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Abstract

During the last years, there has been growing and considerable interest in
using computer-aided medical design, diagnosis, and decision-making tech-
niques that are rapidly entering the treatment mainstreams. These tech-
niques play an important role in operating rooms where minimally inva-
sive surgery is needed. Predicting surgical outcomes can be done using
biomechanical simulations of the organs that are subjected to the manip-
ulations. Finite Element Analysis (FEA) of 3D models is one of the most
popular and efficient numerical methods that can be utilized for solving
complex problems like deformation of soft tissues or orthopedic implant de-
signs/configurations. However, the accuracy of solutions highly depends
upon the quality and accuracy of designed Finite Element Meshes (FEMs).
In clinical applications, the generation of such high-quality subject/patient-
specific meshes can be extremely time consuming and labor intensive as
the process includes geometry extraction of the target organ and meshing
algorithms. Various studies have addressed these challenges by employing
atlas-based frameworks (e.g., by deformation of an atlas FE mesh) that en-
able bypassing or collapsing this process. However, these methods still rely
on the geometrical description of the target organ, such as contours, 3D sur-
face models, or a set of land-marks. In this context, the aim of this thesis
is to investigate how registration techniques can overcome these bottlenecks
of atlas-based approaches.
We first propose an automatic atlas-based method that includes the vol-
umetric anatomical/structural image registration and the morphing of an
atlas FE mesh. The method extracts a 3D transformation by registering the
atlas’ volumetric image to the subject’s one. The subject-specific mesh is
then generated by deforming a high-quality atlas FE mesh using the derived
transformation. The registration process is designed is such a way to pre-
serve the regularity and the quality of meshes for subsequent FEAs. A first
step towards the evaluation of our approach, namely the accuracy of the
inter-subject registration process, is provided using a publicly available data
set of CT ribcage. Then, with a particular focus on the mesh quality assess-
ment, subject-specific tongue meshes are generated for two healthy subjects
and two patients suffering from tongue cancer. Furthermore, in order to
illustrate a tentative fully automatic process compatible with the clinical
constraints, some functional consequences of a tongue surgery are simulated
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for one of the patients, where the removal of the tumor and the replacement
of the corresponding tissues with a passive flap are modeled. With a method
that does not require any formal extraction of prior-knowledge on the shape
of the target organ and any meshing algorithm, high-quality subject-specific
FE meshes are generated while subject’s geometrical properties are success-
fully captured.
Following this method, we accordingly develop an original atlas-based ap-
proach that employs the information provided by the anatomical images and
diffusion tensor imaging (DTI) based muscle fibers for the recognition and
registration of fiber-bundles that can be integrated in the subject-specific
FE meshes. In contrast to the DT MR images registration techniques that
include reorientation of tensors within or after the transformation estima-
tion, our Image-and-Fiber based Identification-and-Registration technique
(IFIR) avoids this issue and directly aligns fiber-bundles. This also en-
ables one to handle limited or distorted DTIs by deformation of an atlas
fibers’ structure according to the most reliable and non-distorted subject’s
ones. Such a manner becomes very important, since the classification and
the determination of muscular sub-structures need manual intervention of
thousands or millions of fibers for each subject, which are highly influenced
by the limitations associated with the DTI image acquisition process (e.g.,
geometrical distortions) and fiber tractography techniques. To evaluate the
performance of IFIR in the recognition of subject’s fiber-bundles and accord-
ingly in the deformation of the atlas ones, a simulated data set is utilized. In
addition, feasibility of IFIR is demonstrated on a clinically acquired human
tongue data set. The obtained results show the efficiency of our method in
recognition and registration of fiber-bundles.



Résume

Les techniques de chirurgie assistée par ordinateur suscitent depuis quelques
années un vif intérêt, depuis l’aide au diagnostic jusqu’à l’intervention chirur-
gicale elle-même, en passant pas les prises de décision. On peut ainsi, en
particulier, envisager de prédire et évaluer les conséquences fonctionnelles
de l’acte chirurgical grâce à la simulation du comportement des organes
impactés à l’aide de modèles biomécaniques. Dans ce but, l’Analyse par
Éléments Finis (AEF) du comportement de modèles biomécaniques tridi-
mensionnels est une des méthodes numériques les plus utilisées et les plus ef-
ficaces ; elle permet en particulier d’étudier des problèmes complexes comme
la déformation des tissus mous ou la conception d’implants orthopédiques.
Cependant, la fiabilité des solutions de l’AEF dépend fortement de la qualité
et de la finesse de la représentation des organes sous la forme de maillages
d’éléments finis (MEF). Or la génération de tels maillages peut être ex-
trêmement longue et exigeante en ressources computationnelles, car dans
le plus grand nombre des outils mis en œuvre pour cela, il est nécessaire
de procéder à l’extraction précise de la géométrie de l’organe-cible à partir
d’images médicales avant de recourir à des algorithmes sophistiqués de mail-
lage. Ces problèmes deviennent de véritables verrous méthodologiques dans
le cas d’applications cliniques, où il est essentiel que la spécificité de chaque
patient soit prise en compte, ce qui implique pour chaque patient la généra-
tion de maillages spécifiques. Confrontés à ces enjeux, certains travaux se
sont attachés à éviter la procédure de maillage en exploitant des méthodes
fondées pour chaque patient sur la déformation géométrique d’un maillage
défini sur un sujet de référence, dit « Atlas ». Mais ces méthodes nécessitent
toujours une description géométrique précise de l’organe-cible du patient,
sous la forme de contours, de modèles surfaciques tridimensionnels ou d’un
ensemble de points de référence. Dans ce contexte, le but de la thèse est
de développer une méthodologie de conception automatique de maillages «
patient-spécifiques », basée sur un Atlas, mais évitant cette étape de seg-
mentation de la géométrie de l’organe-cible du patient.

Dans une première partie de la thèse, nous proposons une méthode au-
tomatique qui, dans une première phase, procède au recalage volumétrique
de l’image anatomique de l’Atlas sur celle du patient, afin d’extraire la trans-
formation géométrique permettant de passer de l’Atlas au patient, puis, dans
une seconde phase, déforme le maillage de l’Atlas et l’adapte au patient en lui
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appliquant cette transformation. Le processus de recalage est conçu de telle
manière que la transformation géométrique préserve la régularité et la haute
qualité du maillage. L’évaluation de notre méthode, à savoir l’exactitude du
processus de recalage inter-sujets, s’est faite en deux étapes. Nous avons
d’abord utilisé un ensemble d’images CT de la cage thoracique, en accès li-
bre. Puis nous avons exploité des données IRM de la langue que nous avons
recueillies pour deux sujets sains et deux patients souffrant de cancer de la
langue, en condition pré- et post-opératoire. Pour démontrer l’importance
de notre méthode dans un contexte clinique, nous avons utilisé les mail-
lages adaptés à l’un des patients pour simuler la réponse biomécanique de
la langue à l’activation d’un muscle important de la langue, avant et après
l’ablation de la tumeur.

Dans une seconde partie, nous développons une nouvelle méthode, tou-
jours basée sur un Atlas, qui exploite à la fois l’information fournie par les
images anatomiques et celle relative à la disposition des fibres musculaires
telle qu’elle est décrite par imagerie par résonance magnétique du tenseur
de diffusion (RM-DT). Cette nouvelle démarche s’appuie ainsi, d’abord
sur le recalage anatomique proposé dans notre première méthode, puis sur
l’identification d’un ensemble de faisceaux de fibres musculaires qui seront
ensuite intégrés aux maillages « patient-spécifiques ». Contrairement aux
techniques usuelles de recalage d’images RM-DT, qui impliquent pour chaque
image la réorientation des tenseurs de diffusion soit au cours de l’estimation
de la transformation géométrique, soit après celle-ci, notre technique ne né-
cessite pas cette réorientation et recale directement les faisceaux de fibres
de l’Atlas sur ceux du patient. Cette méthode présente l’avantage de per-
mettre le traitement d’images RM-DT de qualité limitée ou incluant des
distorsions géométriques, en donnant la possibilité de sélectionner les fais-
ceaux de fibres musculaires qui seront recalés, et de ne retenir que les plus
fiables et les moins déformés dans les données du patient. Une telle dé-
marche est très importante, car la détermination et l’identification précises
de toutes les sous-structures musculaires nécessiteraient une intervention
manuelle pour analyser des milliers, voire des millions, de fibres, qui sont
grandement influencées par les limitations et aux distorsions inhérentes aux
images RM-DT et aux techniques de tractographie des fibres. L’efficacité
de notre méthodologie est démontrée par son évaluation sur un ensemble
d’images IRM et RM-DT de la langue d’un sujet.
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“Your task is not to seek for love, but merely to seek and find all the
barriers within yourself that you have built against it.”
- Jalaluddin Rumi

1
General Introduction

This chapter provides an overview of the thesis and its organization;
beginning with an illustration of the motivation and objectives.

