshes. The linear or quadratic property of an element has to deal
with the manner to represent their edges and in consequence, the volume the el-
ement covers. As figure 1.6 shows, in a linear element the edges are represented
as an interpolation of the two border points. In the case of quadratic elements,
the edges are quadratic functions and therefore an additional middle point is nec-
essary to describe the function. If linear tetrahedra have 4 points, its quadratic
counterpart has the same 4 point plus 6 others located on each edge of it.

Figure 1.6: From left to right: Linear Tetrahedron, Quadratic Tetrahedron, Linear
Hexahedron and Quadratic Hexahedron.

The work from Benzley et al in [6] has several important conclusions:
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• Linear hexahedra (LH) can generally deform in a lower strain energy state
(i.e. eigenvalues), thus making them more accurate than linear tetrahedrons
(LT) in numerous situations.

• The comparison of linear static bending3 situation indicated that LT models
produced errors between 10% and 70% in both displacement and stress cal-
culations. Such errors are obviously unacceptable for stress analysis work.
On the contrary LH, quadratic hexahedra (QH), and quadratic tetrahedrons
(QT) models all provided acceptable results, even with relatively coarse
meshes.

• The linear static torsion problem4 again showed that the LT element pro-
duced errors of an unacceptable magnitude. This problem also demonstrated
that, because selective integration is only effective on the bending problem,
the LH element, without a significant number of degrees of freedom, pro-
duces poor results. Here, as in the previous problem, the QH element is
superior.

• Significant information is conspicuous in the nonlinear elasto-plastic calcu-
lations. Here, as before, all but LT models are adequate for bending calcula-
tions. However, not only LT, but QT models seemed to underperform both
LH and QH elements.

As chapter 2 will show, most of the meshes used in medical simulations only
consider linear elements. There are just a few works that use quadratic elements,
even taking into account that some commercial Finite Element (FE) solvers like
ANSYS R©are prepared to manage those kinds of elements. In other words, there
exist FEM solvers that manage quadratic elements, however and even when this
may lead to better simulation results, there are few mesh generators that produce
quadratic elements.

Other type of variables can be taken into consideration to choose the elements
in the mesh. For example, regarding linear elements, only triangular faces will al-
ways be planar. Once again, commercial FE solvers like ANSYS R© have specific
and well defined thresholds to accept those kinds of elements. Even though mak-
ing a non-triangle face “more” planar has a solution (this will be shown later in
section 3.2), this is an extra problem to consider while using other type of element
than the tetrahedron (or a dual element taken from it).

Finally, there are some other works that have studied the use of different types
of elements [40, 20]. The most general definitions consider tetrahedra, pyramid,
prism (wedge) and hexahedra. Some motives to use mixed-element meshes are:

3Evaluate linear elements in a single new state after bending the bar.
4Evaluate linear elements in a single new state after some torsion is applied over the bar
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• A better approximation of the domain in a given region of it. This is the case
for meshes that are governed by one type of element, but that prefer in some
very specific configurations, to replace bad quality elements with another
type of elements.

• Transitions between different levels of refinement. Even though this can be
achieved by using just one type of element, some works prefer to include
different types of elements during transitions between coarse and refined
regions.

The “locking effect” could be another drawback to the use of tetrahedra for
quasi-incompressible materials (refer to Hughes in [33] for more details).

1.5 Important remarks over meshing
Validity (or mesh regularity) should be clearly differentiated from the mesh qual-
ity. The element’s quality optimization5 involves node displacement. This last
procedure might cause neighbor element invalidation. Therefore quality optimiza-
tion should be always made considering not affecting the validity of the rest of the
elements. For instance figure 1.7 shows how the displacement of point A could
be considered as an action to improve the top left triangle’s quality. Unfortunately
this causes the invalidation of the two right triangles and makes the entire mesh
useless (it cannot be used to produce a simulation with the FEM).

Figure 1.7: Right: a valid 2D mesh. Left: an invalid mesh where shaded triangles
covers an area that is two times considered in the numerical integration.

As mentioned in 1.3.3 the representation level of the domain (RLD) is the dif-
ference in area or volume between the domain and the final mesh. Another remark
can be made relating the RLD and the mesh quality. Figure 1.8 (a) shows an ar-
bitrary domain. In (b) a tessellation of the domain is presented and the RLD is

5In the meshing field, optimization refers to mesh quality improvement without inserting new
nodes.
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shown by the shaded regions. In (c) some triangles of (b) were split by the addition
of new points which makes the RLD much more precise.

Figure 1.8: (a) input domain; (b) a mesh of the input domain where shaded re-
gions represents the RLD; (c) some elements of (b) were split which causes an
improvement of the RLD; (d) the mesh from (c) where the split triangles from (b)
are shaded. The minimal angle quality measure is applied over shaded triangles
and light ones are “bad” while dark ones are “good”.

In figure 1.8(d) shaded elements correspond to the triangles of (b) that were split
resulting in the tessellation presented in (c). As mentioned in subsection 1.3.3 one
of the quality measures is the Dihedral Angle (DA) for 3D and just the angle
for 2D. If this quality measure is applied to the final mesh in figure 1.8(d) light
shaded triangles would be considered as “bad triangles” (because the minimal
angle is less than a threshold value) and dark shaded as “good”. Following the
“angle” quality parameter, the overall mesh quality in (b) would be better than the
one presented in (c). Therefore one important remark is that improving the RLD
does not necessarily increase the quality of the elements and vice–versa.

As shown through the chapter, several factors must be considered before build-
ing a mesh. In particular the following questions should be answered:

• should we use one type of element or several? which ones?
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• how quality will be measured?

• how quality improvement will be achieved when necessary?

• how invalid elements will be repaired?

Once answers are provided for those questions, the next step concerns the way
the mesh is going to be built. Next chapter addresses this problem with the de-
scription of the main meshing techniques provided in the biomedical literature.
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Chapter 2

Meshing anatomical structures –
state of the art

Chapitre 2: Maillages des structures anatomiques – état de l’art

Abstract

This chapter describes the main techniques that are employed in the lit-
erature to generate a 3D Finite Element (FE) mesh of a human organ from
medical imaging data.

Section 2.1 gives a brief introduction and establish the context of the chap-
ter by analyzing the process “from medical image to simulation”.

As many meshing techniques use “generic meshing concepts and basic
algorithms” section 2.2 provides an overview of Delaunay, grid, voxel, octree,
marching cubes and advancing front techniques.

Following the general meshing classification proposed in section 2.1, sec-
tions 2.3 and 2.4 make the point over the state of the art. The works are
sub-classified according to their focus on mesh quality and/or fast simulation
constraints.

Finally section 2.5 summarizes all the reviewed techniques and examples
grouping them as a function of the meshing classification proposed in section
2.1 but also according to the basic meshing concepts and algorithms they stand
on, and the type of elements they produce.

2.1 Introduction
There are several manners to produce a mesh. There are not only different tech-
niques but different types of elements and they all have their advantages and dis-
advantages. However, each technique starts with some input information on the
geometry or the domain to discretize. Input data is described in subsection 2.1.1.
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According to the available input information, several types of meshing tech-
niques have been published in the literature. A global classification for these
techniques is proposed in subsection 2.1.2.

Finally, it appears that FE simulations can be constrained by the need for ob-
taining rapid results (for example in the case of an intra–operative surgical use) or
to get precise results. This point is discussed in subsection 2.1.3

2.1.1 Inputs for FE meshes in the medical field

In medical applications, data of the domain to mesh comes from one or more of
the following inputs:
• Computed Tomography (CT) images.
• Magnetic Resonance Images (MRI).
• Segmented images.
• A surface mesh.
• A cloud of points.
• A pre-generated volumetric FE mesh that describes a generic organ.
While CT is more adapted to bone visualization, MRI is better to differentiate

soft tissue from an image. Both techniques can be the starting point for the elab-
oration of a 3D organ geometry. As a person lies in a scanner, several slices of a
body region are captured in images. Figure 2.1 shows a surface mesh built from a
set of piecewise 2D images. Pages et al describe one alternative to do the whole
process: from image to surface and volume meshes, in [52].

Figure 2.1: Left: an example of 2D scan images of the brain. Right a surface
triangle mesh.

A more elaborated input can be the same set of images but with already seg-
mented organs. This process produces a partition of a digital image into multiple
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regions with objects and boundaries (points, lines, curves, etc) in the images. Sev-
eral general-purpose algorithms and techniques have been developed for image
segmentation. Since there is no general solution to this problem, these techniques
often are combined with domain knowledge, i.e. semi-automatic process leaded
by the user to identify the target structures.

Subsequently, from the segmented images, a cloud of points can be extracted or
a surface model can be constructed. In order to produce a surface mesh, algorithms
like the Marching Cubes can be applied (see subsection 2.2.3).

Most of the meshing techniques that will be explained in further sections start
from a surface model of the organ. However one family of meshing techniques
does not: a cloud of points is enough as they have additional information on the
target organ to mesh (see section 2.3 for more details).

Figure 2.2 shows the different paths to produce a volumetric FE mesh from a
set of images and further steps. Note that from a cloud of points, it is also possible
to build a triangulation and therefore a surface mesh.

Figure 2.2: The different alternatives to go from imaging to volume mesh genera-
tion.

2.1.2 Global classification of meshing techniques
When the geometry to mesh is known a priori there is a substantial advantage
because there is more information that can be used. For example, if the target
geometry to mesh is a femur, a pre-calculated mesh (ATLAS) that describes a
generic femur can be build. Now, to mesh any other femur, only the external sur-
face information of this new target is necessary and by causing node displacement
over the ATLAS, it is possible to fit the target information. In other words, it is
possible to start from a valid pre-defined FE mesh solution and then deform it in
order to fit the target’s border conditions.

Consider now the case where anatomically malformed femurs have to be mod-
eled. The previous described technique may not work as it is constrained to “small
differences” between the ATLAS and the target. If this constraint is not respected,
the elements of the resulting mesh can be strongly degenerated or present bad
qualities, which will decrease the accuracy of the simulation. Therefore for those
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types of problems (unknown domain and big changes from one target to another)
it is recommended to use other types of meshing techniques.

In most cases those techniques start from an input surface mesh and create a new
target-specific volumetric mesh. The other option is to use the surface information
to know if a point is outside or inside the geometry boundaries. In those cases,
the resulting mesh will not depend on the properties (density, types of elements)
of the input surface mesh. This last family of techniques can also be adapted to
use a cloud of points instead of a surface mesh; however the resulting mesh can
be not so accurate in those zones where point density is not high enough.

Regarding all this, we can now identify two main streams to generate a volu-
metric mesh:
• Mesh adaptation. Those techniques start with a pre-defined FE mesh AT-

LAS and then, by moving the ATLAS nodes, achieve the representation of a
new target domain.

• Mesh generation. Those techniques produce an ad-hoc volumetric mesh
from the specific input domain.

Mesh adaptation is presented in section 2.3 and mesh generation in section 2.4.

2.1.3 Simulation types
In general, two types of simulations can be distinguished: the ones focused on ob-
taining fast / interactive results and the ones focused on precise / accurate results.
We could also say that some techniques focus on both fast and precise results, but
in real practice, most of the times we have to make a choice.

It is very important to mention the differences between fast generation and fast
simulation in the meshing field. The first refers to the time needed to produce
a mesh. The second refers to the time a numerical framework, like the Finite
Element Method (FEM), needs to compute the simulation results.

Regarding the meshes, two aspects must be analyzed. The quantity of elements
in the mesh is an important variable. The more elements the mesh has, the more
the time the FEM needs to produce the simulation results. In the other hand, with
more elements it is possible to achieve a better representation of the domain by
increasing the quantity of elements in the zone where higher geometry accuracy
is required.

The other important variable to achieve a good result is the quality of the mesh,
however this will increase only the precision of the results. If fast results are
required, three options seem possible:
• Few elements [42].
• The use of a cluster of powerful computers with parallel algorithms [16].
• The use of a modified FEM [58, 54, 19, 51].
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2.2 Basic tools and properties of mesh generation

2.2.1 Delaunay property
In 2D, a Delaunay triangulation [21] for a set P of points in the plane is a trian-
gulation DT (P ) such that no point in P is inside the circumcircle of any triangle
in DT (P ) (except for the three points of P that conform the triangle). In 3D,
the concept remains the same, replacing the circumcircle by the circumsphere. In
particular, the 2D Delaunay triangulation is the one that maximizes the minimum
angle in comparison with any other triangulation of the same set of nodes.

Delaunay is a mathematical property. In the rest of this thesis, a Delaunay mesh
is said to be a mesh (of triangle or tetrahedra) that satisfies the above property.

Several meshing algorithms start from the Delaunay mesh because it gives an
initial quality value to the mesh. This quality value can be improved by moving,
adding or removing some points, achieving a better representation of the input
domain.

If a triangle does not satisfy the Delaunay property, the flipping edges technique
[59] can always repair this problem in 2D. Figure 2.3 illustrates this technique. At
the left is a triangulation for a set of points that do not satisfy the property. At
the right, the same points are plotted but now with a different triangulation that
satisfies the property by changing the common edge of the triangles. In 3D, the
face swapping [34] strategy allows to perform the analogous operation.

Figure 2.3: The Delaunay property. Left: the property isn’t achieved. Right: using
the flipping edge technique, the property is satisfied.

As mentioned before, a Delaunay mesh is a reference in the field of tetrahedral
meshing techniques. A lot of works stand over the Delaunay property. However
it is very important to mention that the Delaunay property is a “good” starting
point, but not sufficient to produce quality meshes. Sometimes, a Delaunay mesh
can lead to numerical instabilities and that’s why it must be refined in order to
accomplish other quality constraints. Probably one of the most used refinement
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technique to produce high quality meshes was proposed by Ruppert in [56]. An
implementation, freely available on the web, was implemented by Shewchuk in
his application Triangle [60] with some improvements over the quality of the out-
put mesh. Just to mention one of this improvements, Miller et al in [46] continued
with the work by improving the triangle’s quality in terms of minimal and maxi-
mal angle.

To be clear about it, the workflow in most cases is to produce an initial triangle
mesh from a cloud of points. The second step is to achieve the Delaunay prop-
erty for every triangle in the mesh. Finally, the algorithms proposed by Ruppert,
Shewchuk, Miller and many others, improve the quality of the Delaunay mesh by
moving, adding or removing some points.

In section 2.4 some meshing techniques are presented that not only satisfy but
improve the quality for tetrahedral meshes (instead of the presented work that is
focused on triangles).

2.2.2 Grid, Voxel and Octree meshes
A grid (or structured) mesh is a regular tessellation of a given space. It is usually
formed using a unique type of elements (squares, rectangles, triangles, etc) that
can be:
• equal in angle: all the elements have the same inner angles but not the same

area or volume.
• equal in area or volume: elements can differ in their inner angles.
A voxel is a small volume element, representing a value on a regular grid in

the three dimensional space. This is analogous to a pixel, which represents 2D
image data. Voxels are frequently used in the visualization and analysis of medical
and scientific data. A voxel mesh is a particular grid where all the elements are
hexahedra of the same size.

Voxel meshes are particular useful when the simulation is performed over a 3D
imaging exam and virtually all the voxels can be activated. For instance in the
context of the brain activity study (functional MRI for example), works like [4]
and [1] (just to mention some) allow to identify the regions of the brain that are
activated and to compare between different groups of subjects.

In those studies, voxels in the mesh allow to identify not only if there is activity
in certain region but also, with a pre-defined scale, the level of activity as figure
2.4 shows1. Here the level of the mesh refinement is crucial to detect with pre-
cision the regions that are activated. In the other hand, there is a direct relation
between the number of voxels and the computing time to process the information.

1Image taken from wikipedia http://commons.wikimedia.org/wiki/Image:
FMRI.jpg with a Public-domain license. Page last visited: July 21, 2008.
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Figure 2.4: An example of a voxel mesh over head MRI. The voxel in this case,
measure the level of activity over different zones of the brain.

Therefore, finding the adequate level of element’s density (the size of each voxel)
is crucial.

An octree is a volumetric mesh and it can be seen as a derivate product of the
quadtree in 2D. A quadtree is a tree data structure in which each internal node has
up to four children. Quadtrees are most often used to partition a two dimensional
space by recursively subdividing it into four quadrants or regions. The regions
may be square or rectangular, or may have arbitrary shapes. This data structure
was named a quadtree by Raphael Finkel and J.L. Bentley in [26].

Figure 2.5: At the left an example of mesh generated with the octree algorithm.
At the right the corresponding tree data structure of it.

Figure 2.5 shows an example of the tree structure for an octree. Every cube (or
octant in this case) is divided, when necessary, in 8 new octants. In the figure, the
initial octant numbered 1 was divided in the octants from 2 → 9, then the octant
numbered 3, was divided in octants from 10 → 17. Octants 8, 9, 16 and 17 are
not visible.
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To stop the refinement (the subdivision criterion) on a quadtree or octree, there
are two options:
• Geometrical constraint. Like a minimal distance between octree surface

points and the actual surface of the domain.
• A level constraint. Like to reach a maximum number of subdivisions, points

or elements in the mesh.
Figure 2.6 shows an example of octree mesh from a prostate surface mesh. At

the left the input surface mesh of a prostate is shown in solid and transparent
elements correspond to the octree. Half of the octree mesh has been deleted to
show the interior of it. At the right, the same meshes are plotted but now with
the input prostate mesh in transparent. Colors in the octree mesh (at the right)
show the different sizes of inner elements that can be found. This difference is
explained as “big” inner elements don’t intersect the input prostate surface mesh
and therefore do not continue the splitting process.

Figure 2.6: An example of octree mesh from a prostate. Left: the octree mesh is
shown in transparent while the input prostate surface mesh is shown in transparent
in the right panel.

The previous description includes the “pure” octree technique, but in order to
make this mesh suitable for FEM it is necessary to manage the transitions between
coarse and more refined regions. Here three options are possible:
• manage transitions using only hexahedra [66].
• manage transitions using different types of elements (tetrahedra, pyramid and

prism or wedge) [32, 31].
• do not manage transitions and modify the classical FEM [51].
The two first alternatives use templates (patterns) to identify different types of

configurations and add elements avoiding the refinement of the entire mesh to
the same level. These two alternatives also need a technique in order to achieve
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better surface representation, like a projection of all the nodes that reside outside
the surface into it. This can lead to distorted elements and has to be handled by
a reparation algorithm. The other option to achieve surface representation is the
largely used marching cube algorithm that will be presented in the next subsection.

The third alternative doesn’t need any further changes from the current state of
the mesh. The effort must be made over the FEM in order to accept elements with
points inserted in their edges. The PhD thesis of Nesme [51] describes how this
can be done.

2.2.3 The Marching Cubes Technique

This is a technique published by Lorensen and Cline in [43] for extracting a polyg-
onal mesh of an isosurface from a three-dimensional scalar field (sometimes called
voxels).

The algorithm proceeds through the scalar field, taking eight neighbor locations
at a time (thus forming an imaginary cube), then determining the polygons needed
to represent the part of the isosurface that passes through this cube. Since there
are 8 points in each cube and every point can be in two states, inside or outside
the isosurface, there are 28 = 256 different combinations. However, most of the
combinations are topologically equivalent and by applying permutations, rotations
and switching states of inside/outside, these combinations can be reduced to 15
patterns as shown in figure 2.7.

Figure 2.7: The 15 marching cubes patterns. Red points can be inside or outside
the target isosurface to represent. The resulting faces will represent the isosurface.

For the switching states, if there are 7 points inside or just one of the entire
cube, the same pattern (number 1) will apply to find the intersection face. Even
though this procedure is robust, it doesn’t work all the time as it doesn’t consider
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neighboring information. The Marching Cubes technique can produce holes as
described and solved by Chernyaev in [15]. These holes are the result of combin-
ing two different configurations for neighbors as figure 2.8 shows.

Figure 2.8: Two case of erroneous surface representation, by applying the patterns
between two neighbors: a hole is produced in the element’s shared face. Red
points, are outside points. At the left pattern 6 and the complement of pattern 3.
At the right pattern 3 and its complement

The other option to solve the above problem is to produce a tessellation of
the cell into tetrahedra and build the isosurface applying the marching tetrahe-
dra algorithm [53, 25]. This method is similar to marching cubes but based on a
tetrahedron instead of a cube. The advantage is that in this case, no hole can be
produced. Unfortunately the topology produced by this new process isn’t neces-
sarily the same as the one obtained without tetrahedra tessellation (See Velasco et
al in [63]).

The Marching Cubes and their improvements are not only used with the voxel
meshes, but can be combined with the octree and grid meshes. This is a fast and
well studied technique to improve the surface representation of an input domain.

2.2.4 Advancing Front Technique

The Advancing front is a 2D and 3D meshing technique that stand from a surface
(or in 2D a boundary) representation of the domain. Each face in the surface mesh
is considered as a front. The idea is to expand all the fronts into the inner part of
the volume until the entire domain is meshed.

Once a front is expanded, it is no longer considered as a front. Finally all shared
faces will no more be fronts as they cannot be expanded. The selection of points to
create the new faces (thus elements) encourages the use of existing points. Figure
2.9 illustrates how the advancing front works.