Orthognathic surgery involves a wide variety of surgical procedures per-
formed to reposition maxilla, mandible and the dento-alveolar segments to
achieve facial and occlusal balance. The consequences of these repositioning
can be important as concerns facial soft tissues aesthetics and dynamics. In a
similar way, tongue surgery can have severe consequences on tongue mobility
and tongue deformation capabilities. It can generate strong impairments of
three basic functions of human life, i.e. masticating, swallowing and speak-
ing, which induce a noticeable decrease in the quality of life of the patients.
Finite Element models of the patient face used to simulate the morpholog-
ical modifications following bone repositioning could greatly improve the
planning of orthognathic interventions, for both the surgeon and the pa-
tient. Similarly, a biomechanical patient-specific tongue model can be used
to simulate the consequences of surgical gestures such as hemiglossectomies
or resection of the mouth floor. However, if we want to apply such a model-
driven approach in a routine clinical context, one of the bottlenecks will be

1



CHAPTER 1. GENERAL INTRODUCTION 2

the automatic patient-specific generation of the Finite Element (FE) models.
Indeed, such a process is still a long and tedious task, especially for the gen-
eration of the FE mesh for which a manual design is often needed with the
inclusion of muscular sub-structures, skin layers as well as the constraint for
an hexahedron-dominant meshing (to avoid any locking phenomena observed
with tetrahedron-dominant meshes in the case of quasi-incompressible soft
tissues). In this context, we think a very promising direction is the use of
(1) an existing atlas FE mesh (manually designed from 3D CT and/or MRI
exams) and (2) the registration of that atlas to make it fit to each patient
data. This mesh-morphing process should be based on image voxels infor-
mation with the determination of the optimal 3D transform that is going to
match the CT (or MRI) exam of the atlas onto the CT (or MRI) exam of the
patient. Such intensity-based 3D image registration should therefore avoid
the complex segmentation process of patient data which is still difficult to
be carried out automatically. In addition, we think other information pro-
vided by some imaging data (such as fiber directions measured on Diffusion
Tensor Imaging) could be used by the registration process in order to esti-
mate the patient-specific organization of tongue muscular structures, which
is very important if we want to estimate post-operative tissues deformations
due to muscles activations. In this context, the organization of this thesis
manuscript is as follows

• In chapter 2, an introduction to finite element analysis (FEA) and its
requirements is provided. Then, we review the standard/conventional
methods that are being used to generate subject-specific finite element
meshes (FEMs). This enables the reader to identify the bottlenecks
of these techniques and more importantly to overview the investiga-
tions that are reported in the literature for various applications during
the last years (to overcome the challenges associated to the standard
strategies and facilitating the mesh generation process by employing
an atlas FE mesh and subject-specific information).

• In chapter 3, considering the limitations of the standard and the cur-
rent atlas-based/assisted mesh generation techniques, we propose an
automatic atlas-based method for generating subject-specific meshes.
Our main objective is to develop an approach that (1) does not re-
quire any prior-knowledge to be extracted from medical images for the
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description of target organ’s geometry and (2) does not include any
meshing process. This is done through the deformation of an atlas
FE mesh using a 3D transformation which is extracted by registering
the atlas’ 3D medical image to the subject’s one. The main concern
of this chapter is how to design a 3D image registration process that
preserves the quality of FE meshes after deformation.

• In chapter 4, with the aim to include subject-specific information of
muscle fiber-bundles within the generated FE meshes, an atlas-based
approach is proposed. The fundamental scheme of the method is (1)
to provide a correspondence between atlas’ and subject’s fiber-bundles
and then (2) to deform atlas’ fibers according to the subject’s muscular
fiber structure. The main concern of this chapter is how to design such
a method that can overcome the limitations associated with DT-MR
images registration and with DTI distortions.

• In chapter 5, we summarize our contributions in this dissertation and
suggest some future research directions motivated by this work.
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During the last decades, Finite Element (FE) meshes are used for count-
less applications in biomedical engineering to model and simulate the be-
havior of biological structures. Traditionally, two critical points are en-
countered in the mesh generation process: (1) the extraction/segmentation
of the region of interest (ROI), and (2) the meshing. For clinical ap-
plications, this process is time-consuming and many tasks need to be
manually done. Therefore, many efforts are dedicated to the gener-
ation of subject-specific meshes on the basis of a previously designed
atlas/template mesh. In this chapter, we are going to review these
methods and introduce the limitations that face the designer of biome-
chanical models.

2.1 Mathematical Modeling and Numerical
Analysis

Mathematical models play a prominent role in a wide range of fundamen-
tal and applied researches, including engineering design and decision making.
The process of developing a mathematical model is called mathematical
modeling, and consists of extracting and formalizing an analytical descrip-
tion for a physical phenomenon. These descriptions of how a phenomenon or
process in nature has emerged and developed, can be provided by applying
fundamental laws of physics. Such models can give us unique qualitative
and quantitative insights into the phenomena under investigation, which
can be used to validate hypotheses made from experimental data and also
provide predictions. With the aim to model a physical system or process,
one may need to make assumptions about the nature of them (i.e., how
they work) and also to use the laws and a set of premises or axioms gov-
erning the phenomena. On the whole, this modeling leads to a formalized
representation that includes a functional relationship between dependent
variables, independent variables, parameters, and forcing functions (Chapra
and Canale [2011]). Forcing functions refer to those external influences
that act upon the system. Although these models are developed using some
simplifications, many control variables and adjustable parameters are often
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included. In addition, the models may lead to very complex differential
and/or integral equations posed on complex geometrical domains. Prior
to the advancement of computer technology, the mathematical modeling
needed to be simplified to a level that they could be solved analytically.
Nowadays, however, Numerical methods are extensively used for simu-
lating/solving/approximating sophisticated models of physical phenomena.
The basic idea behind Numerical methods is to reformulate mathemati-
cal problems in order to simulate them using arithmetic operations (Chapra
and Canale [2011]). In other words, numerical methods typically transform
a continuum problem into a discrete one that can be approximated using
computers. Fig. 2.1 shows an example of the use of Numerical methods
in order to approximate the area under the graph of a function. In this
example, Numerical integration is performed via the trapezoidal method in
which the integration over an interval is approximated by breaking the area
down into N trapezoids with more easily computable areas, in which the
integral of f from x = a to x = b is approximated as

I =
∫ b

a
f(x)dx ≈

(
b− a
2N

) N∑
n=1

(f(xn) + f(xn+1)) = (2.1)(
b− a
2N

)
[f(x1) + 2f(x2) + ...+ 2f(xN ) + f(xN+1)] ,

where the spacing between the points is equal to the scalar value
(
b−a
2N

)
. If

the spacing between points is not constant, the fourmula generalizes to

I =
∫ b

a
f(x)dx ≈

(1
2

) N∑
n=1

(xn+1 − xn) [(f(xn) + f(xn+1))] (2.2)

where (xn+1 − xn) is the spacing between each consecutive pair of points.
Generally, a wide range of numerical methods have been developed and

applied during the last decades, each with its own inherent set of principles,
aims, and of course, limitations. The Finite Element method (FEM) or
Finite Element Analysis (FEA) is one of the most popular numerical
methods in the literature. In FEA, the system or object is sub-divided into
a finite number of smaller units, called finite elements. In other words, the
analysis is performed by modeling an object into simplified representations
of of discrete regions. Partial differential equations (PDE) that govern the
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(e) Î18 = 19.8586, Error=0.0474,

1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5

0.5

0
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Figure 2.1: Approximation the area under the graph of a function by break-
ing the region into trapezoids; the Error is equal to the difference between
the approximated and the real values.

model behavior are solved approximately. This is done by rendering the
complex PDEs into equivalent ordinary differential equations and subse-
quently approximation of a solution using linear algebra techniques (Roduit
et al. [2005]). Therefore, we can summarize the main steps in finite element
analysis:

• Discretization of the main domain,

1. The discretization of the physical object into a structure is called
Mesh generation or Meshing,

2. Each sub-domain is called element,

3. The points where elements connect are called nodes,

4. The collection of elements is called finite element mesh,
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• Considering the equations that are already defined within each sub-
domain or element.

• Assembling the solutions or element equations.

• Error estimation and convergence.

2.1.1 Continuum Mechanics and FEA

Continuum Mechanics (CM) models materials as a continuum by ignoring
the fact that they are made of micro structures or atoms. This allows to
study the mechanical response of continuous media to applied forces or load-
ings. In biomedical sciences, CM covers essential principles and fundamental
applications like computer-aided minimally invasive surgery in which defor-
mation of soft tissues due to the surgical manipulations can be studied. On
this matter, a deformable model that describes the target organ’s geometry
and its material properties is needed. For such contexts, according to the
type of materials, CM provides mathematical models that are commonly
based on partial differential equations (PDEs). The relationships between
the strain and stress, which are measures of the deformation and the forces
in the target organ, are formulated based on the PDEs. More information
about such PDEs can be found in Timoshenko and Goodier [1971]; Ottosen
and Petersson [1992]; Crouch [2003].
A wide range of models with different complexity are proposed for simulat-
ing the behavior of soft materials. To address the technical and practical
aspects of finite element analysis in bio-mechanics, a finite element prob-
lem that assumes linear elasticity for modeling the deformation process
is presented in the following (Crouch [2003]). Linear elasticity is the most
idealized solid model that is defined under some assumptions: (1) deforma-
tions occur instantly, (2) the effects that temperature and strain rate may
introduce to the deformation process are ignored, (3) a linear relationship
between stress and strain is assumed, and (4) the solid object immediately
returns to its primary form after removing a deforming stress. Before going
into the detailed mathematical basis of a linear elastic model, it is important
to describe Strain and Stress terms:

• Strain is a unitless measure of how an object deforms from an applied
force or load. Considering a point X = [Xx Xy Xz], its displacement
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is represented by u(X) and any change of distance between the points
in the neighborhood of X is determined by normal strains εxx = ∂ux

∂x ,
εyy = ∂uy

∂y , and εzz = ∂uz
∂z . Similarly, the deformation caused by any

change in angle between two originally orthogonal material lines is
defined as εxy = ∂ux

∂y + ∂uy
∂x , εxz = ∂ux

∂z + ∂uz
∂x , and εyz = ∂uy

∂z + ∂uz
∂y .

Therefore, a linear strain tensor that measures local deformation can
be expressed as

ε =


εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 (2.3)

• Stress is a measure of the forces in a deformable object. There are two
types of forces: surface and body. Surface forces are applied locally to
the object’s surface while body forces like gravity are applied to the
whole object’s volume. Stress is the average force per unit area and
a stress or traction vector is defined as the limiting value of the force
to area ratio when the area shrinks to zero: −→t = δP

δA = [tx ty tz]T ,
where P is the applied force to a patch of surface A. For patches
perpendicular to the main coordinate axes, the traction vectors are
defined as

−→
t =


txx

txy

txz

 when the patch surface normal is −→n =


1
0
0

,

−→
t =


txy

tyy

tyz

 when the patch surface normal is −→n =


0
1
0

,

−→
t =


txz

tyz

tzz

 when the patch surface normal is −→n =


0
0
1

,
subsequently, a stress tensor is defined as

σ =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (2.4)
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and the traction vector −→t is computed for any surface patch normal
using the obtained tensor, −→t = σ−→n .

For linearly elastic materials, according to the generalized Hooke’s law, the
relationship between the stress and strain is assumed linearly as

σij = cijkl εkl (2.5)

where σij and εkl are respectively the stress and strain tensors’ components;
and cijkl are constant coefficients based on the elastic properties of the ma-
terial. In isotropic materials only two coefficients are considered and the
constitutive equation can be rewritten as

σij = 2µεij + δijλ(εxx + εyy + εzz) (2.6)

where δij is Kronecker’s delta function; and µ and λ are the Lamé coefficients
that are related to two the parameters with a physical meaning, namely the
Young’s modulus (E) and Poisson’s ratio (v). E is applied to the “elasticity”
of the material and corresponds to the stress/strain ratio when a uniaxially
force is applied. v is related to the “compressibility” of the material and is
defined as a ratio of the lateral strain to the axial strain for a uniaxial stress
state. In short, the governing equations can be summarized as

σ = D ε (2.7)

where

σ =



σxx

σyy

σzz

σxy

σxz

σyz


ε =



εxx

εyy

εzz

εxy

εxz

εyz


(2.8)
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and

D =



2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ


(2.9)

and accordingly, the Young’s modulus (E), Poisson’s ratio (v), λ, and µ

coefficients are determined as

E = µ(3λ+ 2µ)
λ+ µ

(2.10)

v = λ

2(λ+ µ) (2.11)

λ = Ev

(1− 2v)(1 + v) (2.12)

µ = E

2v + 2 (2.13)

the coefficient matrix D can also be written in terms of Young’s modulus
and Poisson’s ratio

D = E

(1− 2v)(1 + v)



1− v v v 0 0 0
v 1− v v 0 0 0
v v 1− v 0 0 0
0 0 0 1

2 − v 0 0
0 0 0 0 1

2 − v 0
0 0 0 0 0 1

2 − v


(2.14)

After establishing the relationships between the strain and stress coefficients,
it is considered that all applied forces are balanced. In other words, for an
object to be static/stationary, the net force is zero. In classical mechanics,
such an object is called to be in mechanical equilibrium. The force equilib-
rium conditions are described by partial differential equations that accounts
for the stress tensor and any applied body forces. Considering a body force
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of
−→
b = [bx by bz]T , the force equilibrium equations are written as

∂σxx
∂x

+ ∂σxy
∂y

+ ∂σxz
∂z

+ bx = 0,

∂σxy
∂x

+ ∂σyy
∂y

+ ∂σyz
∂z

+ by = 0, (2.15)

∂σxz
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

+ bz = 0,

By substitution of Eq. 2.6 and normal strains into the above force equilib-
rium equations, the following formulations are derived

µ

(
∂2ux
∂x2 + ∂2uy

∂x2 + ∂2uz
∂x2

)
+ (µ+ λ) ∂

∂x
(∂ux
∂x

+ ∂uy
∂y

+ ∂uz
∂z

) + bx = 0

µ

(
∂2ux
∂y2 + ∂2uy

∂y2 + ∂2uz
∂y2

)
+ (µ+ λ) ∂

∂y
(∂ux
∂x

+ ∂uy
∂y

+ ∂uz
∂z

) + by = 0 (2.16)

µ

(
∂2ux
∂z2 + ∂2uy

∂z2 + ∂2uz
∂z2

)
+ (µ+ λ) ∂

∂z
(∂ux
∂x

+ ∂uy
∂y

+ ∂uz
∂z

) + bz = 0

that can be summarized in

µ∇2−→u + (µ+ λ)∇(∇T−→u ) +
−→
b = 0 (2.17)