Note that this technique can be adapted to produce any type of elements (tetra-
hedra, hexahedra and mixed-elements [42] in general). Also note that there is no
constraint over the technique to insert a new point. There are several advancing
front - based techniques and the difference between them is the manner to chose
where and when inserting a new point. This last step tries to maximize the quality
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Figure 2.9: The advancing front technique: (a) A portion of a surface mesh with
one front to expand, (b) the tetrahedron is created and the new faces can be treated
as fronts, (c) another expansion using a recently inserted front and (d) another
expansion using already inserted points.

of the elements in the mesh. As there are several options to measure the quality,
this technique has several flavors.

In the next two sections more complex meshing strategies are presented. Several
among them, use the techniques described above as a starting point or as part of
the meshing process.

2.3 Mesh Adaptation

2.3.1 The mesh-matching algorithm
Couteau et al in [20] proposed the so called Mesh-Matching (M–M) algorithm.
The statement of this work is that building a “suitable” mesh for their purposes
is a complex task: count with just a few elements and achieve a “good” domain
representation is always a difficult compromise. Therefore in many cases, meshes
are built by hand. As this task is time consuming and cannot be done in practice
for every patient, the idea is to use a pre-defined FE mesh of the target domain in
order to achieve its representation.

The pre-defined mesh is called the ATLAS. This mesh is, in most cases, built
by hand in order to preserve element quality, orientation and density in the desired
regions, in terms of what is important for the simulation.

To build a new mesh, target information must be represented with a cloud of
points at the surface of the new domain to mesh. Then a registration process
matches surface nodes of the ATLAS with the target surface points. The goal of
this process is to find a 3D transform T that is the combination of a rigid-body
transform RT , a global warping W and local displacement function S as follows:

Tp = RT ◦W ◦ S

Where p is a vector gathering the parameters of RT , W and S. Let M =
{Mi, i = 1, . . . , N1} and P = {Pi, i = 1, . . . , N1} be respectively the ATLAS
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surface nodes and the target surface points (for example patient data obtained by
the segmentation algorithm). The elastic registration algorithm minimizes a least-
squares criterion E(p) given by

E(p) =

N1∑
i=1

1

σ2
i

[dist(P, Tp(Mi))]
2 + Rp

where R defines a regularization term that is applied to S to obtain a smooth
displacement function, σ2

i is the noise variance of the measurement i and dist is
the distance between P and a point M ′

i (transformed by T ).

Figure 2.10: The mesh-matching algorithm: (a) The ATLAS mesh, (b) the ATLAS
and the target surface domain, (c) the matching of ATLAS surface points into the
target domain and (d) the final target mesh obtained by applying the transforma-
tion function T into the entire ATLAS mesh.

As T is a 3D transformation function, it can be applied to any point in the initial
model. When T is applied to the internal nodes of the ATLAS, a final 3D target
mesh is achieved. The matching of a domain can be seen in figure 2.10 where the
different steps of the algorithm are shown. Also note that there is a circle in picture
(d) of the figure to reflect bad quality elements. This is to reflect that morphing an
ATLAS into another domain is not an easy task. The ATLAS must be prepared
to confront those types of problems. If in most cases, the target meshes differ a
lot from one to another in a specific region, the ATLAS can prevent this type of
problems by adding points in those zones.

Another strategy to solve this problem is to use triangles (or tetrahedra in 3D)
on those zones. The benefit of this is that contrary to quad (or hexahedra) it is
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much more difficult to put a triangle or a tetrahedra in an invalid state (please
see subsection 2.3.4 for more details). Therefore a probably good atlas would be
the one shown in figure 2.11. Note that knowing the zones that deform the most,
allows adjusting the number of elements to put in each zone. Therefore, this final
mesh represents better the target domain with fewer element than the resulting
one from figure 2.10 (as fewer elements are presented in the zones where the
deformation is less important).

Figure 2.11: An improvement to the ATLAS: using more triangles in complicated
zones (left) can improve element quality in the resulting mesh (right).

The M–M algorithm can be used with meshes of any type of elements. In the
particular case of Couteau et al in [20], the goal was to obtain femora head meshes
and the tested ATLAS was composed of hexahedra and wedges (prisms). In the
article, a test over 10 proximal femora is presented. The level of element distortion
was satisfactory in comparison to the initial ATLAS.

2.3.2 Meshing 4D Domains

The work of Montagnat and Delingette in [49] is focused on building surface
models of 3D domains over time (4D). Despite the surface models (instead of
volumetric meshes), this work is important to this state of the art as it considers
deformable domains through time. But before explaining the 4D technique, lets
see the 3D deformable meshes from the same authors in [48].

The ATLAS mesh (initial model), is a simplex mesh. This mesh can be seen
as the dual mesh of a triangulation. Each point of the simplex corresponds to a
triangle’s centroids2 in the triangulation as shown in figure 2.12 where the simplex
mesh is represented by dashed lines. The simplex mesh has some interesting
properties like constant connectivity (each point is connected to three others in
the discretization), highly deformable, avoiding surface parametrization problems
and other properties as mentioned by Delingette in [22].

2Note that this is different to the Voronoi diagram. If not familiar with this last concept, see:
http://en.wikipedia.org/wiki/Voronoi
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Figure 2.12: A triangle mesh and its corresponding simplex mesh (in dashed lines)
by the junction of all the triangle’s centers.

Back to the work [48], an analysis of registration techniques vs Free Form De-
formations (FFD) is made. It mentions the positive and negative aspects of both
techniques and finally reports a workflow to merge them. It analyzes the different
results obtained by each technique.

There are several types of registration. The basic one is rigid registration, that
consider 6 Degrees Of Freedom (DOF). Then, as the number of DOF increases,
the registration can achieve a better representation. The authors work shows re-
sults with 6,7 and 12 DOF. It also analyzes the result with one registration gov-
erned by cubic B-spline.

To couple registration and FFDs, the authors introduce a λ factor that allows the
interaction of both registration and FFD. When λ = 0 the point’s displacement has
a minimum of DOFs (Registration). As λ approaches to the value 1, the number
of DOFs increases. Let V t+1

i be the position of vertex i in iteration t + 1, then the
position of any vertex in the mesh can be obtained as:

V t+1
i = F (V t

i , V t−1
i ) + λfFFD

i + (1− λ)f registration
i

where F is a function of the previous position of the vertex i, f registration
i are

the forces that control the regular registration and fFFD
i are the forces that control

FFD.
With this equation, it is possible to iteratively increase the DOFs. The first

“rigid” registration will stop when a threshold of the level of displacement is
achieved. Then the DOFs are incremented by the use of λ and the registration
continues until the final registration becomes a FFD with cubic B-splines.

The proposed registration hierarchy allows this work to efficiently match one
atlas against a cloud of points as some other optimizations are proposed in the
article. But going one step further, some organs in the body are important to
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analyze in motion. Therefore a substantial application of the presented work is to
model 3D domains that change with time (4D), as for example: the heart.

The work [49], first study a set of images that represent the states of the target
organ through time. With the ATLAS of the organ, registration matches the cloud
of points of the domain in the different states. As the domain changes, the ATLAS
changes too and through all the different states, it simulates the motion of the
organ.

2.3.3 Mesh Warping
As mentioned by Wolberg in [64], there are several algorithms to morph an image
into another. One of them is the mesh warping algorithm that was first introduced
for a special effect sequence in the movie “Willow” in 1988 by Smythe in [62]. It
allows producing a smooth transition between two images by using the same mesh
in both images and identifies some control points that will lead the transformation.

The work of Castellano-Smith et al in [13] extends the 2D warping to 3D. In
order to do so, the developed technique by Castellano-Smith is strongly based on
the 2D image registration proposed by Schnabel et al [57] that works with grids
(see section 2.2.2).

Following the same principle as the one in the previous section, the schema of
Schnabel is divided in two steps. First, the global motion is corrected using a rigid
(6 DOF) or affine (12 DOF) transformation. The global motion then becomes the
starting estimate for the second stage, where the local motion is further modeled
using Free Form Deformations (FFD) based on B-splines. The combined motion
model can be written as:

T(x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z) (2.1)

with the local motion at each point given by the 3D tensor product of the familiar
1D cubic B-splines. The optimal transformation T is determined by minimizing a
registration cost function:

C = −Csimilarity(IA, T(IB)) + λCdeformation(T) (2.2)

The similarity term maximizes the voxel similarity between the ATLAS image
(IA), and its counterpart in the target image (IB). The deformation cost term is
defined as the 3D equivalent of a thin-plate bending energy in order to maximize
the smoothness of the transformation, weighted by a factor λ.

As mentioned in the article, single-resolution FFDs are limited by low mesh
resolutions, and may develop folding at high resolutions. Therefore a multi-
resolution mesh representation is proposed. Each image is registered several times
by using grids of different level of refinements. Note that control points can differ
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from one grid to another one. After registration, the local deformation of each
point in the image volume domain is given by the sum of the local deformations
across levels:

Tlocal(x, y, z) =
H∑

h=1

Th
local(x, y, z) (2.3)

where each T h
local is computed with respect to the B-spline of level h. The use

of multi-resolution FFDs avoids the folding problem. Therefore the deformation
cost term regularizing the smoothness of the deformation in equation 2.2 is no
longer crucial (λ can be set to 0).

In practice, this technique is applied by Castellano-Smith et al in [13]. In that
study, a volumetric ATLAS of the brain is built from a set of MRI and the control
points are selected. To build a new brain mesh, it is necessary to count with MRIs
of the target (equivalents to the ones from the ATLAS) and to identify the position
of the control points. The registration process then matches the ATLAS mesh to
the target mesh. Note that the registration provided in the paper is made from a set
of 2D images. As their points are correlated to a 3D mesh, it is possible to obtain
a 3D mesh as a result.

The big difference between this method and the Mesh Matching (M–M) tech-
nique is that it allows identifying inner points to lead the registration. This is very
useful to consider the matching of inner structures like in the case of the brain.
However, Berar et al proposed in [7] a combined approach using the M–M and a
multi-resolution grid for matching high resolution ATLAS into low density target
data. This was applied to mandible simulation. Another important remark over
this last work is that for the definition of control points, they didn’t use geomet-
rical points but anatomical ones like the teeth, even though the teeth were not
presented in the target model.

Even though the ATLAS can be built with different meshing techniques, it is
important to mention that in the work of Castellano-Smith et al, the ATLAS was
built from a set of segmented images. Then with a based Marching-Cubes algo-
rithm they produced a surface model of the brain and inner structures. Their paper
doesn’t give details on the volumetric mesh generation; however it mentions that
the final mesh is a tetrahedral mesh of high quality. The last important thing to
mention is that they have used quadratic tetrahedra, i.e. 10 nodes as explained in
section 1.4.

Finally the differences between this registration process and the one proposed
by Montagnat and Delingette in [49] are:
• The type of mesh they use (grid vs simplex).
• The first approach uses an iterative strategy where the level of the mesh re-

finement and the registration are coupled in each iteration.
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• The entire process is leaded by some specific control points that are added in
each iteration.

2.3.4 Untangling and improving quality after mesh adaptation
The accuracy and efficiency of the solution to numerical systems depend on the
quality of the mesh. Moreover, in the case of registration techniques, it is possible
to compress/stress an element to the point where it becomes folded (i.e. degen-
erated and therefore invalid for the FEM) as figure 2.13 shows. This can occur
since the registration techniques do not consider the geometry of the elements in
the mesh (the registration is made regarding the points and not the elements).

Figure 2.13: A folded face (left) where the dotted line is a diagonal and a folded
hexahedron (right) where the dotted lines represent a perfect hexahedron.

The workflow of element reparation after registration should be:
• make the mesh valid (repair tangle and folded elements) and
• improve element’s quality when possible.
In the work of Schnabel et al [57] presented in subsection 2.3.3, this was done

in 2D for each image as the idea of hierarchically increase the refinement level
of the mesh3, avoids the presence of “folded” squares. When passing to the 3D
volumetric mesh, this problem was not relevant as the final mesh was tetrahedra-
only type. Note that folded faces cannot be produced with triangle faces.

One solution to solve tangled and folded elements was proposed by Luboz et
al in [45]. This work continues the Mesh Matching (M–M) technique presented
in subsection 2.3.1, as it repairs the invalid elements that are sometimes produced
after the registration.

The first step consists in detecting the tangle elements. To do so, the Jacobian
matrix is used regarding the transformation between the reference and the actual
space. This transformation can be computed for any type of element. In particular

3Count with several meshes of different levels of detail. For example a grid with 4, 16 and 64
quads.
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Figure 2.14: The reference and actual space from which the Jacobian matrix is
calculated. Left: the reference space and right: the actual space.

figure 2.14 shows an example for a hexahedron: at the left the reference spaceRrst

and at the right the actual spaceRxyz. The Jacobian matrix for this transformation
can be written as:

J =

 Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 =



∑
i

∂Ni

∂r
xi

∑
i

∂Ni

∂r
yi

∑
i

∂Ni

∂r
zi∑

i

∂Ni

∂s
xi

∑
i

∂Ni

∂s
yi

∑
i

∂Ni

∂s
zi∑

i

∂Ni

∂t
xi

∑
i

∂Ni

∂t
yi

∑
i

∂Ni

∂t
zi



Where Ni are the interpolation shape functions, xi, yi and zi are the actual
coordinates and r, s, t the coordinates in the reference space.

It is possible to apply the Finite Element Method (FEM) if this transformation
matrix exists for any element in the mesh. This is equivalent to say that simulation
is possible when this matrix is not singular. It is possible to detect singularities by
the analysis of the sign of the determinant of J (detJ). By evaluating detJ in each
vertex of the element, a singularity is presented when not all these values have the
same sign (i.e. when a null value is presented somewhere inside the element).

In order to repair those elements, the gradient of the detJ is computed. For a
distorted element k, a displacement Dispk,j for the vertex j is proposed as follows:
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Dispk,j =
∑

i

∇jdetJ =



∑
i

∂detJi

∂xj∑
i

∂detJi

∂yj∑
i

∂detJi

∂zj


where i are the vertex index of element k. The total displacement Dispj for

a given vertex j is computed by adding each Dispk,j obtained for every invalid
element k where the vertex j is presented. This displacement vector is then nor-
malized and the final position P ′

j for a given point j with current position is Pj

can be obtained as follows:

P ′
j = Pj + dispj ×Wj

where Wj is a weight factor chosen to constrain the displacement.
Another approach to solve this problem was proposed by Li and Freitag in [38].

This work intends an optimization approach to untangle (equivalent to solve the
folding in 2D) the mesh. It searches to maximize the minimal area or volume of
the elements. The first step is to detect tangled elements. This is done by com-
puting the Jacobian sign at each element’s vertex. A very important point must
be noticed here: the work mentions that an element with one vertex of negative
Jacobian can be a valid element. Note that this refers to tangling, i.e., an element
can be not tangled having one negative Jacobian vertex. However, this has nothing
to deal with the FEM. A negative Jacobian vertex does not allow to compute the
FEM, therefore the statement should be: a mesh can be untangled but count with
negative Jacobian vertex, however this mesh will not be valid from a FEM point
of view as it is not possible to compute a simulation with.

The laplacian smoothing technique (see [27]) consists in positioning each ver-
tex v of the mesh in the center of the polygon formed by all the vertex connected
to it. This method operates heuristically and does not assure quality improvement
over the elements of the mesh; for example it can produce slivers4. Therefore, op-
timization techniques based on some quality measure (dihedral angle, aspect-ratio,
etc.) are preferred. Unfortunately optimization approaches have a computational
cost much higher than the laplacian smoothing. Therefore a combined strategy
is proposed in [27] by Freitag. But before going into details it is necessary to
introduce two concepts.

The laplacian (this is a smoothing process) by its own does not consider quality
measures. Therefore the first modification is the introduction of a “smart lapla-

4Tetrahedra where all the points tend to be co-planar.
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cian”. This is the typical laplacian but it will be applied only if the new position
for v improves the quality of the elements.

Even though it is not presented like this, for understanding purposes lets say that
the active value actV alv corresponds to the worst element quality associated to
vertex v, and actV almesh the worst element quality in the mesh. Now to improve
element quality, a user-defined threshold value is used and the following iterative
algorithms are proposed (each algorithm is independent):

1. If threshold < actV almesh the smart laplacian is performed. Otherwise the
optimization is used

2. Apply smart laplacian and compute the new actV alv. If threshold <
actV alv repair it using optimization.

3. If threshold < actV almesh the process is finished. Otherwise apply smart
laplacian and compute the new actV almesh. If threshold < actV almesh

apply optimization.
4. Compute threshold = actV almesh + C, where C is an arbitrary constant

value. Then proceed as the second algorithm (from this list).

The author concludes that all the above algorithms but the third were superior
to the smart laplacian and optimization approach. However, the third combined
approach was the fastest and it also improved the mesh (only with a worst quality
than the others but still, better than the input).

2.4 Mesh generation

2.4.1 Red Green tetrahedral meshing technique
Molino et al [47] have introduced the red green subdivision algorithm. This
meshing technique is said to be for modelling highly deformable objects.

The implemented approach starts with a regular octree mesh, i.e. all the octants
in the mesh are refined at the same level. Therefore it can be seen as a voxel-based
approach but conserving the tree structure of an octree.

Once the desired level of refinement is achieved, each cube is divided in 6 pyra-
mids and each of them in 2 tetrahedrons. As this is done for each hexahedron
in the mesh, the global tree structure can be conserved as shown in figure 2.5.
The difference is that for each leaf in the tree, there will be a reference to the 12
tetrahedrons that replace the original cube.

In order to achieve good surface representation some tetrahedrons must be split.
Therefore a pattern that enables tetrahedron subdivision is applied over the regions
where more elements are needed. This pattern can be applied recursively over
tetrahedra. Those elements are said to be red (they can still be refined). However,
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between refined and not refined regions there must be a consistent transition. In
order to avoid propagation of the refinement level, new green patterns (see figure
2.15) are applied. Those green tetrahedrons cannot be refined anymore. If for
some reason a green tetrahedron must be refined later, it is replaced including his
brothers with the hierarchical red father (using the tree data structure that enables
this process to be fast and robust). Now, with this red tetrahedron the subdivision
is applied until the desired element density is achieved.

Figure 2.15: The red green patterns to split tetrahedrons. The standard red refine-
ment (left) and the three green patterns for transitions between regions of different
refinement levels (right).

The red green meshes are desirable because, except for the green tetrahedrons
in the transitions, they produce equilateral tetrahedrons (in difference with a pure
Delaunay approach), avoiding sliver tetrahedra (which increases the level of com-
putation errors in the simulation). It is for this reason that they are said to be
optimized for objects that will be highly deformed.

In the context of neurosurgery and brain modeling, Fedorov et al in [23] pro-
posed to use the FEM to project the output mesh of the red green algorithm in
order to achieve the correct external surface representation. They defined the dis-
placements of the boundary nodes toward the object surface using a distance map,
and solved the system with boundary conditions defined by the displacements of
the mesh vertices.

2.4.2 Marching Cubes with Delaunay-based meshes towards
several bodies simulation

The work of Audette et al in [5] might be considered as an accurate simulation
because it builds detailed meshes for several structures of the brain. However their
intention is to produce a realistic simulation of the pitatoria surgery for training
purposes. Through virtual reality, this simulation is produced in real-time, there-
fore it can be considered as part of the real-time simulations.

To simulate the endoscopic pituitary surgery, they produce several non con-
nected triangle surface meshes. Each mesh represents a volumetric or a surface
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mesh of the head structures like the pituitary gland and the arteries, the cranial
nerves, the dura mater, the brain and other pathological structures.

In order to produce those surface meshes they first generate a dense surface
mesh of high accuracy and topological fidelity, resulting from the Marching Cubes
algorithm. The second step corresponds to a decimation process in order to obtain
a mesh of the desired density.

The third step consists in building the simplex mesh of the previous calculated
mesh (to see a description of the simplex mesh, please see subsection 2.3.2). An
optimization process leaded by a balloon force can act over the points of the sim-
plex mesh to cause it to expand until some image-based force halts this expansion.
In consequence each dual triangle is reallocated in order to count with edges of
equal or locally consistent length. In other words, as the relation between a trian-
gle mesh and the simplex is one-to-one, a displacement over a point in the simplex
mesh causes a displacement over the three corresponding points in the triangle.
Therefore the optimization over all the simplex points improves the quality of the
triangles (as an optimization runs over each triangle’s center).

Once all the high quality meshes are obtained, Audette et al in [5] propose to
add inner points inside the surfaces that will be modeled as a volumetric object.
To do so they use a criterion of “near-equal length of the tetrahedron”. Once they
have enough inner points the authors proceed to build a Delaunay mesh of it.

Finally, they improve the quality of the mesh by making an optimization over
the dihedral angle5. They achieve an excellent representation of the inner struc-
tures of the brain, allowing via Virtual Reality, the training on pitatoria surgery.
This strategy is under the category of Volume generation techniques because
even though the authors include the input surface mesh to produce the volume
mesh, in a previous step, they regenerate the surface mesh with the Marching
Cubes technique. Then they build a new dense surface mesh that soon after is
decimated and goes through a quality improvement process.