As can be seen, this description of the model includes second order deriva-
tives (strong form). Before applying finite element method, a weak form of
PDEs that only includes first order derivatives is needed. Generally speaking
weak form that governs integral equations is an alternative way and more
convenient of stating the underlying mathematical basis of the problem. In
this regard, a weighting function is multiplied to the equation and then in-
tegrated. Let v(−→x ) = [vx vy vz] be an arbitrary weighting function which
is defined over the problem’s spatial domain. This function is multiplied
to the force equilibrium equations (2.15) and then the integration over the
whole volume (V ) leads to∫

V
(∇̃v(−→x ))TσdV =

∫
S
vT
−→
t dS +

∫
V
vT
−→
b dV (2.18)
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where S is the surface of volume, and

∇̃v(−→x ) =



∂vx
∂x
∂vy
∂y
∂vz
∂z

∂vx
∂y + ∂vy

∂x
∂vx
∂z + ∂vz

∂x
∂vy
∂z + ∂vz

∂y


(2.19)

For the detailed conversion mathematical process, the reader is directly ref-
ereed to Crouch [2003]. Now that a weak form is obtained, a discrete ap-
proximation of the solution can be achieved using the finite element method
in three main steps: (1) generation of a mesh across the space for which a
solution of problem is being seek, (2) estimation of a solution for the nodes
of the mesh, (3) deriving a continuous solution for the whole space by inter-
polating the nodes’ solutions.
In the case of linear finite element meshes, the displacement filed is inter-
polated between the nodes using linear functions. The interpolation of the
solutions are controlled by the “shape functions” of the nodes that vary be-
tween one to zero across the elements that touch the nodes. This in turn
means that the shape function is equal to one at node’s location and is equal
to zero at all points outside the corresponding elements. Therefore, for each
point in an element, the displacement is computed as a weighted sum of the
displacements of element’s nodes. Considering a 3D mesh with n nodes, the
shape function can be written as

N(−→x ) =


N1(−→x ) 0 0 N2(−→x ) 0 0 · · · Nn(−→x ) 0 0

0 N1(−→x ) 0 0 N2(−→x ) 0 0 · · · Nn(−→x ) 0
0 0 N1(−→x ) 0 0 N2(−→x ) 0 0 · · · Nn(−→x )

(2.20)

where −→x is a position vector, and N1, · · · , Nn are the shape functions.
Then, the continuous displacement function can be written as

u(−→x ) = N(−→x )a (2.21)
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where

a =



u1x

u1y

u1z
...
unx

uny

unz


(2.22)

with [uix uiy uiz] denoting the displacement of the ith node. Now the com-
ponents of strain tensor can be rewritten as

ε =



εxx

εyy

εzz

εxy

εxz

εyz


=



∂ux
∂x
∂uy
∂y
∂uz
∂z

∂ux
∂y + ∂uy

∂x
∂ux
∂z + ∂uz

∂x
∂uy
∂z + ∂uz

∂y


= ∇̃u = ∇̃(N(−→x )a) = Ba (2.23)

where

B = ∇̃N =



∂N1
x 0 0 ∂N2

x 0 0 · · · ∂Nn
x 0 0

0 ∂N1
y 0 0 ∂N2

y 0 · · · 0 ∂Nn
y 0

0 0 ∂N1
z 0 0 ∂N2

z · · · 0 0 ∂Nn
z

∂N1
y

∂N1
x 0 ∂N2

y
∂N2
x 0 · · · ∂Nn

y
∂Nn
x 0

∂N1
z 0 ∂N1

x
∂N2
z 0 ∂N2

x · · · ∂Nn
z 0 ∂Nn

x

0 ∂N1
z

∂N1
y 0 ∂N2

z
∂N2
y · · · 0 ∂Nn

z
∂Nn
y


(2.24)

Accordingly, the earlier weak form of the linear elastic PDE (Eq. 2.18) is
rewritten as

Ka = f (2.25)

where a contains the displacements of nodes and

K =
∫
V B

TDBdV (2.26)

f =
∫
S N

T−→t dS +
∫
V N

T−→b dV (2.27)
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Assuming a mesh of n nodes, Eq. 2.25 holds a system of 3n × 3n. Some
boundary conditions may also be specified to the problem; therefore, the
size of the system is reduced and any conventional techniques can be em-
ployed for solving the linear system. In the solution, a displacement vector
is estimated for each of nodes and a continuous deformation field can be
approximated by interpolating the displacements between the nodes.

2.2 Subject-Specific FE mesh generation

According to the previous section, Finite element (FE) analysis of three-
dimensional (3D) models provides an efficient computational framework to
represent and investigate the actual behavior of complex systems (Salo et al.
[2013a]). Conforming to the example provided in section 2.1.1, a volumetric
FE mesh is a prerequisite to FE analysis, and computational meshes provide
a domain for solving the mathematical description of physical, geometrical
and mechanical properties (Naomis and Lau [1990]; Lamata et al. [2014]).
Behavior simulations using these biomechanical models can be used to pre-
dict the consequences on health of changes in human tissues characteristics
associated for example with tissue resections, radiotherapy or aging. FE
models are extensively used in computer-aided surgery and diagnosis tech-
nologies. In clinical work flow, these models enable a better risk-assessment
which is a critical component of treatment decision-making and allow the
treatment procedures to be targeted to those most in need. They can be used
to optimize the surgical outcome planning and to elaborate virtual tools for
practical training of surgeons of physiotherapists, as well as for skills assess-
ment (Dawson et al. [2000]; Cotin et al. [2005]; Wu et al. [2005]; McGregor
et al. [2010]; Courtecuisse et al. [2010]; Doyle and McGloughlin [2011]; Miller
et al. [2011]; Talbot et al. [2012]; Gomes et al. [2013]). Some studies have
shown the effectiveness of virtual training systems in various clinical skills
(Gallagher et al. [2005]; Aggarwal et al. [2006, 2007]; Scalese et al. [2008]).
In cases where the main objective of such systems is training (e.g. teaching
the surgeons new procedures using virtual simulators) or studying the be-
havior of a specific device (e.g, implant) under different conditions, a generic
model can be sufficient. In this regard, the model can be developed from
average geometries and material properties. However, when facing a treat-
ment procedure which need great accuracy and specificity, subject/patient-
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specific models have to be considered. In such contexts a volumetric mesh
that conforms to the geometry of the subject/patient’s organ is required.
Generation of such meshes is the basic initial step in a successful numeri-
cal analysis with finite element method (FEM); as good numerical stability
should be achieved when solving governing equations (Lamata et al. [2014]).
The conventional process to generate subject/patient-specific meshes from
3D medical images generally involves the following steps (De Putter et al.
[2006]; Sastry et al. [2013]):

1. segmentation of the medical images and modeling of invisible struc-
tures (if applicable);

2. surface mesh creation;

3. volume mesh generation;

4. optimization of the mesh.

Whereas the clinical decision-making is critically important and often hap-
pens on a time-scale of seconds to hours (Kerckhoffs [2010]), this process
to generate subject/patient-specific meshes can be extremely time consum-
ing and labor intensive, mainly because of the segmentation step. Indeed,
segmentation is not a straightforward task in image processing or com-
puter vision, and the accurate extraction of geometrical information about
subject/patient-specific anatomy can require the processing of numerous
medical images. Moreover, meshing is a kind of optimization problem taking
into account the type and the number of elements and the preservation of
accuracy requirements. The convergence rates and overall accuracy of the
numerical analysis are highly dependent on the quality of generated meshes.
Mesh quality in turn highly depends upon the type of finite elements and
the application at hand (Firl et al. [2013]). For the past decades, researchers
have been testing different methodologies to overcome these issues by im-
proving segmentation, surface creation and/or meshing processes. However,
these methods have shown limitations with efficiencies that are highly de-
pending on the applications. In parallel, a wide range of scenarios employing
a generic mesh is reported under different levels of automation, in order to
refine the results. The primary purpose of all these studies is to make FE
mesh generation compatible with the time constraints of the clinical practice



CHAPTER 2. INTRODUCTION TO THE SUBJECT-SPECIFIC FE MESH GENERATION
TECHNIQUES 18

where the pre/intraoperative time-window is short and clinician availabil-
ity is limited. In this section, a brief overview of the original framework is
provided followed by a review of Generic-based mesh generation techniques
(Ho-Le [1988]).

2.2.1 Conventional techniques

The conventional strategy for FE mesh generation is summarized in Fig.
2.2. These methods are also called traditional or standard mesh generation
methods (McGregor et al. [2010]). As can be seen, the first step consists
of gathering medical images which might be followed by noise reduction,
smoothing, normalization and localization of scanned images. Then, ROIs’
(Regions Of Interest) boundaries should be manually, semi-automatically,
or automatically extracted from the images, depending upon the difficulty
of the given task. This step plays a crucial role in mesh generation because
it determines the geometry of the organs/structures that are being mod-
eled. A wide range of methods and tools have been developed on medical
image segmentation and they are mainly categorized into four groups (Lee
et al. [2015]): 1) Thresholding-Based; 2) Region-Based ; 3) Edge-Based ;
4) Clustering-Based methods. Some other techniques exist though such as
Level-set methods, Artificial Neural Networks, Registration-based methods,
or any combination of them. Each type of method has its own limitation
and their performance varies depending on the type of image modalities
(CT, MRI, X-Ray, Ultrasound, etc.), on the type of organs or structures
being processed (e.g., bones or soft tissues), and also on some other factors
(e.g., noise level, motion artefacts, image resolution, partial volume effect,
intra- and inter-operator variability, etc.). After the extraction of the ROIs
corresponding to the structures being modeled, various meshing algorithms
can be employed to generate 3D FE meshes. Two main approaches can be
considered for such algorithms:

1. Geometry-based meshing,

2. Grid-based meshing,

Each technique has strengths and weaknesses relative to the others, and
this will be explained in the next two sections. Moreover, other perspectives
related to the meshing process, namely the element types and mesh quality,
are discussed in section 2.2.1.3.
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Segmentation of VOIs Surface Creation FE mesh generationMedical images

Figure 2.2: Conventional framework for the generation of FE meshes.

2.2.1.1 Geometry-based meshing

Geometry-based algorithms are the most commonly used frameworks (Tay-
lor et al. [2013]). These methods create a 3D surface from segmentation-
boundary and then convert it to a 3D FE mesh. Hence, surface creation is
a prerequisite in the Geometry-based meshing algorithms. The input to the
surface generator is a set of three-dimensional voxel coordinates located on
the boundaries of ROIs (or their contours). Early methods assumed that the
points lie on curves defined by slicing a surface in 3D space with a collection
of parallel planes (Fuchs et al. [1977]; Meyers et al. [1992]; Edelsbrunner
[2003]), and their main objective was finding a 3D surface that interpolates
the points in the contour links (Park and Kim [1996]) thus approximating
the 3D geometry of the sampled structure or organ (Dey [2006]). In other
words, there are many possible surfaces, and one may seek the one that is
somehow the most reasonable and best fits a finite set of points scattered in
three-dimensional Euclidean space (Edelsbrunner [2003]). In their majority,
reconstruction algorithms generate external surfaces using splines (Young
et al. [2008]; Taylor et al. [2013]). They consists of three main steps in order
to interpolate the surface from the contours (Woodward [1988]; Piegl and
Tiller [1995]; Park [2003]): (1) B-spline curve interpolation of each 2D con-
tour; (2) making the B-spline curves exactly compatible via degree elevation
and knot insertion; and (3) computation of a B-spline 3D surface interpolat-
ing the curves via B-spline surface lofting. However, approximated surfaces
suffer from drawbacks such as not capturing the sharp geometrical changes
and a poor approximation of regions with bifurcations (Young et al. [2008];
Taylor et al. [2013]). Furthermore, fitting the splines to the segmented two-
dimensional cross sections requires the manual selection of control points
which may lead to geometric discrepancies between segmented-boundaries
and estimated bounding curves (Young et al. [2008]).
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Nowadays, thanks to the improvement of the 3D scanner resolution, the
Marching Cube (MC) algorithm, that directly extracts a triangulated sur-
face, has become a standard to generate isosurfaces (Lorensen and Cline
[1987]; Rajon and Bolch [2003]). MC considers the centers of voxels as the
vertices of a lattice or the grid of cubes, and uses voxels intensity values
to interpolate the surface location along the segments that join the vertices
(i.e., voxels centers). Through the scalar field, MC takes the eight neigh-
bor locations at a time (four each from two adjacent slices) and forms an
imaginary cube (see Fig. 2.3(a)), and then determines the polygons needed
to represent the part of the isosurface that intersects this cube. In order
to find the surface intersections within the cube, data values are evaluated
for cube’s vertices. If the value exceeds or equals the value of the surface, a
one is assigned to the cube’s vertex, which means this vertex of the cube is
located inside the surface, otherwise a zero is assigned to the vertex, which
means this vertex of the cube is located outside the surface. In this way, MC
determines which vertices of the imaginary cube are located inside and out-
side of the surface, and then creates surface intersections within the cube.
Since each cube contains eight vertices being inside or outside of the iso-
surface, there would be 28 = 256 different combinations. However, most of
these combinations are topologically equivalent and can be further reduced
to 15 patterns (Lorensen and Cline [1987]), as illustrated in Fig. 2.3(b).
In each pattern, different number of triangles are created to separate two
groups of cube’s vetices (i.e., the ones that are located inside the surface
and those outside of the surface). Finally, the individual polygons are fused
into the desired surface.
MC is very simple, robust, and produces C0 continuous triangulated surfaces
that follow the segmentation-boundary. However, some post-processing
techniques like smoothing are required to improve the shape of the gen-
erated surfaces (Young et al. [2008]; Preetha and Suresh [2012]). At the
same time, it raises some challenges that might be addressed for further im-
provement of performance and capturing the possible geometric degeneracies
and ambiguities. In this way, many researchers have focused on developing
and improving the MC (Newman and Yi [2006]). After the creation of the
surface using MC or its extensions, it can be used to generate higher order
CAD representations, or employed by meshing algorithms (e.g., Advanc-
ing Front (GrnhH [1982]; Peraire et al. [1987]; Lohner [1988]; Löhner et al.
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(a)

(b)

Figure 2.3: MC algorithm: (a) marching cube (inspired by Lorensen and
Cline [1987]) and (b) triangulated cubes (Yanez [2009]).

[1992]; Jin and Tanner [1993]) or Delaunay (Caendish et al. [1985]; Shenton
and Cendes [1985]) as a triangulated bounding surface (Young et al. [2008]).
As a matter of fact, there are lots of commercial software tools to generate
FE meshes automatically or semi-automatically from a segmented surface.
They often need manual intervention in case of complex geometries.