A previous work by Pages et al in [52], developed a general purpose technique
similar to the one above. The goal was to develop an application to go from
MRI and CT images to volume meshes. The first step was to achieve image seg-
mentation. As this process is even more complicated when the simulation must
consider several sub-structures of the image, they used a user-guided segmenta-
tion algorithm. Once the segmented images are produced, the only user interac-
tion is to decide the level of precision (see 1.3.3) the mesh must have. With the
segmented images, the marching cubes algorithm is applied to produce an initial
surface mesh. Then a bilaplacian algorithm produced a smooth surface (this step
wasn’t applied by Audette et al in [5]) to finally proceed with a decimation al-
gorithm to decrease the number of triangles. Now with a “good” quality surface

5The angle formed between two planes.
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mesh, the inner points are inserted. These new points are inserted regarding the
Delaunay property to produce an initial volume mesh. In this work, the quality
of a tetrahedron, is defined by Q = αρ/h, where ρ is the inradius, h the largest
edge length and α a normalization coefficient (to get a quality of 1 for a regular
element). Following this quality function, an optimization process improves the
element’s quality by node relocation and face flipping operations.

2.4.3 Variational tetrahedral meshing
This work was developed by Alliez et al in [2]. It is a general purpose mesh-
ing technique starting from a Delaunay mesh. Then the meshes are improved in
quality by optimal point insertion in terms of tetrahedral quality.

Concerning the mesh generation, the important constraints to this work are:
• Count with a fair shape quality measure. They make a reference to the work

of Shewchuk in [60] and conclude that: “The radius ratio, which takes the
quotient of inscribed and circumscribed sphere radii (times three for normal-
ization purposes), is a good measure for any kind of degeneracy”. This spe-
cially avoids the presence of sliver elements.

• Sizing requirement. Citing directly from [2]: “Accuracy and efficiency of
numerical solvers depend on the local size of tetrahedra. Consequently, a
sizing field, prescribing the ideal local edge length as a function of space,
must be added”. In consequence, a smooth transition between elements of
different sizes is necessary to avoid bad dihedral angles.

• Boundary requirements. Two options are possible to represent the external
surface of the domain to mesh: directly include the input surface mesh in the
final output mesh or re-mesh the input domain in order to control its qual-
ity and density. The first, of course, achieves perfect surface representation
as shown in subsection 2.2.4, however as Alliez et al intend to produce a
meshing technique for general purposes, the second option was chosen. In
this manner, there is no dependency on the density or quality of the input do-
main. Therefore this technique can be classified as a Volume re-generation
technique.

Regarding all the above points, Alliez and colleagues present a Delaunay-based
optimization technique, called “Variational Tetrahedral Meshing”, to efficiently
mesh a bounded 3D domain of arbitrary topology or number of connected com-
ponents. The base of the algorithm considers optimal surface approximation by
the work of Cohen-Steiner et al in [17] and Optimal Delaunay Triangulation by
the work of Chen and Xu in [14]. Regarding those techniques the authors propose
a simple minimization procedure that alternates global 3D Delaunay triangulation
and local vertex relocation to consistently and efficiently minimize a global en-
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ergy over the domain. It results in a robust meshing technique that generates high
quality isotropic meshes in terms of radius ratios, as well as angles. A notable
feature of the method is that it removes slivers (the principal problem of the De-
launay technique as explained in subsection 2.2.1) inside the domain. To provide
a flexible meshing tool, they also introduce an automatic sizing field construction
that guarantees an arbitrary smooth gradation of the mesh together with faithful
approximation of the domain boundary.

The authors provided several comparisons with other quality tetrahedral mesh-
ing techniques. In all the presented cases their technique gave the highest mesh
quality in terms of tetrahedra radius ratios (the one that avoid sliver tetrahedrons
and also considers the dihedral angle).

2.4.4 A brief remark concerning surfaces

As reviewed in the previous works, to get a good representation of the input do-
main surface is always a difficult task. Many approaches go through high refine-
ment levels to achieve such a good representation and then, by decimation or point
reallocation, decrease the number of faces and try to improve their quality.

Another option to improve surface quality is to change the topology of the mesh.
This is not exactly decimation as the work of Bunin in [12] shows. Even though it
is focused in 2D, it can be adapted to improve the quality of surface meshes in 3D.
The quality improvement over the surface is achieved by removing “bad quality”
or “undesirable” sub-domains of the mesh and by re-meshing those zones. Con-
trary to decimation, this doesn’t only change the topology but can also improve
the orientation of the elements. In particular this approach improves quadrilateral
meshes.

When the focus is triangle surfaces, one remarkable work is the one by Coll et
al in [18]. The algorithm combines different meshing improvements techniques
that incrementally modify an initial triangle mesh by local changes. The element
insertion or removal is done in such a way that the mesh quality is maintained
during the process. The local operations are: deletion, insertion and addition
of Steiner6 points. The overall process goes through a definition of quality zones.
Therefore vertices of skinny triangles are forced to those zones. If a vertex must be
removed, new vertices are placed in quality zones to improve the overall quality.

6If in a given Delaunay tetrahedralization or triangulation of an arbitrary domain, a new point
is inserted in such a way that the entire mesh still satisfies the Delaunay property, this new point is
said to be a Steiner point.
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2.4.5 Hexahedral meshes
Unstructured quadrilateral/hexahedral meshes are also an important alternative
to simulate applications with the Finite Element Method (FEM). However, it still
remains a challenging and open problem to generate adaptive and quality quad/hex
meshes directly from volumetric data, such as Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI).

The work of Zhang and Bajaj in [66] goes in this direction. The overall strategy
consists of:
• Select a starting level of octree refinement for uniform mesh generation with

correct topology, regarding the volumetric data.
• Produce a representative quad/hex mesh of the input domain.
• Improve the quality of the final elements.
Once an initial octree level of refinement is achieved (see subsection 2.2.2) five

patterns enable transitions between refined and coarse regions. Those patterns
are applied in function of the vertex signs. This is based on the “dual contouring
method” proposed by Ju et al in [35]. This last method consists in an approxima-
tion of the surface by assigning directions to the vertices in all the sections where
domain intersection is produced.

Figure 2.16: Extended Marching Cubes and dual contouring: (a) Octree mesh
with domain cutting intersections and the normal of those cutting points, (b) the
marching cubes output, (c) the extended marching cubes contour and (d) the dual
contour mesh.

Figure 2.16 shows the contour detection and assigns a sign to each octree vertex
regarding the normals of the intersection points. This can be seen in (a) as the
black points rest inside the domain. Image (b) represents the output from the
marching cubes technique. Image (c) shows the “extended marching cube” (EMC)
technique proposed by Kobbelt et al in [37] and (d) the points of the dual contour
regarding the EMC. As in subsection 2.3.2 the simplex mesh was the dual of a
triangle mesh, here a dual mesh is expanded to a more global concept as it is not
restricted to triangles (see [35] for more details).
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With all these techniques, the work in [66] allows to produce quad/hexa meshes
that have regions with different levels of refinement and achieve a “good” surface
representation. Finally in [65] Zhang and Zhao continues the previous work by
adding two new patterns to drastically decrease the number of transition elements
between refined and coarse regions.

2.5 Summary over presented techniques
In the two previous sections, several meshing techniques were presented. In the
following tables a summary of them is proposed, involving all the relevant aspects
of meshing.

meshing type reviewed works
registration Couteau [20], Montagnat [49], Castellano-Smith [13],

Berar [7]
generation Alliez [2], Audette [5], Molino [47], Abell [1],

Ashburner [4], Velasco [63], Pages [52], Nesme [51],
Lorensen [43], Payne [53], Ferrant [25], Montagnat [49]
Frey [28], Zhang [66]

Table 2.1: The presented techniques grouped by the type of technique to produce
the mesh.

There are more generation techniques than registration methods as table 2.1
shows. Note that this doesn’t mean that in medical applications, the generation
methods are more used than registration techniques. As generation methods tends
to solve general problems there is an important global effort to improve them. In
the other hand, registration methods are mostly used in the medical field as the
difference from one target to another one makes possible to re-use already gen-
erated meshes (ATLAS). Registration methods are also largely used in the med-
ical field due to the complexity of the anatomical structures. The goal isn’t just
to achieve surface representation but also to conserve some element orientation
(alienation) regarding sub-structures (like different types of materials, behavior,
physical properties, etc).

Also note that several tetrahedral generators improve the quality of the input
surface mesh and then continue with some point insertion strategies (using the
modified input surface mesh) in order to produce the final volume mesh. In other
words, techniques that use the input surface mesh, as the Advancing Front, seem
to be “not so used” in the medical field.

Table 2.2 presents the reviewed techniques regarding the basic and most com-
mon meshing techniques and concepts explained in section 2.2. Note how the De-
launay property is used by all the techniques that produce tetrahedral meshes. It is
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meshing technique Delaunay octree-alike march. cubes
Ruppert [56] ok – –

Shewchuk [60] ok – –
Miller [46] ok – –
Abell [1] – ok –

Ashburner [4] – ok –
Finkel [26] – ok –
Nesme [51] – ok –

Lorensen [43] – ok –
Chernyaev [15] – ok ok

Payne [53] ok ok –
Ferrant [25] ok ok –
Velasco [63] ok ok ok
Couteau [20] – – –

Castellano-Smith [13] – ok ok
Berar [7] – – –

Molino [47] ok ok –
Audette [5] ok ok ok
Pages [52] ok ok ok
Alliez [2] ok – –
Chen [14] ok – –
Frey [28] ok – –

Zhang [66] – ok ok
Table 2.2: Meshing techniques using the basic techniques: (1) Delaunay property,
(2) octree, grid or voxel and (3) marching cubes

important to mention that not all the techniques produce volumetric meshes. Some
of them are used only to achieve a good surface representation. Another important
remark is that several techniques producing tetrahedra, also use the octree-alike
methods to produce a primary tessellation.

Table 2.3 focuses on the type of element produced by the volumetric mesh gen-
eration techniques. Note how mixed–element meshes are by far the less used.

The goal of this chapter was to show the different possible techniques to produce
a suitable mesh for the FEM. Therefore, several related works were omitted as the
meshing techniques they used were already explained.

Regarding all the mesh generation techniques presented in this chapter, a work-
flow for general mesh generation is presented in figure 2.17. This is based on the
work of Frey in [28]. In this picture an example of “isosurface reconstruction”
is the Marching Cubes algorithm. The “mesh optimization” with the “geometric
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meshing technique tetrahedra hexahedra mixed-elements
Abell [1] – ok –

Ashburner [4] – ok –
Nesme [51] – ok –

Lorensen [43] ok – –
Payne [53] ok – –
Ferrant [25] ok – –
Velasco [63] ok – –
Couteau [20] – – ok

Castellano-Smith [13] ok – –
Berar [7] – – ok

Molino [47] ok – –
Audette [5] ok – –
Pages [52] ok – –
Alliez [2] ok – –
Frey [28] ok – –

Zhang [66] – ok –
Table 2.3: The final type of elements that the analyzed meshing techniques pro-
duce.

constraints” refers to the element deletion or insertion per region in function of
the simulation requirements.

Finally, regarding all the adaptation techniques, figure 2.18 shows the equivalent
workflow that we propose for a general mesh registration technique. The “rigid
registration” can be of different DOF (6,7 or 12) as mentioned in subsection 2.3.2.
The “elastic registration” is equivalent to “Free Form Deformation” or “Non Rigid
Registration” concepts. The “Element Reparation” corresponds to a re-allocation
of the negative Jacobian points and the “quality improvement” needs a measure of
quality and then performs an optimization over the elements regarding the selected
criterion. Note that a “Smoothing” process is also proposed in order to produce
the final volume mesh of the target domain.
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Figure 2.17: The mesh generation general flow. From Image to volume mesh
generation based on Frey [28], where a white box represents input/output data
and a black box is a process.

Figure 2.18: The mesh adaptation general flow. From Image to volume mesh
generation, where a white box represents input/output data and a black box is a
process.
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Chapter 3

Simulation in the medical field

Chapitre 3: Simulation dans le domaine médical

Abstract

In this chapter the proposed solutions are explained in detail. First, section
3.1 gives a global introduction and presents the motivation for the two analyzed
meshing techniques shown in this thesis. The first technique is presented on
section 3.2 and corresponds to the reparation of meshes after registration. The
second strategy, presented on section 3.3, is the generation of meshes where
the focus is given on a particular region of the domain and it should be mostly
applied in surgery where real-time simulations will be needed.

3.1 Meshing anatomical structures
In order to simulate any relevant phenomenon in the medical field like fracture,
deformation, resection and many others, a model must be produced. As men-
tioned in the previous chapters, the Finite Element Method (FEM) is probably the
most used technique to achieve those types of simulations. The FEM needs a sub-
division of the domain, into simpler geometrical elements. The junction of all the
elements (plus the nodes, the connectivity between them, the faces and the edges)
receives the name of mesh.

This thesis is focused on two strategies to build a proper mesh and probably a
good example to introduce both is the simulation of liver tumor resection. The
liver as itself is a very important organ and also, from a mechanical point of view,
involves a complex anatomical architecture. Seven different regions (the “lobes”)
with specific material behavior can be identified in the organ (figure 3.1 1). More-

1Image taken from wikipedia http://commons.wikimedia.org/wiki/Image:
Gray1087-liver.png with a Public-domain license.
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over, several sub-structures can be distinguished, like the capsule of glisson, vas-
cular branches or the biliary tree, which adds mechanical non-linearity complexity
to its simulation.

Figure 3.1: Anatomical view of the liver from Gray in [30].

The liver medical scan images might show anomalies in the organ. In order
to confirm the existence of a tumor, a tissue sample is withdrawn and sent to the
laboratory for testing. This surgical gesture (the biopsy) will finally indicates if
the sample corresponds to a tumor.

Simulating this biopsy gesture is challenging from a modeling point of view
(patient-specific geometry, anisotropy and non-homogeneity of the substructures,
displacement due to breathing, between others).

At least to take into account patient-specific geometry and sub-structures or-
ganization (i.e. a mesh that identifies these sub-structures), the mesh registration
techniques are probably the most adapted ones.

These techniques enable the use of a predefined mesh (the atlas) in order to
adapt it to another domain (patient data). They are very important to the med-
ical field as the atlas can be defined regarding all the organ internal structures,
considering particular element types, orientation, density, quality and all the pa-
rameters relevant to the simulation. The construction of such an atlas might be
a complex and hard task; however this manual work should be made only once.
When the desired atlas is built, the registration techniques adapt the atlas mesh to
the patient data thus generating a patient-specific mesh with the same topological
configuration as the one from the atlas.
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Section 3.2 will show how registration methods can be applied to simulations
where anatomical information of the entire organ is crucial. In particular the
Mesh-Matching (M-M) [20] algorithm is used as example and improved. It was
shown in [44] that after registration, the M-M sometimes produced invalid and
poor quality elements in certain regions. A strategy to repair and improve the
quality of those meshes is one of the products of this thesis.

However, these registration techniques may be insufficient when a specific sur-
gical treatment (for example tissue resection) has to be fully modeled for an intra-
operative case. In that case, the focus of the simulation is on the region where the
tumor is located. Even though the rest of the liver regions remains important to
the simulation, it is on the region of the tumor where higher precision is needed
and therefore an important optimization, regarding the mesh, must be made. In
that case, the goal of the mesh generation process is to produce a mesh that is re-
fined on the region of the tumor and coarse elsewhere. This optimization allows to
reduce the number of nodes in the mesh and in consequence, enables a faster com-
putation of the FEM. Note that the rest of the regions are still considered, but with
less precision than the region of the tumor. Section 3.3 presents our developed
algorithm to produce mixed-element meshes with localized region refinement and
high control over the mesh quantity of nodes.

3.2 Mesh reparation and quality improvement after
registration

In section 2.3 some registration techniques were introduced. In the medical field,
this option is sometimes preferred since the atlas (in many cases, built by hand)
considers specific element type, orientation, quality, size and many other charac-
teristics important to the specific simulation.

As the nodes of the elements in the atlas suffer a reallocation in order to repre-
sent the target domain Ω, two types of problems can arise:

• the quality of the elements can slightly decrease (globally speaking).

• elements might become invalid for the FEM.

One of the objectives of our work was to provide reliable methods to avoid such
kinds of problems.

Two measures were considered in the mesh reparation algorithm: the determi-
nant of the Jacobian matrix (as a measure of validity and quality) and the warping
factor (as a measure of quality). Both are explained in detail in the following sub-
sections and finally both are employed in the two implemented strategies to repair
the meshes.
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3.2.1 The Jacobian determinant
The Jacobian determinant detJ explained in subsection 2.3.4 is used to determine
the degeneration level of an element. The value of detJ indicates if an element is
invalid, presents bad quality or if it is good enough to continue with the simulation.

Figure 3.2: Left: a valid element where node A has a positive distance to plane
BCD. Right: an invalid element where node A has a negative distance to plane
BCD.

In geometrical terms, the validity and quality of an element can be described
regarding the position of its nodes. Let A be a node of an element and BCD
a plane formed by the other nodes of the element that are connected to A. In a
valid element, node A has a positive distance to plane BCD. If node A is moved
till the point where its distance to BCD is negative then detJ(A) is negative and
the element is said to be invalid. The valid case can be seen at the left panel of
figure 3.2 for an hexahedron. At the right, an invalid configuration is shown as the
distance of node A to plane BCD is negative.

After the adaptation (or registration) of the atlas, element quality decreases and
invalidity often arises. Therefore, before explaining the mesh reparation algorithm
that we propose, it is important to understand the behavior of the detJ function:

• The value of detJ(A) only depends on (and affects) the nodes connected to A.
The values of detJ for nodes non-connected to A in the element do not change
by a reallocation of A.

• The value of detJ(A) depends on the size of the element. When the element
is scaled (increase the element size by keeping the relative distances between
nodes) the value of detJ(A) changes.

• A “perfect” element is achieved when all the nodes in the element have the
same value for detJ.
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• DetJ is a continuous increasing function.

In order to normalize the detJ function, a ratio known as the Jacobian ratio is
used. This ratio is computed for each node regarding the value of the detJ of each
element node: Jacratio

i = detJmax/detJi, where detJmax is the maximum detJ
value of the element. In order to illustrate the detJ and the Jacratio functions a
perfect cube of length side 2 centered at 0 is defined. Then node A(1, 1, 1) is
replaced with node (a, a, a), where a ∈ [−1.9, 1.9]. Figure 3.3 shows how the
function varies as the node is reallocated.

Figure 3.3: Left: the Jacobian determinant values as the position of an hexahedron
node is moved along its coordinates (the value of x,y and z for the node are the
same). Right: the same conditions are used to compute the Jacobian ratio value.

The value of Jacratio
i gives a reference of the element degradation at node i

regarding all the locations of the element nodes. Note that when detJi function
has negative value, it indicates that the element is inverted (thus invalid) at node
i, but there is no measure of the degradation level of the element. In the other
hand, when the det Ji is positive it is not possible to determine if node i is close to
an invalid position; in figure 3.2 this corresponds to place node A with a positive
distance to BCD but at the same time, close to it. The Jacratio can establish the
element “degradation level” at each node, because when the node i is close to an
invalid position it has a positive high value and as it approaches to the optimal
position (regarding all the element nodes) its value tends to 1 (as the right panel
of figure 3.3 shows). Note that when the value of Jacratio

i is 1, increasing detJi

will continue to result in a value of 1 for Jacratio
i , therefore increasing detJi will

only decrease the value of detJ for the rest of the element nodes (decreasing the
element quality).

As mentioned before, the detJ value can be used to detect invalid and bad qual-
ity elements. An invalid element is the one that has negative or nil detJ for one
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Figure 3.4: Left: transparent drawing of an hexahedron of Jacratio = 29.9401.
Right: a solid drawing of the same hexahedron

or more of its nodes. When all the nodes have positive detJ values the element
can be seen as “valid”. However following the standards of ANSYS R©, an ele-
ment is unacceptable for the FEM, when its Jacratio is superior to 30. Figure 3.4
shows an hexahedron where the “worst” Jacratio = 29.9401 (thus acceptable for
ANSYS R©). Note that a very small displacement over node A could easily increase
its Jacratio value as this function is exponential (see the right plot of figure 3.3).

3.2.2 The warping factor
The warping factor WF is a quality parameter that measures the level of co-
planarity of the nodes in a face. Note that this measure is meaningless for trian-
gles2. The plane used to measure the node co-planarity is obtained as an average
of the nodes and the implementation only considers quadrilateral faces. If ni cor-
respond to the nodes that define the face, a point over this plane is computed as:

avg =
1

4

3∑
i=0

ni

The normal n̂ of the plane is computed as:

n̂ = (n2 − n0)× (n3 − n1)

The distance of each node ni to the plane is then:

dis(ni) = |(ni − avg) · n̂|
2The author refers to linear elements. This is not true for quadratic elements as explained in

subsection 1.4.
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If only the sum of the distances is used to measure the WF it would not consider
the scale of the face. For this reason the WF of the face is computed as:

WF =
1√
area

3∑
i=0

dis(ni)

where area corresponds to the area of the face formed by the nodes projected into
the average plane. By doing this, whatever the distance of a node to the plane is,
it will not produce the same result for a small and large face.

A coplanar face as a WF = 0. As the value of the WF increases the face
decreases its quality. The WF cannot be negative as the absolute value of the
distances is used and the area is always a positive number.