2.2.1.2 Grid-based meshing

Previous section described the concept of meshing algorithms that employ
a surface mesh. Although theses meshing approaches are designed to be
accurate in preserving the geometry of the target organ/structure, a toler-
ance for geometric distortions may be considered for a better control over
the meshing process (e.g., by smoothing the target surface). This in turn
means that the conformity of the created surface, namely the one that is be-
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ing used by meshing algorithm, to the real surface is decreased. Therefore,
there would be still motivation to increase the correspondence between the
generated surface and the real geometry. On this matter, after the creation
of the surface meshes, some nodes may need to be repositioned before vol-
ume meshing. This can be done manually or using a geometry-preserving
refinement post-processing step. In case of complex geometries, that may
include some sub-sections or inner cavities, generating a 3D accurate sur-
face with geometry-based algorithms like MC can become more complicated.
Many efforts have been done to overcome these limitations by bypassing the
surface creation step (e.g., voxel-based approach (Keyak et al. [1990])) or
by collapsing both surface and volume mesh generation into a single process
(e.g., VoMaC approach (Müller and Rüegsegger [1995])). These methods
are generally referred as “grid-based” meshing techniques in the literature.
In voxel-based approaches like Keyak et al. [1990], a structured FE mesh is
generated directly from the 3D voxel grid after extraction of . segmentation-
boundary and voxel labeling, by converting each voxel within VOIs into a fi-
nite element (i.e., a hexahedral element). The term “structured” indicates
that the generated mesh is a regular tessellation of a given space. These
methods are straightforward because they use voxel grids. Also, when there
is an isotropic sampling, it is assured that the generated mesh has an optimal
quality. Another advantage is that they can easily handle meshing of mul-
tiple VOIs. Moreover, as there is a one-to-one correspondence between the
voxels and finite elements, provided intensity information associated with
each voxel can be used to assign more detailed and specific material proper-
ties to each element in order to study the mechanical behavior of the target
organ/structure. However, it could be argued that the surface of generated
mesh can be stepped in case of large voxels. On the contrary, if the size of
the 3D image is large, such a method generates a huge number of elements
leading to long computation times for the corresponding FE model.
Considering these limitations, some researchers have focused on improving
the standard strategies (Young et al. [2008]). VoMaC-meshing (Müller and
Rüegsegger [1995]) can be considered as one of these techniques which tai-
lors the mesh generation to the original surface generation. VoMac is an
extension of the Marching Cube algorithm in which tetrahedron templates
are used instead of triangular surface facets. This is done by a complete
tetrahedralization of the hexahedral volume and then the creation of a look-
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up table for the marching cube algorithm. In comparison with voxel-based
methods, the issue of stepped surface is solved by VoMaC thus producing
smoother surfaces. However, VoMaC can only be employed to generate sin-
gle part meshes; this issue can be solved within other improvements (e.g.,
EVoMAC (Young et al. [2008])).

2.2.1.3 Element types and mesh quality

According to the principles of 2D or 3D FE modeling, surface or volume
elements are used to constitute the basic elements of the mesh. The three-
dimensional elements are variations of the two-dimensional ones (Fig. 2.4).
Generated FE meshes may be composed of different kinds of elements. The
most common and basic 2D elements (Triangle and Quadrilateral) and 3D
elements (Tetrahedron, Hexahedron, Prism/Wedge, Pyramid) are shown in
Fig. 2.5 (see Chabanas et al. [2003]; Henak et al. [2013] for discussions as
concerns these types of elements).
The elements can be delimited by straight sides or plans (they are then called
linear elements) or by curved surfaces (for example quadratic elements).
Examples of linear and quadratic elements are represented in Fig. 2.6. As
can be seen, in the case of quadratic elements, the edges are quadratic func-
tions and therefore an additional middle point is necessary to describe the
function. Also, other higher-order triangular elements are shown in Fig. 2.7.
In the literature, a wide range of 3D meshing algorithms are proposed to
generate FE meshes containing various types of elements. Generally speak-
ing, the majority of approaches use hexahedral and tetrahedral elements.
There are some studies that discuss meshing techniques from the point of
element types. For more information, the interested reader is referred to the
papers Owen [1998]; Stegmann [2000]; Rousson et al. [2004].

(a) 1D element: Line (b) 2D element: Triangle (c) 3D element: Tetrahe-
dron

Figure 2.4: Finite elements.
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(a) Triangular (b) Rectangular

(c) Prismatic (d) Tetrahedral (e) Pyramidal (f) Hexahedral

Figure 2.5: Node placement and geometry for linear elements: 2D elements
are represented in (a) and (b), and 3D elements are represented: (c), (d),
(e), and (f).

(a) Triangular (b) Rectangular

(c) Prismatic (d) Tetrahedral (e) Pyramidal (f) Hexahedral

Figure 2.6: Node placement and geometry for quadratic elements, 2D ele-
ments are represented in (a) and (b), and 3D elements are represented in
(c), (d), (e), and (f).

(a) Linear (b) Quadratic (c) Cubic (d) Quartic

Figure 2.7: Higher-order triangular elements.
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As mentioned earlier, the meshing process is a kind of optimization
problem on the type and number of elements while preserving the accu-
racy requirements. It is preferred to preserve the geometry of the target
organ/structure; therefore, some nodal points of the finite element model
might be moved, which is usually required near the boundaries. These dis-
placements may cause large modifications in elements shape that will make
FE analysis impossible. In other word, the accuracy of PDEs that are being
solved using finite element method depends upon the mesh quality. There-
fore, whatever the employed meshing algorithm, it is important to pose the
question whether the produced meshes satisfy both regularity and qual-
ity criteria. For instance, meshes containing tangled elements (i.e., inverted
elements) result in physically invalid solutions. These elements may appear
in the mesh generation process or after large deformation of a valid/regular
FE mesh. Therefore, it is essential to evaluate the regularity of the de-
signed FE model by checking the validity of all elements. Fig. 2.8 shows
a section of an irregular mesh. In this regard, the regularity of FE meshes
must be recovered manually or by employing mesh repair procedures so that
the quality of meshes is reached to an acceptable level. Once the regularity
is presented, comes the question of “mesh quality”. Knupp says (Knupp
[2007]): “Mesh Quality concerns the characteristics of a mesh that permit a
particular numerical PDE simulation to be efficiently performed, with fidelity
to the underlying physics, and with the accuracy required for the problem.”
There are a wide range of mesh quality metrics and their relevance is pro-
portional to the corresponding element types and also to the computations
being performed on the mesh. Such metrics can be found, for instance, in the
commercial softwares’ user guide (e.g. ANSYS, PATRAN, SDRC/IDEAS,
and Fluent FIMESH), and also in the studies: Sheth [2010]; Aguado-Sierra
et al. [2011]; Wittek and Miller [2011]; Miller et al. [2012]; Chen et al. [2013];
Baldock et al. [2013]; He et al. [2014]; Caiani et al. [2014]; Zhang [2015]. In
the following, two classical quality criteria are described (Yanez [2009]; Shim
et al. [2012a]; ANSYS [2013]).
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(a) (b)

Figure 2.8: FE mesh regularity: (a) a section of a regular FE mesh, (b) a
section of an irregular FE mesh,

• Aspect Ratio (AR) is defined on the basis of the distances between
element’s faces, and is computed as the ratio of the maximal distance
to the minimal distance (ANSYS [2013]). Therefore, for well-designed
elements, AR should ideally approach to one, and on the contrary, it
reaches high values for distorted elements (see Fig. 2.9(a)).

• Warping Factor (WF) is defined over the element’s faces, and is
evaluated by measuring the distances of the face’s nodes to their aver-
age plane. For nodes that are ideally co-planar, the WF approaches
to zero which means the face is said to be well-designed or perfect; and
increases for low quality faces (see Fig. 2.9(b)). It should be noted
that WF can not be considered for triangle faces as the three nodes
are always co-planar.

2.2.2 A priori knowledge-based techniques

In the previous sections, the principles of standard subject-specific mesh
generation techniques were explained. Although there have been significant
improvements during the last years, subject-specific mesh generation is still
a challenging task. Clearly, the main limitations come from: 1) image seg-
mentation, which might need long and tedious manual interventions that
could not be used routinely in a clinical protocol for a large number of pa-
tients, 2) the meshing processes, which can also need manual intervention
when a specific mesh design is required. In the literature, a wide range of
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(a)

(b)

Figure 2.9: Aspect Ratio and Warping Factor: (a) ARs for triangles and
quadrilaterals, and (b) WFs for a unit cube and the cases that the top face
is twisted by 22.5° and 45° (ANSYS [2013]).

scenarios are reported under various levels of automation in order to refine
segmentation, surface creation and/or meshing processes. The primary pur-
pose of all these studies is to make FE mesh generation compatible with the
time constraints of the clinical practice where the pre/intra-operative time
window is short or clinician availability is limited.
In that perspective, a group of studies have employed mesh morphing
techniques in order to deform a generic FE mesh or implementing a mesh-
ing process which is adapted to the geometry of the target subject/patient.
The main advantage of these generic-based mesh morphing techniques is
that all the subject meshes inherit the same structure from the atlas FE
mesh (same nodes and same elements organization). However, it should be
noted that after morphing, the quality of the meshes (or worse, the regular-
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ity of these meshes) may decrease. That’s why refinement post-processing
procedures are often required for these frameworks. Fig. 2.10 shows a gen-
eral block diagram of generic-based frameworks.