Figure 3.5: The warping factor behavior as one face node increases its z coordi-
nate.

Figure 3.5 shows an example of how the use of the face area affects the WF .
In the example a square face of length side = 1 was defined over xy plane. The
coordinate z of node D was incrementally increased to determine the behavior of
the WF function. The result can be seen at the right panel of figure 3.5 where
the maximum value of the WF (the highest degradation of face) was 0.877383 at
Dz = 2. As Dz continues to increase, the WF of the face decreases due to the
area of the face that makes less relevant the displacement of node D (in a large
scale the nodes tend to be coplanar).

The WF can be bigger than 1 when several nodes are displaced. For instance
consider the case of a quadrilateral planar face ABCD of length side = 2 and
centered at the origin. If nodes A and C are moved to y = 5.5 and nodes B and
D to y = −5.5 then the WF of the face is 9 as figure 3.6 shows. Note that in this
case, the WF will continue to increase its value indefinitely as the nodes move far
away from the average plane.
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Figure 3.6: The warping factor can continue to increase when more than one node
is displaced.

3.2.3 First approach: Jacobian gradient
A first approach to produce valid and quality meshes was implemented following
the work of Luboz et al in [44]. This approach detects the invalid nodes by com-
puting for each element the detJ value. The direction of displacement for invalid
node i is then computed as:

∇(detJi) =


∂detJi

∂xi
∂detJi

∂yi
∂detJi

∂zi


The resulting vector is a direction dire computed regarding all the locations of

the element nodes (as detJi is computed involving all the element nodes). Then
dire is normalized and the displacement distance dise to move the invalid node i
is computed using an average of the element edge lengths.

The process is repeated iteratively for all the elements in the mesh, therefore if
a given node is invalid regarding more than one element e, the final direction and
displacement distance for i is computed as an average of dire and dise respec-
tively.

displacementi =
1

B

m∑
e=1

αe · dire · dise

where m is the total amount of elements that share node i, B is the number of
elements invalid at i and αe = 1 if the detJi,e ≤ 0 or αe = 0 if detJi,e > 0.
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All the above work was introduced by Luboz et al in [44]. Unfortunately this
work didn’t consider quality measures like the constraint of Jacratio < 30 or the
WF .

Our developed strategy considers all the above process plus a quality improve-
ment where a Jacratio ∈ [1, 30[ is searched for each element. The quality process
follows the same principles as the validity process: detection of bad quality nodes
and improvement using the ∇detJ.

This strategy works fine with simple cases. However some drawbacks were
identified:

• This strategy is very sensible to the dise employed for both validity and qual-
ity process. If the value of dise is small, the process might need several it-
erations to achieve the desired results. If dise is large, it might cause neigh-
bor elements invalidity or quality degradation. Even when all the elements
attached to the node that has been repaired remain with good qualities, the
displacement might be important. This is not good for the surface node after
registration since these nodes must remain as close as possible to the surface
of the target domain to represent.

• The developed application detects all the “bad” nodes and then the validity
and quality process improve the Jacratio one by one. This approach presents
problems with regions involving several “bad” nodes.

• It is not easy to include the warping factor WF parameter. If WF repara-
tion process runs after the Jacobian quality process, it might cause another
degradation over the Jacobian (quality and validity).

In order to understand the problems with systems of “bad” nodes, consider a
perfect grid made of 9 well connected hexahedra as figure 3.7a shows. The nodes
are then artificially moved to the positions showed at b and c of the same figure.
Our first implemented strategy would search a local solution for node 1 first, with-
out taking into account the nodes 2 and 3. The solution for node 1 is 1′ where the
Jacratio of this node is < 30 for all the elements that share it (figure 3.7d).

The drawback of this solution is that it involves an important displacement of
node 1 and the algorithm, that searches with small displacements the optimal lo-
cation for the node, will be very slow to achieve this state.

The optimal solution for this system should consider the improvement of the
elements by a displacement of all invalid and bad quality nodes and not based on
local improvement for each node. The next subsection explains how this can be
achieved (including the WF ).
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Figure 3.7: (a) a perfect grid 3 × 3 of hexahedra, (b) and (c) a deformed state of
the same grid and (d) a possible solution for node 1 → 1′.

3.2.4 Second approach: iterative Jacobian and warping repa-
ration

The big difference between the previous and the current approach is merely con-
ceptual. The Jacobian determinant (detJ) and the ratio of the Jacobian determi-
nants (Jacratio) can be seen as functions that depend on the location of the nodes.
The same happens with the warping factor WF .

A first step is to achieve a valid mesh (detJ > 0). To achieve this task all
the invalid elements, in particular the nodes that make the element invalid, are
detected. For each node i a function can be established as:
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F = detJi −WFi =
m∑

e=1

n∑
j=1

detJj,e −
q∑

f=1

WFi

where e = 1 . . . m are the elements, j = 1 . . . n are the nodes of element e (where
one of the nodes is i) and f = 1 . . . q are the faces that share node i.

Note that in this approach, all the elements that share node i are used to deter-
mine the new location of i. In the previous approach, only the elements that where
invalid at node i where used to compute ∇ detJi. The current approach considers
all the elements since a reallocation of invalid nodes might cause “good” neighbor
elements to become invalid. In this manner, the new location of i considers the
non degradation of valid neighbors.

Algorithm 1 Grouping connected invalid nodes
Require: mesh

for each element e in the mesh do
for each node i of e do

if detJi ≤ 0 then
let elementsi be the elements associated to i.
boolean found = false.
for each region r in regions do

if r has an element of elementsi then
join elementsi and i to r
found = true
break

end if
end for
if !found then

create new region ri with elementsi and i
attach ri to regions

end if
end if

end for
end for

The detJi is negative at least for one element and the WF might be > 0 for
some faces. The idea is to search a new position for node i where F increases its
value, i.e. the goal is to maximize F by increasing the negative detJi value and
the co-planarity factor of faces attached to i.

The ∇iF gives the direction of displacement and once again the distance of
displacement is an average of the edge lengths attached to i. Each time a new
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displacement is done over i detJi is checked for all the elements e. If ∀e,detJi >
0 the validity routine stops.

Algorithm 1 shows how the invalid nodes are detected and grouped following
element connectivity relationships. A region is a list of invalid nodes and all the
elements associated to them. Grouping enables a subsystem solution instead of
local solution as the one obtained in the first approach (see figure 3.7d). Moreover,
the iterative approach finds a solution for each region locally, as the invalid nodes
outside the region are not taking into account. The main problem with the iterative
approach is that it takes time to find a solution. The more the nodes to reallocate,
the more the time to produce the solution. Therefore the idea is to isolate the non-
connected regions to speed-up the process. The local solution is optimal regarding
all the invalid nodes on the region.

Algorithm 2 Reparation of invalid nodes
Require: mesh

group invalid nodes in regions
for each r ∈ regions do

boolean allpositive
repeat

allpositive = true
for each node i ∈ r do

Compute the direction diri

Compute the distance disi

Compute new position for node i : i′ = i + diri · disi

end for
for each node i ∈ r do

move i → i′

end for
for each element ∈ r do

for each node i ∈ the element do
if detJi < 0 then

allpositive = false
break (continue with next “repeat-until” iteration)

end if
end for

end for
until allpositive

end for

Algorithm 2 shows how a valid state of the mesh is achieved. The direction
of displacement is computed for each coordinate of node i at a time, regarding

62

te
l-0

03
71

21
2,

 v
er

si
on

 1
 - 

26
 M

ar
 2

00
9



all the elements attached to i. First, Q0 is computed as F (xi, yi, zi), then Q1 =
F (xi+ε, yi, zi). If Q1 > Q0 then the direction of displacement diri of coordinate
x of node i is ∇xFi = (Q1 − Q0)/ε. If Q1 ≤ Q0 then diri is −∇xFi. This
operation is repeated for each coordinate of each node in the region. The distance
of displacement disi is computed as the 10% of the average edge length (between
the edges associated to node i).

Once the reparation of invalid elements is achieved, another process repairs the
elements of poor quality. The algorithm is the same but function F is different
and instead of searching a positive jacobian, the condition to stop is that every
element must have a Jacratio < 30. Function F is constructed as fallows:

F = −Jacratio
i −WFi = −

m∑
e=1

n∑
j=1

Jacratio
j,e −

q∑
f=1

WFi

The Jacratio is employed in this function as the goal is to obtain an optimal
state for the elements that presented bad quality. The Jacratio function presents a
discontinuity when passing from negative to positive values (see the right plot of
figure 3.3). Because of this discontinuity the global process was divided in two
steps: first, achieving a valid mesh and second, improving the quality of it. If the
Jacratio were used to produce a valid mesh, the iterative method should search for
the most negative value of that function, in consequence it would never achieve
validity. This is why the detJ was chosen for the valid mesh process. When the
quality process starts, all the nodes have a detJ> 0, thus a Jacratio > 1 and the
quality improvement process can proceed.

Figure 3.8: The solution for the invalid system described in figure 3.7b.

The initial deformed system presented in figure 3.7b, had 3 invalid elements
(the worst had Jacratio = −3.06). The solution given by our algorithm is pre-
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sented in figure 3.8. The solution has no invalid elements and the worst element
has a Jacratio = 10.4037. Note that this value is better than the searched one
(Jacratio ≤ 30). As the implemented solution is iterative, the first reallocation of
the nodes in which the Jacratio value that satisfies the quality constraint is cho-
sen as the solution. Remind that the Jacratio function is exponential, therefore a
small node displacement causes an important difference in the value of the func-
tion. Regarding the WF , the initial system had a worst WF = 1.88563. The final
solution presents a worst WF = 0.677209 (where a WF = 0 is the best value).

3.2.5 Remarks over the implemented solution
The implemented solution presented in the second approach can go much further
with the element quality improvement. The maximal quality threshold can be eas-
ily changed in order to demand a better quality over the elements in the mesh.
Figure 3.9 shows the resulting mesh when the demanded Jacratio must be inferior
to 2 (left) and 1.5 (right). Note how these meshes are much more closer to repre-
sent the initial 3 × 3 hexahedra grid than the resulting mesh of figure 3.8 (where
Jacratio < 30 was demanded).

Figure 3.9: Improving elements by changing the quality threshold . Left: elements
must have a Jacratio < 2. Right: elements must have a Jacratio < 1.5. For both
results the input was the mesh presented in figure 3.7b.

The mesh at the left panel of figure 3.9 has a worst Jacratio value of 1.557 and
a worst WF value of 0.24. The mesh of the right panel presents a worst Jacratio

value of 1.376 and a worst WF value of 0.193.
It is important to note that our developed technique searches the minimal node

displacement to achieve element validity and quality. The most important qual-

64

te
l-0

03
71

21
2,

 v
er

si
on

 1
 - 

26
 M

ar
 2

00
9



ity measure in our approach is the Jacratio and its threshold (30) is given by
ANSYS R©.

The second remark is relative to the differences between the work of Luboz in
[44], the first and the second implemented approaches. While Luboz proposed
an analytical solution, the both implemented solutions are iterative numerical al-
gorithms. The second important difference is that Luboz didn’t consider quality
improvements (like the Jacratio < 30 and the WF ). Finally, if element e is invalid
at node i, the three algorithms propose different manners to find the direction of
displacement of i:

• The first implemented strategy searches the direction only in function of ele-
ment e.

• The algorithm by Luboz first searches all the elements that are invalid at node
i, then the direction is computed regarding all those elements.

• The second implemented approach computes a direction of displacement re-
garding all the elements attached to i.

Our final implemented solution should be preferred over the other presented so-
lutions because it considers quality measures and finds a solution for a given node
i regarding all the elements attached to it. Note that in the algorithm of Luboz an
element egood attached to i might have Jacratio < 30, unfortunately the realloca-
tion of i (in order to correct the invalid and poor quality elements associated to it)
cannot assure that egood will remain with Jacratio < 30. Noticing this drawback,
our algorithm searches iteratively the minimal displacement of invalid and “bad
quality” nodes in which the new position of the node increases the quality of all
the elements attached to it.

3.3 Generation of FE meshes focused on a particu-
lar region

As mentioned in previous chapters, in a simulation the key problem is to solve,
via an approximation method, a system of Partial Differential Equations (PDE).
The approximation method in this thesis is the Finite Element Method (FEM). The
time to produce an approximated solution of this system of PDEs directly depends
on the quantity of mesh nodes. However it is possible to compute fast solutions
with dense meshes in an optimized FEM as proposed by Cotin [19], Picinbono
[54], Schwartz [58] or Nesme [51] between others.

As the mesh increases the level of detail (refined regions with more nodes and
elements) the FEM can produce more “precise” results as the equations are eval-
uated in more points, allowing to show the state of the target organ in a more
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detailed manner. In the medical field, the focus is sometimes given in a particu-
lar region. However, constraints are globally defined over the organ to simulate,
therefore meshes that describe the entire organ are needed. At the same time, there
is no need in achieving a high detailed mesh over the entire domain; only the re-
gions of interest are important for the simulation. In the following subsections a
detailed explanation on the developed application to produce 3D mixed-elements
meshes with local region refinement is presented.

3.3.1 Application overview
An application to produce mixed-element meshes with local region refinement of
an input domain Ω was developed. The global steps to produce a volume mesh
from the input surface mesh of the domain (Ωs) go as follows:

• produce an initial octree mesh of Ω.

• achieve a 1-irregular state of the mesh.

• produce a congruent transition between refined and coarse regions.

• use a registration method and achieve surface representation of Ω.

• obtain the simulation result with the FEM.

What is new in this process? In normal cases, the octree technique splits the
elements that intersect the domain’s surface Ωs until a certain criterion is achieved.
In the case of this thesis, it is the user that defines where more detailed regions are
needed. This is the main difference.

The Region of Interest (RoI) becomes the most important concept in this ap-
proach. The RoI is defined by a polyhedron that intersects Ωs. The result of this
intersection should be a positive volume. The octree technique is then modified to
split only the octants (see subsection 2.2.2 for more details) that are in the inter-
section of the RoI and Ω.

Several RoIs can be defined. If the result of the intersection between the RoIs
and Ωs is null, a point, a segment or a face, the mesh will not be refined (i.e. the
mesh will only be refined when the intersection between RoIs and Ω is another
3D volume). If one RoI intersects the entire domain Ω, then the final mesh will be
equally refined all over Ω.

3.3.2 Application inputs
In the octree technique “the first mesh” is a cube that covers the entire domain
Ω. In order to produce a final mesh, the technique splits in eight new cubes the
elements that intersect the surface of Ω (Ωs) until a certain condition is reached.
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The developed technique is based on the octree technique and the inputs are the
following:

• A surface mesh Ωs that describes the domain Ω to mesh.

• A polyhedron that describes a region of Ω where elements will be more refined
(the Region of Interest: RoI).

• An estimated number of nodes the mesh should have (the meshing technique
stops the refinement when the number of nodes in the mesh is bigger than this
maximum number of nodes).

Figure 3.10 left shows an arbitrary domain defined by Ωs. The middle panel
shows the same surface mesh with the RoI (polyhedron in green) and at the right
the same Ωs and RoI are shown plus the first state of the mesh that corresponds to
the Bounding Box3 (BBox) of Ωs.

Figure 3.10: Left: an arbitrary domain defined by the input surface mesh Ωs.
Middle: the same Ωs in transparent and the RoI in solid. Right: the same Ωs, the
RoI and the first level of Octree mesh.

The input surface mesh Ωs (figure 3.10 left) represents the organ to mesh. Re-
mind that this is a surface mesh and the output of our meshing technique is a
volume mesh that has to be more refined in the RoI. It is important to mention that
Ωs should be a closed geometry: every edge should be shared by two and only
two faces of Ωs. The quality of the faces is not relevant as this input mesh is only
used to determine if the elements of the final output mesh are inside, outside or
intersect the input domain.

3From all the nodes in the input domain, the minimal and maximal coordinates per axis
are searched. The BBox is an hexahedron constructed from points (xmin, ymin, zmin) and
(xmax, ymax, zmax)
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3.3.3 Splitting an element
The output mesh changes as the octree technique splits the elements. Let Ωout

i be
the output mesh at iteration i of the octree technique. Then Ωout

0 corresponds to
the mesh defined by the BBox of Ω (figure 3.10 right). In order to produce the
next stage of the mesh (Ωout

1 ) it is necessary to split the BBox in eight new cubes
as figure 3.11 shows.

Figure 3.11: A subset of “intersection faces” is assigned to each element. The
top-right-front octant has the yellow faces of Ωs.

Each element resulting from the split process must be checked for intersections
with Ωs and the RoI. If an element of Ωout

i doesn’t intersect Ωs, it can be com-
pletely inside or completely outside Ω. When an element is completely outside it
is removed from Ωout

i . In the same manner, elements might be inside, outside or
intersect the RoI. Table 3.1 summarizes the possible combinations of intersection
states and what to do in each case.

inside Ωs intersects Ωs outside Ωs

inside RoI split split remove
intersects RoI split split remove
outside RoI no split no split remove

Table 3.1: Element states regarding the intersections with Ωs and RoI.

Adding a new hexahedron in Ωout
i is a fast operation as the nodes are efficiently

inserted in the mesh (see appendix A). Then the most expensive task is to com-
pute element intersection with Ωs and the RoI. If for each element, intersections
are computed with every face of Ωs this operation would be extremely expensive
with high detailed inputs (meshes with a high number of faces). Therefore each
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element keeps a reference to the subset of Ωs (Ωel
s ) that it intersects (see figure

3.11). When the element splits, each son checks intersections only with faces in
Ωel

s of the parent element.
A procedure to detect face-edge intersection was implemented. Let n̂ be the

normal of the plane in which the face is defined and v a point in that plane (a
node of the face for example). If the edge is formed by points P1 and P2, then
the distance of the points to the plane can be defined as h1 = n̂ · (P1 − v) and
h2 = n̂·(P2−v). If h1 and h2 have the same sign, then no intersection is produced.
Otherwise the intersection of the edge and the plane is the point P that is obtained
as:

P = P1 +
h1

h1 − h2

× (P2 − P1)

Now to detect if point P is “inside” the face it is necessary to check the sign of
P cross

i = (P −Vi)× (Vi+1−Vi), where Vi is a vertex of the face (∀ Vi of the face).
If the sign of P cross

i changes from one vertex to another, then P is outside the
face, thus no intersection is produced between the edge and the face. Otherwise
the intersection is the point P .

Figure 3.12: Left: performing edge-plane intersection. Middle: case of a point
inside the face. Right: case of a point outside the face.

Figure 3.12 shows how the edge-plane intersection point P is found (left); in
the middle panel, a case where all P cross

i have the same orientation (red vector); at
the right panel, a point outside is detected as (P−V1)×(V2−V1) has not the same
orientation as (P −V2)× (V3−V2); the resulting vectors of the cross products are
in V1 and V2 as dotted lines.

With the above method it is possible to check if an element e intersects a face f
(of Ωs or the RoI). The intersection is produced in any of the following cases:

• An edge of e intersects f .

• An edge of f intersects a face of e.
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• The face f is contained in e.

When no intersection is produced between the element and the faces, by check-
ing only one point of e it is possible to determine if e is completely inside or
outside Ωs or the RoI. Both geometries are then managed in different ways.

The RoI is defined as a convex polyhedron. The normal of each face of the RoI
polyhedron is set to the interior of it. The distances between the polyhedron faces
and the point to be checked are computed. If any of these distances is negative, the
point is outside the RoI. In any other case the point, thus the element, is completely
inside the RoI.

Regarding Ωs the situation is not that simple as Ω is not necessarily a convex
domain. Therefore testing the “side” of the point (the sign of the distance) with
every face of Ωs isn’t a reliable test to determine if the element is inside or outside
Ω.

The implemented test needs a point outside Ω. Let Pbbox be the vertex of
the Bounding Box (BBox) of Ω with the highest values in each coordinate
(xmax, ymax, zmax). An addition of ε in every coordinate to this point will cer-
tainly result in a point that lies outside Ωs: Pout = Pbbox + ε. A “virtual edge” can
now be created between Pout and the point P of the element to be checked. The
intersection of this edge and every face of Ωs is then computed. If an odd number
of intersections is produced then P is inside otherwise the point (thus the element)
is outside.

Figure 3.13: The different results of outside/inside element detection using a sub-
set or the entire set of Ωs faces.

It is necessary to compute the intersection between the “virtual edge” and all the
faces of Ωs because it is possible to find some configurations where testing only
with local element intersection faces would fail. An example of this is shown in
figure 3.13. The left panel shows one element e to be split, where the straight line
represent the subset of faces of Ωs that e intersects (Ωe

s). The middle panel shows
the only intersection produced between the “virtual” edge and Ωe

s (this implies that
the element is inside). The right panel shows how two intersections are produced
when all the faces of Ωs are checked (thus the element is outside).
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3.3.4 Achieving the desired level of refinement
As mentioned in subsection 3.3.1 the desired level of refinement is specified by
the user. In order to produce a mesh, the user must specify an estimated number of
nodes for the mesh (nodesref ). In each iteration of the octree (split the cubes that
intersects the RoI in eight new cubes) the current number of nodes (nodescurrent)
is checked against the input given by the user. If nodesref < nodescurrent the
splitting process is finished.

Figure 3.14: Refinement of the mesh in the RoI. At the top, the images show
the input domain Ωs in solid and the output mesh in transparent. Red elements
intersect the RoI. At the bottom only the output mesh is presented in solid.

To summarize the process, the user specifies the domain to mesh with a surface
mesh Ωs, the RoI with a simple polyhedron and the estimated number of nodes
nodesref . With this information, the process splits the hexahedra that intersect the
RoI in 8 new cubes and removes the ones that lie outside Ωs. Therefore an output
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to Ωs with the RoI presented in subsection 3.3.2 would be figure 3.14, where the
mesh counts with 2656 nodes and 1955 hexahedra. It is important to mention
that 1477 hexahedra intersect the RoI, which represents 75% of the total number
of hexahedra. This mesh took 16 seconds to be produced and such a time can be
explained by the number of intersection tests to be performed. Note that Ωs counts
with 6434 triangles, therefore an hexahedron that doesn’t intersect Ωs implies the
computation of 6434 intersection tests.

Figure 3.15: The same as figure 3.14 but with a coarse representation of the input
domain.

The reference number of nodes given by the user in this case was 2000. The
final quantity of nodes in the output mesh is given by the level of refinement of
the octree, therefore the amount of nodes in the output mesh depends directly on
the amount of elements that intersect the RoI at the time of the splitting process.
For instance in the output mesh of figure 3.14, five octree subdivisions were per-
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formed. In the case of only 4 octree subdivisions, using the same Ωs and RoI, the
output mesh would count with only 702 nodes and 396 elements (with 63% hexa-
hedra population inside the RoI). Note that a reference number of nodes between
703 and 2656 would produce the same output mesh (the one presented in figure
3.14).

Another input mesh of the same domain Ω is shown in figure 3.15. This new
Ω′

s counts with 1214 nodes and 2424 triangle faces. The output mesh for this
new case is produced in only 6 seconds, however the number of nodes is 2641
and the number of hexahedra is 1942. This little difference can be explained
as Ω′

s looses some precision of the domain representation in comparison with
the previous input mesh Ωs, therefore some elements that intersected the domain
before, now don’t.

The important lesson to keep is that regarding the time to produce the mesh,
the developed application is faster when coarse surface meshes are employed. In
other words, the developed technique is sensitive to the number of faces of the
input surface mesh.

3.3.5 Managing transitions

Figure 3.16: Elements with nodes inserted in their edges cause problems to the
FEM as Ω is not continuously represented. An external force might not be well
represented in the entire domain as neighbor elements don’t congruently connect.

The current mesh has refined and coarse regions. In some cases the elements
count with several nodes inserted in their edges. This is not allowed in a FE sim-
ulation as the discretization is not continuous through Ω. Figure 3.16 shows an
example where an external force is applied over a node that present “bad con-
nectivity” between neighbor elements. In this case a smooth transition between
the refined and the coarse elements is not achieved (middle panel). The right
panel shows how the big hexahedron should deform regarding the external force.
However this is impossible as the node where the force is applied doesn’t belong
to this hexahedron. If this node was associated to the “big hexahedron”, the el-
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ement would no longer be an hexahedron and the FEM should be modified to
consider such an element (hexahedron with 1 node in the middle of one of its
edges). Moreover, the FEM should be modified to consider all the cases where
hexahedra presents nodes in their edges and faces.

Instead of modifying the FEM to consider complex configurations of the hex-
ahedra, the proposed solution allows the use of other type of elements, thus a
mixed-element mesh is produced. By the use of several templates, it is possible
to determine the different configurations of the hexahedron with nodes inserted
on its edges or face center points. In function of the configuration, tetrahedra,
pyramids and prisms (wedges) are inserted without adding new nodes (only new
edges).

The templates consider permutations. For instance, a template with only one
bisected edge4 is described on figure 3.17. As twelve configurations are possible,
the permutation allows to go from the given solution of the template to the actual
state of the hexahedron.

Figure 3.17: The hexahedron at the left only has one bisected edge. Its neighbor
has the same information over the shared face. Note that red nodes cannot be
possible as the left hexahedron would also consider this information to produce
its subdivision.

As a result of the subdivision of the hexahedra new edges that describe the new
elements are inserted inside the element and on its faces. Note that neighboring
elements are always congruently split as the templates have only one manner to
split the element without inserting new nodes. This can be seen in figure 3.17
where the red nodes of the right hexahedron describe an impossible configuration
(as this is a shared face, the configuration is the same for both elements). In other
words regarding the shared face, the right hexahedron could have any other node
inserted in their edges or faces but the ones in red.

Once the new edges are inserted, the hexahedron is replaced with the new
mixed-elements. For instance, the example shown in figure 3.18 at the top left

4An edge with one middle node.
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panel has two bisected edges and only the edges over the faces are shown. At the
top right panel, all the edges are inserted and it can be seen as no new node is
inserted in the element. Finally at the two bottom panels the final elements are
shown.

Figure 3.18: Splitting an hexahedron with two bisected edges into mixed-
elements. Top left: the insertion of the edges over the faces. Top right: the
insertion of internal edges. Bottom left and right: two views of the six tetrahe-
drons and two pyramids (red and green) in which the hexahedron was split.

There exist 26 implemented templates going from one to nine nodes inserted in
edges or face center. Those templates correspond to the most common cases. If for
a given hexahedron configuration, the template doesn’t exist, then the procedure
is to split the hexahedron in eight new cubes (as in the octree refinement). In this
manner, the process assures a valid tessellation of Ω (without elements with nodes
inserted on their edges or faces).
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The property of having all the edges bisected at most once is called one-
irregular. The implemented templates work only on one-irregular meshes; there-
fore applying the templates directly over the meshes of figures 3.14 and 3.15
wouldn’t work properly.

The node management explained in appendix A allows to easily determine if an
hexahedron achieves the one-irregular property. As a consequence all the hexa-
hedra that don’t achieve this property are split in eight hexahedra until the entire
mesh is one-irregular. After this step, the templates can be applied and a congruent
mesh of Ω is produced.

Figure 3.19: One-irregular mesh of Ω showed in figure 3.14.

Figure 3.19 shows the one-irregular version of the example shown in figure
3.14. The one-irregular mesh has 3111 nodes, this means that 455 nodes have
been added by the process (this corresponds to 17.1% of the initial nodes). The
number of hexahedra is 2302 (an increase of 17.7% regarding the initial number
of elements).

Figure 3.20 shows the result once the templates are applied over the one-
irregular mesh. This mesh has 3046 nodes and 4333 elements. The elements
are: 1978 hexahedra, 97 prisms, 1446 pyramids and 812 tetrahedrons.

There are 1477 hexahedra (34% of the elements) and 2035 nodes (66.8% of
the total nodes) in the RoI. Note how the total number of nodes decreases in the
mixed-element mesh regarding the one-irregular mesh(3111 → 3046). This is due
to the fact that some hexahedra had some portion outside Ω; therefore as they are
split into simpler geometries, some of these new elements are completely outside
Ω and in consequence they are removed from the mesh.
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Figure 3.20: The templates are applied to the one-irregular mesh in order to pro-
duce a mixed-element mesh without node inserted in the middle of edges or faces.

3.3.6 Quality measures
As mentioned in previous chapters, an extraordinary number of quality measures
has been proposed to measure the quality of the elements, ranging from bounds on
solid angles to more complex geometric ratios (See [39, 61, 66] for more details).
As the developed technique produces a mixed-element mesh, a quality criteria
must be presented for each type of element.

The tetrahedra are measured with an Aspect Ratio Coefficient (ARC) that in-
cludes the volume of the element to avoid sliver elements. This measure is ob-
tained as follows (see [24] for more details):

ARC =
(1

6

∑6
i=1(l

2
i ))

3/2

8.47867V el

Where li(i = 1, . . . , 6) are its edge lengths and V el is the volume of the tetrahe-
dra. The value 1 corresponds in this case to an equilateral tetrahedra. In general
an ARC = 1 corresponds to an ideal element and as the ARC value increases the
element is said to be more distorted.

For the other elements, several “lengths” are computed. The ARC is then the
ratio between the longest and the shortest of all the computed lengths. In the case
of the hexahedron the lengths between “opposite face center points” are obtained
(see figure 3.21 left panel). In the case of the pyramid three lengths are also used:
The two firsts are constructed using the middle points of opposite edges in the
base rectangular face. The third length is the one that represents the height of the
pyramid (see figure 3.21 middle panel). For the prism, any of the rectangular faces
is selected. Two lengths are obtained as in the case of the pyramid rectangular
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Figure 3.21: The segments that are used to determine the Aspect Ratio Coefficient
(ARC) for an hexahedron, pyramid and prism. The ARC is the ratio between the
longest and shortest of the three segments.

square face. The third length is obtained using the height of the triangle face that
corresponds to the average of the two original triangle faces of the prism (see
figure 3.21 right panel).

3.3.7 Achieving surface representation

At this stage of the process, several elements have some portions of their volume
outside Ω. In order to achieve a better representation of the surface, the points that
reside outside Ω must be projected into Ωs.

Figure 3.22: The closest projection of a node to a face. Left: the projection of the
node is inside the face. Right: the projection is outside the face and the closest
point of the face to this node is the final result (P ′

proj).

The nodes of the elements that intersect Ωs are checked to label the ones that
reside outside the domain. For each one of these nodes, the closest position is
computed regarding the “intersection faces” of the element. Using the intersec-
tion method explained in subsection 3.3.3, the projection of the node into the plane
where the face resides is obtained. If the projected point Pproj is inside the face,
then this point corresponds to the better projection (regarding only this face). If
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Pproj is outside the face then the closest projection of the node into the face cor-
responds to the closest point of the face to Pproj as shown in figure 3.22.

The element intersects one or more faces. For each “outside” node the projec-
tion is computed with all the faces the element intersects and the closest one is
chosen. If the outside nodes are moved directly to the projected position it might
cause edge crossing and poor quality elements (like slivers) as only the elements
that intersect the surface are “pushed” to achieve surface representation. In or-
der to avoid this, another strategy that uses the FEM is proposed where not only
the elements that intersect Ωs are deformed but all, since a mechanical “pressure”
exerted on the outside nodes is going to pressurize and therefore reallocate the
internal nodes.

The key idea of such surface representation algorithm is to use a mechanical
simulation to constrain the deformation between the octree mixed-element mesh
(the source) and the input surface mesh (the target). The outside nodes of the
source mesh are driven (following the closest projection point) with a step-by-step
displacement towards the destination mesh, leaving a mechanical model perform
the inner nodes relaxation throughout the deformation. It is also important to
mention that it was chosen to implement a compressible material behavior (Pois-
son ν = 0.3), in order to allow a mechanical compression of the octree mesh.

The above approach, unlike direct projection of surface nodes that disregards
inner nodes position, is guaranteed to not produce invalid elements5. To pre-
serve the mesh overall quality the elements quality is checked at each step of the
deformation. If necessary, the mechanical resistance or “stiffness” is artificially
increased for those elements that suffer the greatest quality loss before proceeding
to the next deformation step (for example by increasing the Y oung modulus value
by a factor of two). This can result in oscillations between neighboring elements.
Therefore in order to guarantee the algorithm termination, a constraint was used:
if for a given element the Y oung’s modulus value reaches a predefined threshold,
the algorithm stops increasing the stiffness for that element. Note that a realistic
deformation of the mesh is not the goal of this process. The virtual mechanical
medium is merely used to compute the inner relaxation of the nodes at each de-
formation step: the arbitrary increase of the Y oung’s modulus prevents the most
exposed elements from being excessively deformed and possibly degraded.

The entire process can be seen in algorithm 3. Note that in the Do-While loop,
if some elements need to be stiffened, the deformation for a given step is redone
using the same initial node positions S and I along with the updated elements
E. Another very important remark is that this method does not insert new points
to the input mesh. The final result for the example domain Ω shown through the

5As explained in subsection 2.3.4 an element is said to be invalid when one or more nodes of
it have a negative Jacobian value.
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Algorithm 3 Surface representation
Require: source mesh and destination mesh.

Let E be the set of elements in the source mesh, defining the mechanical model.
Let S be the set of surface nodes in the source mesh.
Let I be the set of inner nodes in the source mesh.
Let D be the destination surface mesh.
for all surface nodes P in S do

compute the projection vector of P on D: U(P ).
end for
Let Step=0.
repeat

for all surface nodes P in S do
Compute displaced node P ′: P ′ = P + U(P )/MAX_STEP.

end for
Let S ′ be the set of resulting surface nodes positions
Compute the inner nodes deformations using the mechanical model E, con-
strained by the new surface nodes positions S ′

Let I ′ be the resulting inner nodes positions
for all elements in E do

Let Q be the quality of E given the new nodes positions S ′ and I ′

Let Y be the stiffness of the current element
if Q is not acceptable and Y < Y_MAX then

increase Y in E: Y = 2 ∗ Y
end if

end for
if no change in element stiffness have occurred in E then

accept the deformation and proceed to next step: S = S ′, I = I ′ and
Step = Step + 1

end if
until Step = MAX_STEP
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Figure 3.23: The output mesh for the given domain Ω.

chapter can be seen in figure 3.23. This mesh counts with 3206 nodes and 8477
elements (1234 hexahedra, 59 prisms, 2163 pyramids and 4991 tetrahedra).

Finally, algorithm 4 shows the overall process to produce mixed-element meshes
from an octree-based approach and local region refinement, where Ωs corresponds
to the input surface mesh of Ω, RoI is the Region of Interest (where the mesh needs
to be more refined) and nodesref is an estimated number of nodes the mesh should
have (given by the user).
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Algorithm 4 Mesh generation with region refinement
Require: Ωs, RoI and nodesref .

Let nodescurrent be the current number of nodes in the mesh.
repeat

for all elements that intersect the RoI do
Split in 8 new cubes.
Remove elements outside Ωs.

end for
until nodecurrent > noderef

repeat
for each element in the mesh do

if the element isn’t one-irregular then
Split the element in 8 cubes
Remove the new cubes if they reside outside Ωs

end if
end for

until the entire mesh is one-irregular
for each element in the mesh do

if the element is one-irregular then
Split in mixed-elements
Remove elements outside Ωs

end if
end for
Achieve surface representation following algorithm 3

82

te
l-0

03
71

21
2,

 v
er

si
on

 1
 - 

26
 M

ar
 2

00
9



Chapter 4

Applications of the developed
meshing techniques

Chapitre 4: Application des techniques de maillages développés

Abstract

In this chapter the developed meshing techniques reviewed on chapter 3 are
applied to medical simulations. The reparation method after registration of sec-
tion 3.2 is applied to femur and maxillo-facial simulations and the algorithm to
generate meshes with localized region refinement of section 3.3 is applied to the
brain-shift problem.

4.1 Meshing a femur
Section 2.3 made an introduction to mesh registration (adaptation). The key idea
of this process is that an existing mesh named the “atlas” Ωatlas is adapted to
represent another domain Ω. In this process the nodes of the Ωatlas are moved
in order to fit, as close as possible Ω. Sometimes the displacement of the nodes
produces a malformation in some elements that become invalid or of poor quality.
To measure the malformation of element e, the determinant of Jacobian matrix
(detJ) was computed for each node i of e. If one or more detJi < 0 were detected,
e was declared invalid. When detJi > 0∀i ∈ e, the quality of the element is
estimated through the “Jacobian ratio” (Jacratio

i ) that was computed as Jacratio
i =

detJmax
e /detJi, where detJmax

e is the maximum value of detJ between all the
nodes in e. The behavior of the functions detJ and Jacratio were presented in
subsection 3.2.1. Table 4.1 summarizes the values in order to classify the elements
in the categories of: “invalid”, “bad quality” and “good” elements.

The warping factor WF measures the level of node co-planarity in a face. A
WF = 0 means a co-planar face. When WF increases its value, the face is said
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element category detJ Jacratio

invalid negative negative
bad quality positive ≥ 30

good positive between ]0, 30[

Table 4.1: Classification of invalid, bad quality and good elements for elements
after registration.

to be “less co-planar”. The developed reparation strategy for malformed elements
in a mesh consider the WF as another measure of quality in order to reallocate
“invalid” and “bad quality” nodes.

Note that detJ, Jacratio and WF are functions measured at each node. The two
firsts are computed regarding all the nodes in an element and the third is made
regarding all nodes in a face. It is for this reason that an element is said to be
“invalid” or presents “bad quality” at some node.

4.1.1 Femur mesh atlas
A femur mesh atlas constructed by hand was introduced by Couteau et al in [20]
in order to test their developed technique, the Mesh-Matching (M-M). This atlas
mesh (Ωatlas) counts with 4052 nodes and 3018 elements (2960 hexahedra and
58 prisms). The first approach of Couteau did not consider element reparation in
terms of the mesh validity and quality. The work of Luboz et al [45] was the first
to consider mesh reparation using the Jacobian matrix after the mesh-matching
process. The work of Luboz is focused on achieving a valid configuration (detJ
> 0) in the entire mesh but it does not consider quality notions for the elements.

Figure 4.1: The atlas mesh of the femur.
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Figure 4.1 shows Ωatlas employed in the matching (registration) process. This
mesh has the following real dimensions: 448mm height, 117mm width and
74mm depth. Note that no invalid elements were detected in this mesh, how-
ever it counts with 6 bad quality elements (detJ ratio ∈]30, 81.4875] and a worst
WF of 1.2728).

4.1.2 Improving the quality of the atlas mesh
As mentioned in section 3.2 the implemented solution considers a first stage of
achieving validity and a second of improving the quality of the mesh. Therefore
when the implemented solution is applied over the “bad quality” Ωatlas the Validity
Reparation Process (VRP) finished without changing the node positions. In the
other hand, the Quality Reparation Process (QRP) improved the mesh: results are
shown in table 4.2

Ωatlas Ωatlas
rep

elements with Jacratio < 0 0 0
elements with Jacratio > 30 6 0

min Jacratio 1 1
max Jacratio 81.4875 29.7313

worst WF 1.2728 0.2729
Table 4.2: Comparison between femur atlas before and after reparation.

As the scale of Ωatlas is known and the position of each node i is also known
before and after reparation, the displacement distance for i can be measured as:

disi = ‖(x0
i , y

0
i , z

0
i )− (x1

i , y
1
i , z

1
i )‖

where 0 is before reparation and 1 is after reparation. The distance disi is then
also measured in mm.

The maximum displacement over the entire mesh was 0.068mm and only 6
nodes where reallocated (all the rest of the nodes remained at the same position
regarding the Ωatlas mesh). As mentioned in subsection 3.2.4, the implemented
solution isolates the systems of nodes to repair. In this particular case, 4 isolated
systems were repaired involving 15 elements.

4.1.3 Adapting the femur mesh atlas to patient geometries
The algorithm was tested against 5 femur examples taking from real patient data.
The M-M algorithm produced the match of the atlas to the cloud of points that rep-
resented the external surface of patient femurs. The atlas plus the 5 final meshes
after reparation, can be seen in figure 4.2.
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A Arep

elements with Jacratio < 0 2 0
elements with Jacratio > 30 3 0

min Jacratio -385.619 1.02156
max Jacratio 751.634 29.9809

worst WF 1.768 1.768
Table 4.3: Comparison between femur A before and after reparation.

Table 4.3 shows the results for the reparation of the first femur. In this case the
largest displacement of a node was 1.42mm. It is important to insist in the point
that any Jacratio < 0 is considered worst than a Jacratio � 30, as a negative value
makes the mesh invalid (thus useless for the FEM to perform a simulation).

Figure 4.2: The atlas and 5 repaired femurs

Table 4.4 shows the results for femur B where the largest node displacement is
0.0735mm.

B Brep

elements with Jacratio < 0 0 0
elements with Jacratio > 30 10 0

min Jacratio 1.0339 1.03396
max Jacratio 551.239 29.7313

worst WF 1.888 1.888
Table 4.4: Comparison between femur B before and after reparation.

For femur C the results are in table 4.5, with a largest node displacement of
0.0439mm.
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C Crep

elements with Jacratio < 0 0 0
elements with Jacratio > 30 4 0

min Jacratio 1.06254 1.06254
max Jacratio 114.015 29.3822

worst WF 1.594 1.594
Table 4.5: Comparison between femur C before and after reparation.

In the case of femur D the largest node displacement is 0.0536mm (see table
4.6). At this point it can be seen how the reparation of poor quality elements
involves a small distance of the nodes. This is due to the fact that function Jacratio

is exponential as it was shown in subsection 3.2.1. The node displacements, in
order to produce a Jacratio : 1000 → 30, is very small. However a Jacratio :
30 → 2, needs very large node displacements.

D Drep

elements with Jacratio < 0 0 0
elements with Jacratio > 30 4 0

min Jacratio 1.01939 1.01939
max Jacratio 190.129 29.9261

worst WF 1.594 1.594
Table 4.6: Comparison between femur D before and after reparation.

Finally, table 4.7 shows the results for femur E, where the largest node displace-
ment was 0.1532.

E Erep

elements with Jacratio < 0 1 0
elements with Jacratio > 30 4 0

min Jacratio -77.1519 1.02682
max Jacratio 53.7628 29.8869

worst WF 2.1388 2.1388
Table 4.7: Comparison between femur E before and after reparation.