In the literature, apart from the point that the generic mesh is generated
using the information provided by a training data set or a single data, both
“template” and “atlas” terms are attributed to the mesh that is being de-
formed under subject-specific information. This means that both terms can
be used to refer to the generic meshes. However, the critical point to be
made here is “if the training data set is being used to generate only an aver-
age geometry or, further, to facilitate some included steps like segmentation
or landmark selection”. Therefore, here, the methods of second group, in
which the training data set is being used for landmark selection or segmen-
tation of organs, are being called “atlas-assisted” subject-specific mesh
generation techniques. Accordingly, all a priori knowledge-based techniques
can be divided into two main categories: atlas-based methods and atlas-
assisted methods. In short, atlas-based methods are those ones that use
some subject-specific information in order to deform an atlas FE mesh or
to have a subjective meshing process; and on the other side, atlas-assisted
methods are referred generally to those using statistical models based on a
priori knowledge, provided by a training set. These models describe the av-
erage feature-of-interest (FOI), for example, shape or appearance, and also
the main modes of variation of FOI within the training set or population.
Therefore, they can be used to compute estimates of FOIs for new data,
which will be fully explained with application of FE mesh generation later.

Extraction of information related to
 the region of interest (ROI)

Mesh Morphing ProcessAtlas FE Mesh

Medical Images

Atlas FE Mesh
and Meshing Script

Adaptation of Meshing Process

Subject-Specific FE Mesh

Figure 2.10: General block diagram of atlas-based subject-specific FE mesh
generation.



29 2.2. SUBJECT-SPECIFIC FE MESH GENERATION

2.2.2.1 Aatlas-based methods

As can be seen in Fig. 2.10, the preliminary step toward the generation
of subject-specific meshes is to design a FE mesh from an appropriate sub-
ject, called atlas henceforth using conventional methods, which may involve
manual operations for image segmentation or meshing process. The term
appropriate refers to the atlas subject, within the population, which has
a normal shape of VOI. In addition, the chosen atlas image volume must
have good a quality and uniform intensity in order to facilitate, as much as
possible, segmentation/boundary extraction. The next step is the extrac-
tion of subject-specific information from image data in order to deform the
atlas FE mesh and to design a subject-specific meshing process. Hereafter,
various strategies of the literature, aiming at generating a subject-specific
FE mesh from an atlas one, are explained.

Basically, the core of these methods is the use of subject-specific prior knowl-
edge in the form of a surface, a set of point cloud or landmarks. The first
study that demonstrated the application of mesh morphing was proposed by
Couteau et al. [2000]. A grid-based Mesh-Matching (M-M) algorithm was
designed to generate subject-specific FE meshes. First, the point cloud of
the VOIs’ external surfaces was extracted. Then, in order to capture the
geometry of the VOI, the external nodes of the Atlas FE mesh were mor-
phed into the VOI’s point cloud by a 3D elastic transformation which was a
combination of a rigid transformation, a global warping and local deforma-
tion functions. The employed elastic registration was based on an adaptive
three-dimensional displacement grid called an octree-spline. Finally, the ob-
tained transformation was applied to all the nodes of the Atlas FE mesh,
including the internal nodes (Fig. 2.11). This method was used to generate
subject specific Femur meshes and the rate of distorted elements was around
15%. In another study Salo et al. [2013a], the same strategy was employed to
morph structured FE meshes of the face. Although a post-treatment process
was carried out on the generated meshes in order to recover the regularity
and to improve the quality of finite elements, the generated meshes were
prone to distortions. Hence, the Mesh-Matching method was improved by
the authors into the Mesh-Match-and-Repair (MMRep) algorithm (Bucki
et al. [2010b]) (Fig. 2.12). As in the method developed by Couteau et al.
[2000], an ROI was segmented in the subject’s images and its 3D surface
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was used as the target to deform the atlas’ FE mesh. It was shown that
the level of distortion can be dramatically reduced, if the transformation
satisfies three main constraints: being C1-differentiable, non-folding (a local
property ensuring that space orientation is preserved) and invertible; these
properties specify a C1-diffeomorphism (Bucki et al. [2010b]). In addition,
regularity constraints were considered during the adaptation process, and
mesh quality and validity were maintained using an a posteriori mesh repair
step.

(a) (b)

Figure 2.11: Grid-based Mesh-Matching (M-M) algorithm: (a) Superimpo-
sition of the Atlas mesh (grey) with the 3D surface target points (black), (b)
Generated subject-specific mesh (shaded grey) from the Atlas mesh (wire-
frame) (Couteau et al. [2000]).
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Segmentation of 
region of region of interest (ROI)

Mesh Repair Procedure

Atlas FE Mesh

Medical Images

Subject-Specific FE Mesh

Mesh-Match-and-Repair 
(MMRep)

Elastic
Deformation Procedure

Atlas mesh 
surface nodes

Applying the obtained 
deformation to the inner nodes

of Atlas FE mesh

Figure 2.12: Block diagram of Mesh-Match-and-Repair (MMRep) algo-
rithm.

In Magnotta et al. [2008], a similar mesh mapping strategy was em-
ployed to generate meshes for phalanx bones of the human hand. First, the
surface nodes of the atlas mesh were mapped onto the input bony surface
by computing the distance between the surfaces as the driving measure for
the deformable registration. Then, the internal nodes of the atlas mesh
were moved using thin-plate spline (TPS) transforms. The TPS transforms
were obtained using the positions of the original and mapped nodes of the
atlas surface mesh. Following this displacement-driven mesh mapping, a
deformable registration technique based on the FE method was also intro-
duced to deform an atlas FE mesh in Grosland et al. [2009]. In another study
(McGregor et al. [2010]), the same methodology was employed to generate
patient-specific meshes of the abdominal aortic bifurcation.
Although the previous studies have directly used the surface of VOIs as an
input to the mesh morphing procedures, landmark-based morphing methods
also have been developed to generate subject-specific meshes. In Fernandez
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et al. [2004], a technique based on free form deformations (FFDs) was em-
ployed to generate tricubic Hermit volume meshes. It is worth pointing out
that, in addition to the nodal coordinates, Hermit meshes nodes include in-
formation about the derivatives encoding the shapes. The idea behind this
framework was to embed the baseline geometry in a control volume which
is so-called host mesh. In order to customize the generic geometry within
a transformation, a set of landmarks were defined on both baseline and tar-
get geometries. These landmarks were used to guide the deformation of the
host mesh; and finally, it was passed to the embedded baseline mesh and
subject-specific mesh was achieved (Fig. 2.13). The proposed optimization-
based geometric fitting procedure was also employed by other researchers to
generate high order cubic Hermit meshes (Shim et al. [2007, 2012b, 2016]).

In Sigal et al. [2008], specimen-specific FE models of caudal rat vertebrae
were generated using two morphing algorithms, automated wrapping (AW)
and manual landmarks (ML). Similarly, the computed mappings from the
source surface to the target surfaces were used to morph the source mesh
and produce the target meshes. In AW, an auxiliary triangulated surface
was used to warp the source and target surfaces and to obtain the mappings
(Fig. 2.14(a)); while in ML, the mappings were computed by matching the
landmarks which were manually located on both source and target surfaces
(Fig. 2.14(b)).
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Undeformed host mesh Deformed host mesh

Target landmarks

Source landmarks

(a) Femur

(b) Medial collateral ligament in-
sertion

(c) Rectus femoris muscle

Figure 2.13: Subject-specific mesh generation based on Host-mesh cus-
tomization (Fernandez et al. [2004]).
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(a)

(b)

Figure 2.14: Automatic and landmark based mesh morphing: (a) Auto-
matic Warping (AW): an auxiliary surface is wrapped to each of the
source and the target surfaces. Then, in order to compute a transformation
from the source’s surface to the target’s surface, the nodal difference between
the two wrapped auxiliary surfaces is computed. The surface transform is
interpolated to morph the source mesh onto the target surface. Various
percentage points of the change in the source geometry are shown in the
bottom row. (b) Manual landmarks: landmarks are manually selected
on the source (left) and the target (right); then the overall transformation
is computed using thin-plate splines method. (Sigal et al. [2008]).
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In Salo et al. [2015], a semi-automated landmark-based mesh morphing
and mapping technique was proposed to generate patient-specific FE mod-
els of the human pelvis without segmentation. First, the template mesh
was morphed onto a different pelvis using a set of landmarks manually de-
fined on the volumetric imaging data (CT scan). And then, a multi-level
mapping process was employed to refine the morphed pelvic surfaces (Peleg
et al. [2014]). During the morphing step, nodes inside the template mesh
were allowed to move along the six-degrees of freedom of the 3D space, in
order to reduce the elements distortion.