The presented tables (from 4.3 to 4.7) show that all the tested meshes achieved
validity and quality after reparation. It was possible to find a reallocation of the
nodes in order to achieve a Jacratio < 30, which is acceptable for ANSYS R©.
Regarding the WF no improvements were made. This is due to fact that very
small displacements were produced. Moreover, as explained in subsection 3.2.4,
for each node i the direction of displacement is computed by∇F (Jacratio

i , WFi).
In this function F , the Jacratio function is more important than the WF , therefore
the reallocation of the nodes searches to improve more the Jacratio than the WF .
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4.2 Meshing a face for maxillo-facial surgery

The goal of this simulation is to determine possible outcomes before maxillo-
facial surgery. To this purpose a face atlas mesh was produced and, as for the case
of the femur, the Mesh-Matching (M-M) algorithm is used to adapt the atlas mesh
to patient data.

The goal of showing this example in this thesis is to test the reparation algorithm
with a complex model (due to the face anatomy) that has a tendency to produce
invalid and poor quality elements (in particular, in the regions of the eyes and the
lips). The face model counts with 8746 nodes, 6030 hexahedra and 314 prisms.
Figure 4.3 shows the employed atlas model developed in [50].

Figure 4.3: The atlas face model

The mesh is registered to patient surface model extracted from data made avail-
able thanks MAP51 Laboratory (Yves Rozenholc, Université Paris 5). Actually,
only the nodes of the mesh shown at the left panel of figure 4.4, are used. After
registration, the mesh counts with 12 invalid elements (Jacratio < 0) and 5 bad
quality elements (Jacratio > 30). Our developed algorithm is applied to repair the
mesh and the final result can be seen at the right panel of figure 4.4 and 4.5.

The 12 invalid elements are repaired in the first stage of our algorithm, leaving
the mesh with 13 bad quality elements. Note that the process of repairing an
invalid element, might use a displacement distance of the invalid nodes that, due
to the iterative behavior of the reparation algorithm, produces not only a valid but
also an element of acceptable quality. This explains the 13 elements to repair in
the quality process (instead of 17: the initial 5 of bad quality plus the 12 that were
invalid and then repaired by our algorithm).

The quality improvement process then is executed and finally solves all the
problems except for two elements that remain with a poor quality. The Jacratio

1UMR CNRS 8145.
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Figure 4.4: The atlas face model after registration and reparation: front view

value for those elements are: 83.8 and 746. The other 6342 elements of the mesh
finish the process with a Jacratio < 30.

Figure 4.5: The atlas face model after registration and reparation: profile view

As explained in subsection 3.2.1, the determinant of the Jacobian matrix (detJ)
is computed at each node regarding all the nodes in the element. Then the Jacratio

is computed also for each node as a function of all the detJ of the element nodes.
Our developed algorithm then searches to repair the elements by reallocating only
the nodes where the Jacratio value is not acceptable. For this reason it is not
possible to ensure that the algorithm will always find a solution for the “bad”
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elements. In some cases, it would also be necessary to reallocate some other nodes
that have an acceptable Jacratio value, in order to provide to the “bad nodes” more
space to find a solution (for which the element becomes acceptable). This will be
discussed in subsection 5.2.1.

Even though the quality threshold of Jacratio < 30 is not achieved for every
element in the mesh, the resulting mesh can be used by ANSYS R©. The only
difference is that results of the simulation might be inaccurate at the zone where
the poor quality elements are. Note that without the reparation, the mesh could
not be used for FE analysis.

4.3 The brain shift
Accurate localization of the target is essential to reduce morbidity during a brain
tumor removal intervention. Image guided neurosurgery nowadays faces an im-
portant issue for large skull openings, with intra-operative changes that remain
largely unsolved.

Once the skull is opened a deformation of the brain naturally occurs. This
phenomena is known as “the brain-shift”. The causes of this deformation can be
grouped by:

• physical changes (dura opening, gravity, loss of cerebrospinal fluid, actions of
the neurosurgeon, etc) and

• physiological phenomena (swelling due to osmotic drugs, anesthetics, etc).

As a consequence of this intra-operative brain-shift, pre-operative images no
longer correspond to reality. Therefore the neuro-navigation system based on
those images doesn’t necessarily represent the current situation.

In order to face this problem, various teams [16] have proposed to incorpo-
rate into existing image-guided neurosurgical systems, a biomechanical modeling
to compensate the brain deformations by updating the pre-operative images and
planning according to intra-operative brain shape changes. For this, such mea-
sured changes (for example the changes of the external shape of the brain tissues
in the opening skull region) are given as new boundary conditions to the biome-
chanical model of the brain tissues that infers the new position of the tumor. Such
intra-operative use of a biomechanical model implies that a strong modeling effort
must be carried out. Three steps are followed to design the brain model:

• The segmentation of pre-operative images (MRI) to locate the tumor and to
build the external surface mesh of the brain.

• The generation of a volume mesh optimized for real-time simulation.
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• The creation of a model of the brain-shift with Finite Elements (FE).

4.3.1 Brain-shift simulation constraints

As time is crucial in surgery, the goal of the simulation is to compute a solution for
the FEM of the brain as fast as possible. The speed of the FEM directly depends
on the number of degrees of freedom the system has, thus an optimal mesh in
terms of quantity of nodes must be provided.

Chrisochoides et al in [16] mentioned two possible ways to simulate the brain-
shift:

• Somehow develop equally accurate, but less computationally demanding mod-
els (this could be seen as an optimization to the FEM).

• Use scalable and more efficient implementations of the methods we have.

The second option was explored in [16] by doing a parallelization of the algo-
rithms using an equally and highly refined mesh. The problem with this solution
is that it is expensive. In practice, it is difficult to implement a solution of this
type in the hospitals, as the budget required for a cluster of computers specially
focused on this problem is, in most cases, not feasible.

If instead of focusing on a parallelization of the FEM, an optimization is
searched from the meshing point of view, a good representation of the tumor as
well as the Skull Opening Point (SOP) and the path between them is mandatory
because here is where a greater deformation is expected [55]. This is clearly a
Region of Interest (RoI) where elements must be highly refined regarding the rest
of the mesh.

A mesh without quality elements can lead to errors in the computation of the
FEM thus quality is also an important issue in this problem. Therefore the con-
straints to model the brain-shift in a real-time application are:

1. The final mesh must be refined enough in the RoI and coarse elsewhere.

2. Achieve surface representation for the input FE mesh.

3. Guarantee element quality throughout the entire mesh.

For all of these reasons, the developed technique explained in subsection 3.3
has been applied to produce a patient specific model to simulate the brain-shift.
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4.3.2 Meshing the brain for a tumor resection surgery
A surface model of the brain was constructed from a set of Magnetic Resonance
Images (MRI) scanned from a patient. This work was produced by Araya et al
in [3]. After image segmentation, the algorithm produces a surface mesh of the
brain. In this case, the surface mesh has 3152 nodes and 6300 triangles (figure
4.6).

Figure 4.6: Two views of an input surface mesh of the brain.

The information concerning the tumor should be included as part of the surface
mesh or as an inner set of connected triangles. However in this model, this in-
formation was voluntary omitted in order to use the same surface model to test
the mesh generation with several different definitions of the RoI. Note that if the
tumor information was presented on the mesh, this would present no problem to
produce a mesh with a RoI that doesn’t include the tumor, but it would be weird.
In this surgical case, the RoI is the path from the skull opening to the location
of tumor. Figure 4.7 shows the brain model in transparent and the RoI in a solid
green polyhedron.

As mentioned in subsection 3.3.2, one last input is required: the estimated node
number (nn) of the volume mesh. Just to recall, the goal of nn is to determine the
level of refinement of the mesh. The implemented technique splits the elements
until the number of nodes in the mesh is superior to nn. In the example nn = 500.
Once the algorithm that splits only the elements that intersect the RoI is applied,
the total amount of nodes in the mesh is 1211, from which 705 resides inside the
RoI. The total amount of elements (only hexahedra at this level of the algorithm)
is 822. The resulting output can be seen in figure 4.8.

As explained in subsection 3.3.3 an element can be inside, outside or intersect
Ω, where Ω is the domain to mesh (in this case the brain). Note that at this level of
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Figure 4.7: Two views of the brain (in transparent), the RoI in a solid green poly-
hedron and the tumor represented by an sphere.

the algorithm, just a few elements have been removed (the ones that reside outside
Ω). If no element were removed, the total amount of nodes would be 1344.

Figure 4.8: Left: the brain shown in solid and volume mesh in transparent. Right:
volume mesh in solid. Red elements intersect the RoI.

The next step of the algorithm is to achieve the one-irregular (figure 4.9) state of
the mesh. This process inserts more nodes in the mesh, however the subdivision
of coarse elements also increase the number of elements that reside outside Ω. At
the end of this process, the mesh has 1613 nodes (1774 nodes if no element is
removed).

The different templates that manage the transition between coarse and refined
mesh regions can now be applied. The resulting mesh is seen in figure 4.10.
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Figure 4.9: Achieving the one-irregular state of the output mesh for the brain shift

The current output mesh is made of mixed-elements. Table 4.8 shows some
statistics over the mesh. It is important to note that those statistics are from the
entire mesh. Regarding the RoI, the entire region is covered by hexahedra. An-
other important remark is over the quality of the elements. The perfect element is
described by an Aspect Ratio (ar) equal to one. In order to obtain a perfect quality
(in the current state of the mesh) it is possible to change the initial octant of the
mesh: the Bounding Box (Bbox). The current computation of the Bbox searches
the minimal and maximal coordinates of the input surface mesh and from those
coordinates it constructs an hexahedron that contains Ω. If instead of using the
minimal hexahedron, the minimal cube is used, the ar would be one for most of
the elements (at least for every hexahedron in the mesh). This is not performed as
this strategy has more tendency to produce elements that barely intersect Ω and in
consequence, make more difficult the process of surface representation of Ω (the
next step in the developed strategy).

Hexahedra Prisms Pyramids Tetrahedra
Quantity 853 40 1057 629
Volume 37.3942 % 0.688616 % 45.4639 % 16.4532 %

ar 1.27056 1.28054 1.91196 1.76513
Worst ar 1.27056 1.39044 2.65071 3.0426

Table 4.8: Statistics over the mixed-element mesh, where ar is the aspect ratio
average.

As table 4.8 shows, the most used and most significant element in the mesh in
terms of volume representation is the pyramid. This can be explained as the tem-
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Figure 4.10: Applying the templates to mange transitions for the output brain
mesh

plates used to produce a congruent transition between refined and coarse regions
insert several pyramids to avoid adding new nodes in the mesh.

The next and final step of the developed application is to achieve surface repre-
sentation of Ω. As explained in subsection 3.3.7, a registration process will match
the outside nodes to the surface following a compression of the entire mesh. The
method was developed by Bucki et al in [11] and is performed for tetrahedra-only
meshes. This causes no problems in our case as a tetrahedralization of the entire
mesh can congruently be done (see [40]). This doesn’t mean that the final mesh
has only tetrahedra, as the relevance of the method is to compute the location of
the nodes. Therefore the mesh of mixed-element Mmix is converted into Mtetra.
The registration occurs over the nodes of Mtetra, producing M′

tetra that achieves
the surface representation of Ω. In order to produce the final mixed-element mesh,
the nodes of Mmix are updated to the locations of M′

tetra.
The relation of the nodes between Mmix and Mtetra must be one-to-one. This

is true for all the elements in the mesh except for the ones that intersect the sur-
face. Indeed, an hexahedron that is split into tetrahedra might produce an entire
tetrahedron outside Ω that could therefore, not be projected into the surface of Ω.
To solve this problem it was decided that all the elements that intersect the surface
would be “tetrahedralized” in the final state of Mmix. The explanation of “tetra-
only” at the surface was not included as part of the main algorithm in subsection
3.3.7 because this is not the unique solution. This will be part of the discussions
in section 5.2.

Before presenting the results regarding surface representation, table 4.9 sum-
marizes the different states of the mesh at each stage of the algorithm.
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Nodes Elements Time (s)
Octree 1211 822 9s
One-irregular 1613 1093 7s
Transitions 1580 2579 3s
Surf. Tetra. 1650 4797 5s

Table 4.9: Number of nodes, elements and time at each stage of the brain-shift
mesh, where Surf. Tetra. corresponds to surface tetrahedralization.

Two options to achieve surface representation are studied. Figure 4.11 shows
how surface representation over Ω is achieved using the “direct projection” strat-
egy, which corresponds to project the outside nodes to the closest point on the
surface (different from the registration method that will be shown later).

Figure 4.11: Left: the entire mesh. Right: a vertical cut over the same mesh: the
circle represents the tumor.

This mesh has perfect orientation at the inner elements (the ones that were not
projected into the surface) as, in difference with the registration method, it doesn’t
reallocate inner nodes. In other words, only elements that intersect the surface
“suffer” the deformation to achieve the representation of Ω. The computation of
the projections took 6 seconds.

As the elements that intersected the surface were “tetrahedralized” the com-
position of the mesh, in terms of elements, has changed. Table 4.10 shows the
statistics for the current mesh.

The different types of elements, except for the tetrahedra, do not suffer a signif-
icant degradation of their quality regarding table 4.8. The quality of the tetrahedra
is not acceptable. This degradation can be explained as the elements that intersect
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Hexahedra Prisms Pyramids Tetrahedra
Quantity 479 25 1204 3089
Volume 6.21939 % 0.859618 % 21.1905 % 71.7305 %

ar 1.27056 1.25675 2.08679 4.8964e+14
Worst ar 1.27056 1.39044 2.65071 1.4584e+18

Table 4.10: Statistics over the projected mesh using “the closest point” over Ω
strategy, where ar is the aspect ratio average.

the surface are the only ones that suffer a displacement of their nodes in order to
achieve the representation of Ω.

Note that the concept of “aspect ratio” (ar) for the tetrahedron is more than
just a measure of the length of it edges. The computation involves the volume
of the tetrahedron; therefore a sliver element (tetrahedron with almost co-planar
nodes) has a very large ar value. Actually, in the presented mesh, there are only
two tetrahedra with an unacceptable ar (> 1016) and seven “bad” ones (between
[200, 500]. All the rest of the elements have an ar � 200.

Note that for the direct projection method, it was also preferred a tetrahedral-
ization of the surface elements. It was shown that tetrahedra suffered an important
quality degradation. If hexahedra, prisms and pyramids are directly projected into
the surface, not only a quality degradation arises but also it is possible to pro-
duce invalid elements (see subsection 1.3.2). The algorithm of section 3.2 could
be used to repair those invalid elements, however important node displacements
might be needed, loosing surface representation (which is the goal of this stage
of the algorithm). Moreover, in several cases it might not exist a solution of the
system (see 4.2). This discussion will continue on subsection 5.2.2.

Hexahedra Prisms Pyramids Tetrahedra
Quantity 479 25 1204 3089
Volume 6.10912 % 1.09946 % 19.0152 % 73.7762 %

ar 1.63852 1.56582 2.39152 4.58165
Worst ar 5.87285 3.42122 9.29464 3509.89

Table 4.11: Statistics over the projected mesh using the registration method, where
ar is the aspect ratio average.

For the above reasons, the strategy of achieving surface representation via the
FEM, where all the elements are mechanically compressed, was preferred. It is
clear (at the right panel of figure 4.12) how all the elements, after the registration
method, suffer a deformation. The most important difference is that now, the
worst element of the mesh is a tetrahedron with ar = 3509.89. After that, only 5
tetrahedra have an ar between [200, 650] and all the rest of the elements have an
ar � 200. Table 4.11 summarizes the overall quality results.
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Figure 4.12: Left: the entire mesh. Right: a vertical cut (removing the same
elements as in figure 4.11.

Regarding the ar, the results of table 4.11 are much better than the ones of table
4.10. In other words, regarding the quality, the registration method is better than
direct projection method. This is quite natural since in the case of the registration
method, the FEM compressible brain model did “absorb” the surfacic deforma-
tions due to node projections onto the the brain surface. The registration method
produces results even close to the unprojected state of the mesh (table 4.8). Of
course, this comparison is made over the global statistics. When going into fur-
ther details, while the worst element of the unprojected mesh has an ar = 3.0426,
the mesh produced using the registration method has an ar = 3509.89 (which
is much better than the worst element of the direct projection method, with an
ar = 1.4584e + 18).

4.3.3 Meshing the brain with a different region of interest

In order to illustrate how easy is to compute the results changing the RoI, figure
4.13 shows the final mesh with a RoI in the top middle section of the brain.

Table 4.12 shows the statistics for the mesh with the direct projection method.
Note that the worst element of this mesh has an ar = ∞. Once again, only two
tetrahedra presented an ar = ∞, then 4 tetrahedra with an ar between [230, 480]
and all the rest with an ar � 200.

Table 4.13 shows the statistics for the mesh with the registration method. In this
case the worst element has an ar = 52.6016.

The mesh using the direct projection method was produced in 32 seconds. The
mesh using the registration method, needs the calculation of the projected nodes
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Figure 4.13: Left: the output mesh using the direct projection method. Right: the
output mesh for the registration method.

Hexahedra Prisms Pyramids Tetrahedra
Quantity 736 24 1500 3400
Volume 11.3729 % 0.0791253 % 16.1613 % 72.3867 %

ar 1.27056 1.34322 2.13123 inf
Worst ar 1.27056 1.39044 2.65071 inf

Table 4.12: Statistics with a top middle RoI using the direct projection method,
where ar is the aspect ratio average.

(from the direct projection) in order to compute the registration. In other words,
the displacement direction of direct projection method are used by the registration
method as the leading deformation direction. The reallocation of the rest of the
nodes is computed in terms of these “leading” deformation directions. The reg-
istration method took around 5 seconds, thus the overall time to produce a mesh,
with the registration method to achieve surface representation, was 37 seconds.

Hexahedra Prisms Pyramids Tetrahedra
Quantity 736 24 1500 3400
Volume 11.3729 % 0.0791253 % 16.1613 % 72.3867 %

ar 1.68174 1.91652 2.49042 2.42475
Worst ar 2.75798 2.79621 9.26597 52.6016

Table 4.13: Statistics with a top middle RoI using the registration method, where
ar is the aspect ratio average.
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4.3.4 Comparison with tetrahedra meshing technique

In the meshing field, the most popular techniques produce only-tetrahedra meshes.
One of the most important techniques for tetrahedra was developed by Frey in
[29].

The strategy developed by P. Frey produces a mesh from an input surface mesh
(Ωs) that describes a domain Ω. The first step of the algorithm re-meshes Ωs,
thus producing Ω′

s in order to achieve a “good” quality over the triangles of the
surface mesh. The quantity of those triangles is also managed in terms of a specific
input parameter, namely the “target quantity of nodes” of the mesh. Once Ω′

s is
adapted to this desired parameter, it proceeds to build the tetrahedra volume mesh
by inserting inner optimal nodes in terms of tetrahedra quality.

Figure 4.14: Left: an output mesh of the developed technique. Right: a tetrahedral
mesh.

Figure 4.14 shows the output mesh of the developed algorithm and the algorithm
from P. Frey. The developed technique produces a mesh with 499 nodes from
which 59 reside in the RoI. The mesh from P. Frey counts with 2804 nodes from
which 57 reside inside the RoI. Table 4.14 shows the statistics for the mesh using
the developed technique, where the worst element has an aspect ratio2, ar = 279.

Moreover, figure 4.15 shows an histogram of the quality of the elements for the
developed technique. Note that 97% of the elements have an ar ∈ [1.3, 7].

The tetrahedra strategy (by Frey) can also manage region refinement. How-
ever, achieving surface representation and producing quality tetrahedra are more
relevant properties to this technique than producing a refined region. Therefore

2Remind that the aspect ratio for the tetrahedra is computed including the volume (therefore it
detect slivers).
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Hexahedra Prisms Pyramids Tetrahedra
Quantity 72 0 386 1418
Volume 3.90229 % 0 % 12.2747 % 83.823 %

ar 1.35187 0 1.7168 3.27791
Worst ar 1.62355 0 3.19461 279.005

Table 4.14: Statistics for brain mesh of 598 nodes, where ar is the aspect ratio
average.

the mesh shown at the right panel of figure 4.14 is the minimal mesh in terms of
node quantity regarding the constraints of “surface representation” and quality el-
ements. The quality of this mesh is high; the average aspect ratio (ar) is 1.31789
and the worst ar = 3.14675.

Figure 4.15: Quality histogram regarding the ar for the mesh produced with the
developed technique.

When the permitted quantity of nodes is increased, the resulting mesh can show
differences between refined and coarse regions. Figure 4.16 shows a brain mesh
with 22929 nodes, 5858 triangles and 128393 tetrahedra. It is clear how in the
RoI the mesh density is much more important than in the rest of the mesh.

In conclusion, the developed technique seems to be more efficient than the tetra-
hedra technique when meshes of few nodes and a high concentration of them in
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Figure 4.16: Left: Tetrahedra mesh of the brain with RoI. Right: the same mesh
with a vertical cut. Mesh developed by P. Frey.

a certain region is needed. Even though good quality is not assured, it remains
acceptable. Our developed technique could also be preferred over tetrahedral
meshes when mixed-element mesh are desired. For all the rest of the cases in the
“brain-shift” simulation problem (specially when dense and high quality meshes
are required), the tetrahedra technique of P. Frey should be preferred over our
developed technique.

4.3.5 Neuro-navigation system for brain tumor resection

Now that the mesh is constructed, its utility for a neuro-navigation system in the
brain tumor resection surgery can be shown. The input surface model of the brain
was constructed from a set of MRI of a patient with a tumor. The resulting mesh
can be overlapped to those images and shows, during surgery, the simulation of
the “brain-shift”.

Figure 4.17 plots at the left panel the patient MRI. The middle panel shows the
surface model of the brain after segmentation of those images. The right panel
plots the constructed mesh with mixed-elements and region refinement regarding
the opening skull point and the tumor.

The FEM is used over the produced mesh in order to simulate the brain-shift.
One of the most important results of Bucki in [9] is the use of the brain vascular
tree as leading points for the simulation of brain deformation during surgery.

The key idea is that before surgery, angiographic MRI scanners of the patient are
performed. From this set of images two different segmentation processes enable
the construction of:
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Figure 4.17: Left: patient MRI scanners. Middle: brain segmentation. Right:
volumetric model of the brain (from Bucki [9]).

• The surface model of the brain (from which the mesh is constructed).

• The model of the brain vascular tree.

The FEM is pre-computed (before surgery) over the mixed-element mesh that
represents the brain. During surgery, the FEM is updated in terms of the position
of “tracking points” i.e., the new state of the vascular tree. During surgery, Ultra-
sound (US) Doppler images are acquired. The relevance of those images is that
they detect the liquid flow (for example the blood). Those images are segmented
in order to detect the new location of the vascular tree.

Figure 4.18: The brain mesh and the tumor represented by a sphere. Left: The
initial state. Right: a deformated state leaded by the vascular tree (from Bucki
[9]).

The initial model of the vascular tree is updated with the current state of it (from
the US Doppler images) and this produces a displacement field. This displace-
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ment field is applied over the initial model of the brain and the FEM performs
the deformation over the entire brain model. The simulation provides additional
information over the location of the tumor to the surgeon who might correct or not
the trajectory to achieve the tumor resection.

Figure 4.19: The pre-operative images of the brain are deformed using the FEM
leaded by the vascular tree. Left: The initial state. Right: a deformated state (from
Bucki [9]).

Figure 4.18 shows the deformation of the mesh leaded by the vascular tree. Fi-
nally, figure 4.19 shows how the pre-operative images are updated with the com-
puted deformation of the vascular tree. To summarize the process, a set of images
I0 is obtained. Those images are segmentated and two models are created: the
mesh model M0 and the vascular tree model V0. During surgery, the US Doppler
images (U1) are segmentated and the vascular tree is updated producing V1. The
transformation of V0 into V1 produces a deformation field that is applied to M0

resulting in M1. The new state of the entire mesh is achieved (including the tu-
mor) via the FEM. As I0 is related to the state of the mesh, I1 is produced in
function of M1. These new images (I1) show the deformation continuously over
Ω i.e., the brain. Figure 4.20 summarizes the procedure.

Figure 4.20: Schema to simulate the brain-shift. Where I represents MRIs, V
represents vascular trees, M represents meshes and U represents US Doppler
images.
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Chapter 5

Conclusions and discussion

5.1 Conclusions

5.1.1 Mesh reparation
A mesh reparation method based on the Jacobian Matrix (subsection 3.2.1) and
the Warping Factor (subsection 3.2.2) was implemented in this thesis. The strat-
egy allows to take as independent stages, the reparation to achieve validity and
the reparation to achieve quality in the mesh. The reallocation of the nodes to
repair the mesh follows a numerical iterative approach, where a function F (de-
fined for each node i), that describes the “quality” of the element in terms of the
node current position, is searched to be maximized. This function is constructed
regarding the Jacobian matrix determinant (detJ) and the Warping Factor (WF )
for the case of achieving validity in the mesh (subsection 3.2.4). In the case of im-
proving the mesh quality, F is defined in function of the Jacobian ratio (Jacratio)
and the WF (subsection 3.2.4). A valid element for the Finite Element Method
(FEM), following the definition of ANSYS R©, is the one that counts with detJ > 0
and a good quality element is the one that has Jacratio < 30. As our solution is
an iterative approach, the valid reparation process stops when a first valid stage of
the elements is achieved. The same occurs with the quality reparation; the process
stops the first time the elements achieve a Jacratio < 30. In the other hand, the
WF is a quality measure defined regarding the level of co-planarity of the face.
Including the WF in F searches to produce more planar faces in the mesh. Note
that no threshold is searched to be reached for the WF as the main goal is to repair
the elements regarding the detJ function. If a strong constraint is used to repair
the WF , it might be possible to decrease the chances of finding a solution for the
detJ function.

In the literature, the work of Luboz et al in [44] is probably the most similar
approach to our work. Luboz proposed the use of the Jacobian matrix to repair
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the elements after registration. However no reparation over quality was considered
(Jacratio < 30 or the WF ). Another difference is that Luboz used the ∇detJ to
find the direction of displacement and therefore, an analytical solution was found.

The other relevant work, was introduced by Li and Freitag in [38]. This work
uses an optimization approach to repair the hexahedra elements in a mesh. The
algorithm stops when the best quality possible to the system is achieved. This is
probably the best solution to the problem of achieving validity and quality in a
mesh, however the strategy should be modified to constrain or penalize the dis-
placement of mesh surface nodes.

The examples shown in [38] are basically rectangular and hexahedral grids that
are manually distorted and then the algorithm improves the quality (coming back
to the initial grid state). If this algorithm is directly applied over a registered mesh,
it would probably come back to the initial state: the atlas (instead of repairing the
registered mesh to be acceptable by the parameters of ANSYS R©). Remind that
the goal of the reparation algorithm is to achieve a quality mesh by modifying as
less as possible the registered mesh. Another modification to the work of Li and
Freitag should be to consider the reparation of mixed-element meshes, as in many
cases, the atlas is not a “hexahedra-only” mesh.

Our implemented solution achieved the reparation of five femurs (section 4.1)
and produced a valid mesh for a human face (section 4.2). In this last case, the
quality improvement didn’t achieve the desired results (all elements in the mesh
with Jacratio < 30). The quality improvement was not achieved for two elements.
Despite this, the mesh is still usable for FE analysis, as all the elements in the mesh
are valid. Moreover, the quality improvement algorithm repaired 11 elements.
Note that these eleven elements wouldn’t be repaired by the algorithm of Luboz.
In the other hand, the algorithm of Li and Freitag might repair the entire mesh, but
there is no proof the registered mesh will continue to represent the target domain.
For all of these reasons, we think we can say that our implemented approach is
probably the most adequate to the problem of repairing meshes after registration.

5.1.2 Meshing domains with a particular region of interest
An algorithm to produce meshes with a particular Region of Interest (RoI) was
also proposed in this thesis. It is based on the octree technique. In the case of
a normal use of this technique, the octree starts with an hexahedron that covers
the entire domain (Ω) to mesh. The process iteratively splits the hexahedron in
eight new hexahedra. If an hexahedron is completely outside Ω, it is removed
from the mesh. If an hexahedron is completely inside Ω, it is no longer split. In
consequence, only the hexahedra that intersect the surface of Ω are split until a
certain condition is achieved. Our method proposes to modify the usual octree
technique to use as less nodes as possible and also, it searches to count with more
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elements in the region where the focus is. Therefore the first modification to the
octree technique is that only hexahedra that intersect or are completely inside the
RoI are split. The algorithm stops when a certain number of nodes (given by
the user) is reached in the mesh. Then, a property called one-irregular is applied
over the entire mesh. This property consists in allowing a maximum of one node
inserted in an edge or face center. With the one-irregular property over the entire
mesh it is possible to use some templates that by the introduction of tetrahedra,
pyramids and prisms, allow to achieve a congruent mesh (i.e. elements without
nodes inserted in their edges or faces). The last step of the algorithm is to achieve
surface representation of Ω. Two options were studied:

• Closest projection of the nodes that reside outside Ω.

• Use the FEM to “compress” the entire mesh into Ω.

The first option produced elements of unacceptable quality. The second strategy
produced better elements and therefore, was preferred over the direct projection
strategy. The entire process is explained in section 3.3.

In section 4.3, our developed strategy was applied to the problem known as the
“brain-shift” in the context of neurosurgery. The idea is to simulate brain defor-
mation during tumor resection surgery. An approach to solve this problem was
introduced by Chrisochoides et al in [16]. In this approach, they used a regular
tetrahedra mesh produced with the red-green meshing technique (Molino et al in
[47]). The differences between the mesh used by Chrisochoides and our approach
are: the use of only tetrahedra and an equally refined mesh over the entire domain.
From the simulation point of view, there were also some differences as they used
a parallel algorithm to produce the simulation of the brain-shift. Moreover, they
proposed the use of intra-operative MRIs to check the brain deformation level and
with this information, update the FE model to perform the tracking of the tumor.
Even though, from theory, this is a good solution, it is to our consideration inap-
plicable, as the use of intra-operative MRIs is not considered as an option for the
majority of hospitals.

From the meshing point of view, a very good alternative is the type of meshes
produced by Frey and George in [29]. They can produce tetrahedral meshes
with region refinement, good surface representation and excellent element quality.
Probably the most relevant point to differentiate this approach to our developed
technique, is the use of mixed-elements. The study performed by Benzley in [6]
is regularly cited in the mechanical field as a reference to prefer hexahedra over
tetrahedra for the FEM. Our technique tends to produce hexahedra in the RoI,
therefore if hexahedra elements are important to the simulation, our implemented
solution might be better, as the study of Benzley compared tetrahedra-only and
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hexahedra-only meshes, but no mixed-element meshes were studied in the com-
parison. In the other hand, our technique has shown that some quality problems
can arise in the surface elements. Even with the use of FEM to achieve surface
representation, a few elements presented poor quality in the final mesh (this is not
the case for internal elements, which presented high quality). Probably the only
drawback of our current implementation is the problem with quality elements at
the surface. Despite this, our technique can produce meshes from any input sur-
face with any local region refinement. Note that it can also produce an equally
refined mesh if the RoI covers the entire domain.

5.2 Discussion

5.2.1 Improvements over the mesh reparation

The only one detected limitation to our “reparation after registration” algorithm is
that the solution is searched by only the displacement of nodes that make elements
invalid or of poor quality. Sometimes after registration, the nodes are so close one
from another that the “bad” node has a very small field of displacement to improve
the Jacratio function of the elements as desired. In those cases it is possible to not
find a solution for the node in terms of reparation.

A first alternative to solve this problem is by performing a relaxation over the
nodes in the region where the problem is detected. In that manner the “bad” node
could gain more space to find a new position in which the invalid or poor qual-
ity elements achieve the desired level of quality. The problem with this approach
is that it could expand the relaxation through an important region or eventually,
through the entire mesh. This could result in a lose of representation of the target
domain. Probably, for most of the cases, a local relaxation over the nodes would
solve the problem; unfortunately it is not possible to ensure a quality representa-
tive mesh of the target domain.

A second alternative is to change the strategy of registration and then repara-
tion. When the reparation is performed after registration, the chances of finding
a solution are limited. A better strategy would be to not consider the registration
and reparation algorithms as different stages, but as a whole. The registration can
be performed iteratively and therefore, at each iteration invalid and poor quality
elements could be repaired. If at a given iteration, the elements cannot be repaired,
it could be possible to go back, increase the stiffness of the unrepairable elements
and continue. In the worst case, the elements will finish the registration process
with the last acceptable quality found.
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5.2.2 Improvements to the meshing technique with a particu-
lar region of interest

The main problem with our developed octree-based technique for meshing with a
focus over a particular Region of Interest (RoI) is the production of poor quality
elements at the surface of the domain. As mentioned before, the direct projec-
tion technique produced unacceptable elements at the surface. The use of FEM
to achieve the surface representation, improved the quality of those elements to
be acceptable, but in some few cases, still of poor quality. The logical solution
would be the use of reparation algorithms to improve the quality of those sur-
face tetrahedra of poor quality. Even our proposed solution for the reparation of
mixed-element meshes after registration could be used.

Another solution would be to produce a mesh that is closer to the surface of the
domain to represent. Figure 5.1 shows at the left panel an example of output mesh
(in 2D) from the current stage of the algorithm. At the right panel, some elements
that intersect the surface have been changed in order to better represent the surface
of the domain.

Figure 5.1: Improving the approximation of the surface for our developed octree-
based technique.

Note that in 3D this is not a simple problem. Moreover, our developed tech-
nique produces mixed-element meshes, therefore it would be necessary to recog-
nize configuration patterns for hexahedra, prisms and pyramids, to change their
topology and transform them into other type of elements that achieve better sur-
face representation.

With this “closer to surface target” mesh, both the registration over the surface
process and the direct projection approach should be restudied. Note that the di-
rect projection approach, even with this new improved mesh, might still produce
sliver elements as only the outside nodes are reallocated over the surface of Ω.
In order to avoid this, connected internal nodes could suffer a displacement of the
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50% of the outside nodes, following a direction that corresponds the to sum of dis-
placement vectors (right panel of figure 5.1). In this manner, it would be produced
an artificial compression of the mesh. In the other hand, the registration approach
already deals with this problem by compressing the entire mesh, therefore the
motivation to improve the direct projection method is that the registration process
sometimes produces important displacements in the internal region. These dis-
placements could be also presented in the RoI and therefore, lose node population
in the region where the focus of the simulation is. It is for this reason that a direct
projection method, considering the improvements presented here, would probably
be a better solution for the problem.

Note that improvements could also be done for the registration alternative: for
instance, to constrain the nodes that were produced in the RoI to remain in the
RoI after the surface registration process. For this purpose, a double registration
should be performed: one to achieve surface representation and another to achieve
“internal surface representation” of the RoI. With these improvements, both tech-
niques, registration and direct projection, should be compared in a formal study
to determine which one is the best option.

5.3 Publications
The following publications resulted from the work of this thesis:

• Lobos C., Bucki M., Hitschfeld N., Payan Y., Mixed-element mesh for an
intra-operative modeling of the brain tumor extraction, Proceedings of the
16th International Meshing Roundtable, October 2007, published by Springer,
Eds.: M. Bewer and D. Marcum, pp: 387–404, [40].

• Bucki M., Lobos C., Payan Y., Framework for a Low-Cost Intra-Operative
Image-Guided Neuronavigator Including Brain Shift Compensation, Pro-
ceedings of the 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (IEEE EMBC’07), 2007, pp: 872–875, [11].

• Bucki M., Lobos C. and Payan Y., Bio-Mechanical Model of the Brain for a
Per-Operative Image-Guided Neuronavigator Compensating for “Brain-
Shift” Deformations, Computer Methods in Biomechanics and Biomedical
Egineering, Issue 1, 2007, pp: 25–26, [10].

• Lobos C., Bucki M., Payan Y. and Hitschfeld N., Techniques on mesh gen-
eration for the brain shift simulation, Proceedings of the IV Latin American
Congress on Biomedical Engineering, CLAIB, 2007, IFMBE Proceedings 18,
pp: 642–645, [41].
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• Nazari M., Payan Y., Perrier Y., Chabanas M. and Lobos C., A continu-
ous biomechanical model of the face: a study of muscle coordinations
for speech lip gestures. Proceedings of the eighth International Seminar on
Speech Production, ISSP’08, pp: 321–324 [50].

A book chapter, to be published, resulted from the merge of chapters one and
two of this thesis. The reference is:

• Lobos C., Payan Y. and Hitschfeld N., Techniques for the generation of 3D
Finite Element Meshes of human organs, Research on Dental Computing and
Applications: Advanced Techniques for Clinical Dentistry.

At least two publications are in the perspectives of the reparation of meshes after
registration strategy presented in this thesis. One to explain the algorithm, with a
possible comparison between the developed technique and the proposed improve-
ment to perform the matching and reparation at the same time. The other publica-
tion corresponds to the results of applying our technique to 45 patient face1.

Another important publication could be made regarding the improvements pre-
sented to the octree-based technique plus a comparison with the direct projection
strategy and the registration process.

1Extracted from the database of MAP5 Laboratory – Université Paris 5 – UMR CNRS 8145.
Thanks to Yves Rozenholc.
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Conclusion et discussion en Français

Conclusion

Sur la réparation des maillages

Une méthode de réparation des maillages basée sur la matrice jacobienne (sous–
section 3.2.1) et le Warping Factor (sous–section 3.2.2) a été développée dans
cette thèse. La stratégie considère deux étapes indépendantes; la première produit
un maillage valide et la deuxième répare la qualité des éléments. Les deux étapes
considèrent un déplacement des sommets. Ces déplacements sont guidés par une
méthode numérique itérative, dont une fonction F (définie pour chaque sommet
i), qui représente la “qualité” de l’élément, doit être maximisée. Dans le cas de la
validité du maillage (sous–section 3.2.4), la fonction est construite en considérant
la valeur du déterminant de la matrice jacobienne (detJ) et le Warping Factor
(WF ). Dans le cas de l’amélioration de la qualité, la fonction F est construite à
partir du Jacobian ratio (Jacratio) et du WF (sous–section 3.2.4). En suivant la
définition donnée par ANSYS R©, un élément est considéré comme valide pour la
Méthode des Eléments Finis (MEF), s’il possède un detJ > 0. Il est considéré
de bonne qualité s’il possède un Jacratio < 30. L’algorithme est itératif et par
conséquent, il s’arrête dés qu’une solution est trouvée (dont tous les éléments ont
un detJ > 0); pour la qualité, la procédure suit le même principe : l’algorithme
s’arrête dès que tous les éléments ont un Jacratio < 30. Le WF est une mesure de
qualité définie en fonction de la co–planarité des sommets d’une face. L’inclusion
du WF dans la fonction F est à même de produire des faces plus aplaties dans
le maillage. Notons qu’aucune valeur du WF n’est cherchée à être optimisée car
le but principal est de réparer les éléments en fonction du detJ. En effet, si le WF
avait plus d’importance sur F , il serait alors possible de réduire les chances de
trouver une solution pour la fonction detJ.

Dans la littérature, le travail de Luboz et al [44] est probablement la stratégie
la plus proche de notre algorithme. Luboz a proposé l’utilisation de la matrice ja-
cobienne pour réparer les éléments après une procédure de recalage. Cependant,
Luboz n’a pris en compte aucune considération pour l’amélioration de la qualité
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des éléments (Jacratio < 30 ou le WF ). Une autre différence avec notre travail est
que Luboz a utilisé le ∇detJ pour trouver la direction de déplacement des som-
mets pour les “mauvais” éléments et en conséquence, une procédure analytique
est suivie.

Un autre travail pertinent, sur la réparation des éléments a été développé par Li
and Freitag [38]. Ce travail utilise une stratégie d’optimisation pour réparer les
hexaèdres dans le maillage. L’algorithme s’arrête quand la meilleure qualité pos-
sible pour le système est trouvée. Ce travail est probablement la meilleure solution
pour produire un maillage valide et de bonne qualité. Par contre cette stratégie de-
vrait être modifiée pour pénaliser le déplacement des sommet à la surface dans
notre cadre d’application. Sans cette contrainte, le maillage après recalage peut
en effet, ne plus représenter correctement le domaine d’étude.

Les exemples montrés dans [38] sont des maillages qui ne considèrent que des
hexaèdres. Ceux-ci sont aléatoirement modifiés et en suite, l’algorithme cherche
a retrouver l’état initial. Si cet algorithme est appliqué directement sur le maillage
recalé, il est même possible de revenir à l’état initial (c’est-à-dire l’atlas). Rap-
pelons que le but de notre algorithme est de réparer le maillage (validité et qual-
ité) sans produire des gros déplacements des sommets. Une autre considération
pour l’algorithme de Li et Freitag serait d’étudier des maillages avec des éléments
mixtes, parce que, dans la plupart des cas, l’atlas est construit avec plusieurs types
d’éléments.

Notre algorithme a réussi à bien réparer cinq fémurs (section 4.1) et a également
trouvé un état valide pour un visage humain après recalage (section 4.2). Dans le
dernier cas, l’amélioration de la qualité est plus difficile à obtenir (i.e. un maillage
dont tous les éléments ont un Jacratio < 30). A la fin de la procédure, deux
éléments avaient une mauvaise qualité. Même avec ces deux mauvais éléments
le maillage est encore utilisable par la MEF, parce que tous les éléments sont
valides. De plus, la qualité de onze éléments a été améliorée. Notons que ces
onze éléments n’auraient pas été considérés par l’algorithme de Luboz. D’un
autre coté, l’algorithme de Li et Freitag pourrait (éventuellement) tout reparer, par
contre rien n’assure que la solution trouvée soit encore représentative du domaine
(après recalage). Pour toutes ces raisons, nous pensons que notre solution est la
mieux adaptée à la reparation des éléments après une procédure de recalage.

Production des maillages avec une région d’intérêt particulière
Un algorithme pour produire des maillages avec une région d’intérêt (RDI) a
également été proposé dans cette thèse. Il est basé sur la technique octree. Dans le
cas d’une utilisation normale de cette technique, l’octree commence par un hexaè-
dre qui couvre l’ensemble du domaine (Ω) à mailler. La procédure divise itérative-
ment chaque hexaèdre en huit nouveaux hexaèdres. Si un hexaèdre est complète-
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ment en dehors de Ω, il est retiré du maillage. Si un hexaèdre est complètement
dans Ω, il n’est plus divisé. En conséquence, seuls les hexaèdres qui intersectent la
surface Ω seront scindés jusqu’à ce qu’une certaine condition soit remplie. Notre
méthode propose de modifier la technique d’octree pour produire le moins de som-
mets possibles tout en maximisant le nombre d’éléments dans la RDI du modèle.
Par conséquent, la première modification à la technique octree est que seuls les
hexaèdres qui intersectent la RDI seront divisés. L’algorithme s’arrête dès que le
nombre des sommets voulus est atteint dans le maillage. Ensuite, une propriété
appelée un-irrégulier est appliquée sur l’ensemble du maillage. Cette propriété
permet au maximum un sommet sur une arête ou au centre d’une face. Avec la
propriété un-irrégulier il est alors possible d’utiliser certains modèles permettant
d’atteindre un maillage régulier (c’est-à-dire, des éléments sans sommets insérés
ni dans leurs arêtes ni dans leurs faces) tout en inserant divers tétraèdres, prismes
et pyramides. L’objectif de la dernière étape de l’algorithme est de traiter les
éléments intersectant la surface Ω. Deux options ont été étudiées:

• La projection directe des sommets situés en dehors de la surface Ω.

• L’utilisation de la MEF pour compresser le maillage entier sur Ω.

La première option a produit des éléments de mauvaise qualité. La deux-
ième stratégie a produit de meilleurs éléments et, par conséquent, a été préférée.
L’ensemble de la procédure est expliqué dans la section 3.3.

Dans la section 4.3, notre stratégie a été appliquée au problème connu sous le
nom de “brain-shift” dans le cadre de la neurochirurgie. L’idée est de simuler
la déformation du cerveau au cours de la chirurgie de résection tumorale. Une
approche pour résoudre ce problème a été présenté par Chrisochoides et al [16].
Dans cette approche, ils ont utilisé un maillage des tétraèdres obtenu avec la tech-
nique de maillage red-green (Molino et al [47]). Les différences entre le maillage
utilisé par Chrisochoides et notre approche se situent au niveau des éléments util-
isés (tétraèdres vs maillage mixte) et au niveau du raffinement (uniforme vs ciblé).
D’autre part, au niveau de la simulation, Chrisochoides utilise un algorithme par-
allèle ainsi que l’imagerie par résonance magnétique (IRM) intra-opératoire pour
vérifier le niveau de déformation du cerveau (avec cette information, ils font la
mise à jour du modÃ¨le éléments finis pour effectuer le suivi de la tumeur). Même
si d’un point de vue théorique, il s’agît d’une bonne solution, en practique elle
semble inapplicable. En effet l’utilisation d’un dispositif IRM intra-opératoire
n’est pas considérée comme une option raisonnable pour la plupart des hôpitaux.

Concernant le maillage, une très bonne alternative est la technique de généra-
tion des maillages par Frey et George [29]. Ils peuvent produire des maillages de
tétraèdres de haute qualité, tout en ayant des régions plus raffinées que les autres,
le tout permettant une bonne représentation de la surface. Sans doute, la différence
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la plus pertinente avec notre approche est l’utilisation des éléments mixtes dans
notre cas. L’étude réalisée par Benzley [6] est une référence, régulièrement citée
dans le domaine de la mécanique. Elle compare les maillages uniquement com-
posés de tétraèdres et ceux composé d’hexaèdres. Par contre les maillages à base
d’éléments mixtes n’ont pas été considerés dans la comparaison. Dans sa conclu-
sion Benzley préfère les hexaèdres aux tétraèdres pour la MEF. Notre technique a
tendance à produire plus d’hexaèdres dans la RDI ce qui est donc un point positif
selon Benzley et al.

D’un autre coté, notre technique a montré que certains problèmes de qualité
peuvent se poser dans les éléments de surface. Malgré l’utilisation de la MEF,
quelques éléments à la surface de Ω sont de mauvaise qualité dans le maillage fi-
nal (ce n’est pas le cas pour les éléments internes). Il s’agît probablement du seul
inconvénient de notre application. Malgré cela, notre technique peut produire
des maillages à partir de n’importe quelle surface et de n’importe quelle région
d’intérêt. Il convient de noter que notre technique peut produire un maillage uni-
formément raffiné si la RDI couvre l’ensemble du domaine.

Discussion

Améliorations sur la réparation des maillages

La seule limite identifiée pour notre algorithme de “réparation après recalage” est
que la solution n’est trouvée que par le déplacement des sommets qui appartien-
nent aux éléments invalides ou de mauvaise qualité. Parfois, après recalage, les
sommets sont si proches les uns des autres que les “ mauvais” sommets ont un
très faible champ de déplacement possible pour améliorer la fonction du Jacratio.
Dans ces cas, il se peut qu’aucune solution ne soit trouvée pour ces sommet.

Une première solution pour résoudre ce problème est d’exécuter une “relax-
ation” sur les sommets dans la région où le problème est détecté. De cette manière
le “mauvais” sommet pourrait obtenir plus d’espace pour trouver une nouvelle
position dans laquelle l’invalidité ou la mauvaise qualité des éléments soient ré-
parées. Le problème avec cette approche est qu’elle pourrait élargir la relaxation
dans une région importante voire éventuellement la totalité du maillage. Dans
ce cas, la relaxation pourrait déclencher une mauvaise représentation du domaine
cible. Probablement, pour la plupart des cas, une détente locale sur les sommets
pourrait résoudre les problèmes; par contre il n’est malheureusement pas possible
de garantir un maillage de qualité représentatif de l’ensemble domaine cible.

Une deuxième solution est de changer la stratégie recalage. Lorsque la répa-
ration est effectuée après recalage, les chances de trouver une solution sont lim-
itées. Une meilleure stratégie serait de ne pas envisager le recalage et la réparation
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comme des algorithmes séquentiels, mais comme un ensemble. Le recalage peut
être effectué itérativement et, par conséquent, à chaque itération un algorithme
de réparation des éléments peux être appliqué. Si à certains moments, les élé-
ments ne peuvent pas être réparés, il pourrait être possible de revenir en arrière,
augmenter la rigidité des éléments irréparables et reprendre le recalage. Dans le
pire des cas, les “mauvais” éléments termineront le processus de recalage avec la
dernière qualité acceptable trouvée dans une certaine itération.

Améliorations sur la production des maillages avec une région
d’intérêt particulière

Le principal problème de notre technique de production de maillages avec ré-
gion d’intérêt particulière (RDI) est l’obtention d’éléments de mauvaise qualité à
la surface du domaine (Ω). Nous avons proposé une autre technique à partir de
l’utilisation de la MEF pour atteindre la représentation de la surface de Ω. Cette
technique a montré qu’une meilleure qualité est produite dans l’ensemble du mail-
lage. Par contre une forte qualité ne peux pas être assure partout, surtout, au niveau
des élément qu’intersectent la surface de Ω. La solution logique serait l’utilisation
des algorithmes de réparation de qualité dans les tétraèdres qui restaient à la sur-
face avec une qualité médiocre. Même notre solution proposée pour la réparation
des maillages d’éléments mixtes après recalage pourrait être utilisés.

Une autre solution serait de produire un maillage qui est plus proche de la sur-
face du domaine à représenter. La figure 5.2 montre un exemple en 2D dans lequel
il est possible de visualiser (à gauche) l’état actuel du maillage. A droite, certains
éléments qui intersectent la surface ont été modifiés afin de mieux représenter la
surface du domaine.

Notez qu’en 3D ce n’est pas un problème simple. De plus, notre technique pro-
duit des maillages à base d’éléments mixtes; il serait donc nécessaire de recon-
naître différents schémas de configuration pour des hexaèdres, prismes et pyra-
mides, pour ensuite modifier leurs topologies et de les transformer en d’autres
types d’éléments qui permettent d’atteindre une meilleure représentation de la
surface.

Grâce à ce maillage “plus proche de la surface cible”, les deux algorithmes (la
projection directe et l’utilisation de la MEF pour représenter la surface) devraient
être réexaminés. Notons que l’approche de projection directe, même avec une
amélioration du maillage, peut encore produire des éléments aplatis à la surface
puisque seuls les sommets en dehors de la surface seront poussés vers celle-ci.
Afin d’éviter cela, les sommets internes qui forment une arête avec les sommets en
dehors de la surface pourraient poursuivre 50% du déplacement reçu par les som-
mets à l’extérieur. Par la suite, les sommets connectés a ces derniers pourraient
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également recevoir 50% du déplacement de ceux-ci derniers, puis etc. (panneau
de droite de la figure 5.2). De cette manière, il serait possible de reproduire ar-
tificiellement la compression du maillage. En revanche, notons que le recalage a
déjà traité ce problème par une compression de l’ensemble du maillage.

Figure 5.2: Technique d’amélioration de la rerprésentation de la surface pour notre
algorithme.

La motivation pour améliorer la méthode de projection directe est que le pro-
cessus de recalage a parfois produit des déplacements internes importants. Ces
déplacements peuvent être également présentés dans la RDI et donc perdre une
partie de la population des sommet initialement dans la RDI. C’est pour cette rai-
son que la méthode de projection directe, avec les améliorations présentées ici,
serait probablement une meilleure solution pour ce problème.

Notons que des améliorations pourraient aussi être faites pour le recalage : par
exemple, une contrainte sur les sommets de la RDI pour y rester après recalage.
A cette fin, un double recalage doi être effectué : un pour parvenir à la représen-
tation de surface et un autre pour parvenir à la RDI. Grâce à ces améliorations,
les deux techniques (le recalage et la projection directe) devraient être à nouveau
comparées dans une étude ultérieure.

Publications
Les publications suivantes ont été produites dans cette thèse:

• Lobos C., Bucki M., Hitschfeld N., Payan Y., Mixed-element mesh for an
intra-operative modeling of the brain tumor extraction, Proceedings of the
16th International Meshing Roundtable, October 2007, published by Springer,
Eds.: M. Bewer and D. Marcum, pp: 387–404, [40].

• Bucki M., Lobos C., Payan Y., Framework for a Low-Cost Intra-Operative
Image-Guided Neuronavigator Including Brain Shift Compensation, Pro-
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ceedings of the 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (IEEE EMBC’07), 2007, pp: 872–875, [11].

• Bucki M., Lobos C. and Payan Y., Bio-Mechanical Model of the Brain for a
Per-Operative Image-Guided Neuronavigator Compensating for “Brain-
Shift” Deformations, Computer Methods in Biomechanics and Biomedical
Egineering, Issue 1, 2007, pp: 25–26, [10].

• Lobos C., Bucki M., Payan Y. and Hitschfeld N., Techniques on mesh gen-
eration for the brain shift simulation, Proceedings of the IV Latin American
Congress on Biomedical Engineering, CLAIB, 2007, IFMBE Proceedings 18,
pp: 642–645, [41].

• Nazari M., Payan Y., Perrier Y., Chabanas M. and Lobos C., A continu-
ous biomechanical model of the face: a study of muscle coordinations
for speech lip gestures. Proceedings of the eighth International Seminar on
Speech Production, ISSP’08, pp: 321–324 [50].

Un chapitre de livre, doit être publié, résultant des chapitres un et deux de cette
thèse. La référence est:

• Lobos C., Payan Y. and Hitschfeld N., Techniques for the generation of 3D
Finite Element Meshes of human organs, Research on Dental Computing and
Applications: Advanced Techniques for Clinical Dentistry.

Au moins deux publications sont dans nos perspectives pour la réparation de
maillages après recalage. L’un en expliquant l’algorithme, avec une comparaison
entre l’application développée dans cette thèse et la technique qui considère nos
proposition pour effectuer le recalage et la réparation du maillage en même temps.
L’autre publication correspond aux résultats de l’application de notre technique
aux modèles des faces de 45 patients2.

Une autre publication importante pourra être faite en ce qui concerne les amélio-
rations présentées sur la technique basé sur l’octree et une comparaison entre la
projection directe et la stratégie de recalage.

2Extraites de la base de données de laboratoire MAP5-Université Paris 5 - UMR CNRS 8145.
Merci à Yves Rozenholc.
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Appendix A

Efficient node management in the
Octree technique

A.1 Motivation
In the octree technique, each leave is an hexahedron and each component of the
octree receives the name of octant. The root of the tree, the first octant, is initial-
ized with the hexahedron resulting from the Bounding Box (BBox) of the input
surface domain Ωs to mesh. Is by splitting this hexahedron that the octree tree is
generated.

An optimized data structure must be implemented to save the node’s informa-
tion. In difference with the input geometry that is read, here it is necessary to
know if a particular node was already inserted or not. If no checking is made over
the nodes, it is possible to insert several times the same coordinates with different
references by the elements, producing bad connectivity problems.

Figure A.1 shows an example of index inconsistency. Note how at the top panel
of the figure the pairs: (8,1), (10,2), (12,5) and (15,6) have the same coordinates.
This problem is solved at the bottom panel of the figure by merging those nodes
and updating the element’s information. This is the type of problems that the
developed node container structure tries to avoid while inserting new nodes in the
mesh. The goal of this structure is to avoid inserting (saving) two or more times
the same coordinates for the same node.

A.2 Unique node identifier
The class Node has been implemented. A vector object of the standard C + +
library stores all the nodes (of type Node). If each time a new node must be
inserted, the entire vector is checked for repetition, the insertion operation tends
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Figure A.1: Top: the right nodes of the first cube and the left ones of the seconds
have the same coordinates but different indexes: they are duplicated. Bottom:
duplicated nodes have been removed and no data inconsistency is presented.

to be O(n2), where n is the number of nodes the mesh has. In practice, this means
that producing a regular octree mesh (grid) with 9 level of refinements would take
more than 30 minutes. With the implemented optimization, the time required to
produce this mesh is a couple of seconds.

Node’s insertion with the octree technique is always performed at the split pro-
cess of the octants, therefore this operation will always be performed between two
already inserted nodes. The goal of indexing the nodes is to somehow give them
a unique identifier.

Let ĀB be one edge of the BBox. Let C be the middle node of ĀB. When the
octree algorithm splits the BBox in order to produce eight new cubes the edge ĀB
is removed and two new edges: ĀC and C̄B replaces it. In terms of coordinates
C = (A + B)/2 and all the nodes inserted in ĀB will be greater than A and less
than B. The key idea is then to give them an identifier that takes advantage of
this particular condition in order to easily distinguish the nodes. If a maximum
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Figure A.2: The nodes in the octree technique are always inserted between two
existing nodes. The initial nodes are 0 and 8.

of 9 nodes are allow per edge the first node index should be 0 and the last one 8.
As the split process produces a node in the middle of the edge, the index for this
new node should be 4. Now having 3 nodes and 2 edges, the new nodes should
be between 0 and 4 (node 2) and between 4 and 8 (node 6). Following the idea,
to obtain a new index it is necessary to add the indexes of the parents and divide
by 2 (as to obtain the coordinates of the node). This is shown in figure A.2, where
the insertion sequence is the following: 0, 8, 4, 2, 6, 1, 3, 5, 7.

In other words, each node in the octree structure has a predefined index or vir-
tual index vidx regarding the indexes of its parents. The initial indexes are given
in the x axis, then the y and finally the z ones. The maximum number of nodes
in each edge is set to 513 (from 0 to 512). Therefore the maximum number of
nodes in the mesh is 5133 = 135, 005, 697. This can be easily arranged in a global
defined vector that contains the amount of nodes allowed per axis.

The vidx allows to easily check if a node was inserted or not. For example if
the edge (0,64) must be split, the resulting node will have the index 32. If another
octant shares the same edge (0,64) and needs to split the edge, it will only be
necessary to check if the node with index 32 is already inserted. This avoids the
insertion of the same coordinates with different index.

Now that the nodes are indexed, the only problem is to know where to check.
As in the split process insertions occurs all the time, this checking should be as
fast as possible. If an array containing the status of each vidx is used, it would
be a direct operation to check node’s previous insertion. Unfortunately, having
a boolean array of size 135, 005, 697, would be an incredible waste of memory
space, specially in cases of small meshes. A structure that evolves regarding the
current amount of nodes and with fast access to information would be optimal.

A.3 Saving and sorting the nodes

In this thesis, the only reference to a tree data structure before, is the octree. As
showed in figure 2.5, the parent treenode spatially contains his 8 sons. Therefore
the only relation between parents and sons is geometrical. Another important use
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of trees is to sort data. In particular, a binary search tree (BST) is a structure that
have the following properties:

• each treenode (item in the tree) has a value.

• the left subtree of a treenode contains only minor values to treenode’s value.

• the right subtree of a treenode contains only values greater than or equal to the
treenode’s value.

In the best case, insertion and searching information is O(log n). In the worst
case is O(n2). The worst case is produced when inserting sorted numbers. In this
case the tree is actually a list of numbers.

An AVL tree is a self-balancing binary search tree. A complete description can
be found in [36] by Knuth. This type of tree assures that inserting a node takes
O(log n) and searching a node takes also O(log n) all the time. This solution
is optimal in terms of memory space and fast enough in terms of insertion and
searching.

The height of a tree or a subtree is the number of connection from the root (top
treenode) to the more distant leaf (bottom treenode). The balance factor (bfactor)
of a treenode is the height of its right subtree minus the height of its left subtree
and a treenode with bfactor 1, 0, or -1 is considered balanced. A treenode with
any other bfactor is considered unbalanced and requires rebalancing the tree. The
bfactor is recalculated when a new node is inserted.

Figure A.3: A balanced tree that becomes unbalanced by the insertion of value
5. At the right, one of the 4 rotation operations rebalance the tree. Next to each
treenode is the bfactor of it.

Figure A.3 shows one of the rotation operation to regain the balance in the tree.
Note that in the middle tree, the bfactor of the root becomes invalid as the height
of the right subtree is 3 and the left one is 1, therefore its bfactor is 2. At the right,
the balance is recovered by one of the 4 possible rotations of the nodes.
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Figure A.4: The different index and coordinates values for the BBox in the case of
3 nodes per axis. Left the index in the node’s vector. Middle the actual coordinates
of the nodes and right, the vidx associated to each node

A.4 Splitting process in the octree

In order to illustrate the process a domain that has a BBox of (0,0,0) to (2,2,2)
is used as an example. Let 3 be the maximum nodes allowed per axis. Figure
A.4 left, shows the order by which the nodes are stored (the node’s index in the
node’s vector) for the BBox. In the middle, the actual coordinates of the same
nodes are shown and at the right, the respective vidx of each node. As those nodes
corresponds to the BBox they are directly inserted in the node’s vector. The vidx

are inserted in an AVL tree that in each treenode has the vidx and the position in
the node’s vector where the coordinates of the node can be found.

If a node’s vidx isn’t found in the AVL tree, a new object of type Node contain-
ing the coordinates is stored at the end of the node’s vector (at position pos). A
new treenode is added in the AVL tree regarding the vidx associated to the node.
The treenode stores the position pos where the actual node can be found.

Regarding the previous example of figure A.4, the order by which the nodes are
inserted in the structures is give by the left figure. Therefore the insertion order of
the vidx in the AVL is: 0, 18, 2, 20, 6, 24, 8 and 26 as shown in figure A.4 right.

The evolution of the AVL can be seen in figure A.5. First, the insertion of
treenodes 0 and 18 cause no problem as the AVL remains balanced. The first
rotation comes with the insertion of value 2. If no rotation is performed, the
treenode 2 would be inserted as “the left son” of treenode 18. This last operation
would make the tree unbalanced at treenode 0, therefore treenode 2 becomes
the root of the tree and the tree regain the balance. After that, the insertion of
treenodes 6 and 20 are inserted without rotations. Treenode 24 cause a major
rotation of the tree and then, treenode 8 can be inserted without modification to
the tree. Finally treenode 26 cause a minimal rotation in the right subtree of the
root.
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Figure A.5: The evolution of the AVL structure as the nodes of the root octant
are inserted (vidx). Next to each node the position reference of each node in the
node’s vector (real index).

At this point, the tree has all the vidx from the root octant inserted. As all the vidx

were directly assigned, it is just now that new vidx will be calculated. For instance,
if the edge defined by nodes 2 and 3 (with vidx 2 and 20 respectively) is split, then
the new vidx associated to that node is: (2 + 20)/2 = 11. The last inserted node
was in position 7 of the node container (as eight nodes were inserted) therefore,
the coordinates of the new node are inserted in the position 8 of the node container.

Figure A.6: The comparison between an AVL (middle) and a BST (right) by the
insertion of a new node as the cube in the left shows.

Figure A.6 left shows the insertion of a new node between nodes 2 and 3 (real
index or position in the node container). The same figure in the middle panel,
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shows how the AVL changes with the insertion of the new node (vidx = 11 and
real index = 8). Finally at the right, the equivalent Binary Search Tree (BST) is
presented by inserting the node indexes in the same order as the AVL. As the BST
is quite unbalanced, it is easy to see how search and insertion of new treenodes
in the tree is not assured to be O(log n).
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