Although morphing a template mesh based on some landmarks has been
widely used to generate subject-specific meshes for various applications (e.g.
facial soft tissue (Chen et al. [2012]; Lou et al. [2012]), Femur (Grassi et al.
[2011]), Lumbar Vertebrae (Campbell et al. [2012]), human pelvis (Salo et al.
[2013b]), even with incorporation of smoothing algorithms, such morphing
techniques have difficulties to generate high quality meshes for geometrically
complex models (Salo et al. [2013b]). Indeed, mesh repairment procedures
that may include manually remeshing of not-repaired elements are some-
times required (Salo et al. [2013b]). In the front of such issues, landmark
and surfaces based morphing techniques are combined in order to provide a
balance between the fitting accuracy, anatomical correspondence and mesh
quality (Campbell and Petrella [2015]; Zhang et al. [2016]). For instance,
in Grassi et al. [2011], some landmarks were defined manually on both tem-
plate and target as constraints within the surface morphing process, what
was based on a radial basis function (RBF) regression. However, as a few
number of landmarks were used for the morphing process, it resulted in
an isotopological surface mesh with a poor recovery of the STL geometry.
Therefore, each node of the morphed surface mesh was perpendicularly pro-
jected on the centroid of the closest triangle in the STL. This projection
provides a good match between the two surfaces, but FE meshes quality
was decreased because of intersecting triangles and high aspect ratios. So,
a smoothing based on Laplacian operator was applied in order to improve
the quality of the surface meshes. As concerns the shrinkage caused by the
Laplacian smoothing, the resulting surface mesh was re-projected on the
STL geometry; and finally, a Gaussian RBF was employed to replace the
inner nodes of the template mesh (Fig. 2.15).
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Figure 2.15: Steps of the morphing algorithm, shown on the proximal femur
(Grassi et al. [2011]).

In Zhang et al. [2016], an efficient hybrid method was proposed to gener-
ate patient-specific anatomically-detailed facial soft tissue FE models. Like
conventional surface-based mesh morphing techniques, this method also in-
volves two main steps: surface registration and then volumetric mesh inter-
polation. The surface registration is done by employing a landmark-based
thin-plate spline that needs the determination of a series of anatomical land-
marks on both source and target surfaces.
In Klein et al. [2015], a two level mesh generation process (morphing and
fitting) was proposed (Fig. 2.16). As a first step toward the adaptation
of a template mesh (i.e. morphing), anatomic landmarks are identified on
both source and target geometries (i.e., on the template mesh and extracted
surfaces). Then, the template mesh is morphed using a thin-plate spline
function for radial basis function guided by landmarks (Carr et al. [2001];
Bennink et al. [2007]). Finally, in order to fit the morphed meshes to the
extracted surfaces, an implicit surface methodology is employed to move the
nodes of the morphed meshes Reed et al. [2009]. In another study (Camp-
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Template mesh
 with landmarks

Patient geometry
 landmarks

Fitting
 process

Mesh morphed to the 
patient geometry landmarks

Surface mesh (green) and
 morphed mesh(blue)

Surface mesh (green) and
 fitted mesh(red)

Morphing
 process

Figure 2.16: A two level mesh generation process (morphing and fitting):
the morphing and fitting processes of a template femur FE mesh onto an
example extracted bone surface geometry (Klein et al. [2015]).

bell and Petrella [2015]), in order to morph the template mesh based on
the landmarks, the segmented surfaces were simply used to automatically
identify in advance the landmarks of the Lumbar Spine.
Instead of using surface or landmarks to morph an atlas mesh, some stud-
ies have proposed to use binary image registration to generate customized
FE meshes (Lamata et al. [2010a,b, 2011, 2014]; de Vecchi et al. [2013]).
In Lamata et al. [2010a], a generic cubic Hermite heart ventricular model
was personalized to the anatomy of a patient using this method. The mesh
warping process included two main steps. The first step was the estimation
of a 3D warping field that was obtained by registering the binary image
representations of the atlas mesh to the target anatomy. Then the warping
field was fitted into the cubic Hermite mesh by solving three linear systems
of equations. Doing so, a smooth and accurate projection of the warping
field into the basis functions of the mesh was estimated. The whole process
is shown in Fig. 2.17. Again, it is noteworthy that in a Hermite mesh, both
the 3D Cartesian coordinates of nodes and the derivatives of shape versus
local finite element coordinates are used to encode the shape, which pro-
vides a smooth representation that is favorable for the simulation of large
deformation mechanics. Although most studies have employed registration-
based methods to deform an atlas mesh to match with a target anatomy,
registration has also been used to automate the meshing process (Ji et al.
[2011]; Kallemeyn et al. [2013]).
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In Ji et al. [2011], for a given subject, image-based rigid registration
was used to transfer the segmented surface of the ROI into the atlas space;
then the subject-specific mesh was generated using the same meshing script
that was previously used for the generation of the atlas mesh. Finally, the
subject-specific mesh was transformed back into the subject space. Fig. 2.18
shows this framework, which has proven being useful for the generation of
subject-specific hexahedral brain meshes.
In another study (Kallemeyn et al. [2013]), in order to automate multiblock
meshing, the building block structure (BBS) was automatically defined for
each subject. Exterior points of the BSS were locally mapped onto the target
surfaces using nonlinear registration, and then final subject-specific meshes
were generated.
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2.2.2.2 Atlas-assisted methods

As mentioned earlier, atlas-assisted methods are based on a training data set
which permits to create statistical models, in order to describe average FOIs
and also the main modes of variation of FOIs within the training set. In
this regard, a brief overview on the basic principles of statistical modelling is
provided and then relevant literature with focus on subject-specific FE mesh
generation will be reviewed. The general framework of statistical modeling
and also its attribute to the subject-specific FE mesh generation is shown
in Fig. 2.19.
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The core of such a process consider in learning the prior knowledge by
the statistical modeling of a population of training instances. Therefore, it’s
really important to compensate for variations across the training instances
that are caused by factors other than variation in the shape or appearance.
This compensation or pre-processing can be done by employing registration
or alignment techniques. After alignment, a-priori knowledge about the
FOI (e.g. shape or appearance) is provided for each subject within the
training data. According to the application requirements, these information
can be extracted manually or automatically, and also be in the form of a
surface, a set of landmarks explaining anatomical structure, or intensity of
gray values within the VOI, and etc. It should be reminded that in some
studies, the alignment process is done after providing the a-priori knowledge;
for example, the surface of all VOIs are extracted and then aligned in a
common coordinate system. Once the training instances are provided and
the correspondence between them is established, they can be employed to
create the statistical model. To make it more understandable, let’s assume
that a set of shapes are being modeled using statistical models. In this way,
at first, the average shape (x) is calculated among all training instances (xi):

x = 1
N

N∑
i=1

xi (2.28)

The average shape is also so-called Atlas. Mention should also be made
of the other methods that can be used to create the average shape. For
example, it might be estimated by minimizing an average distance between
x and xis (Rousson et al. [2004]). Or for simplicity, one of the instances can
be chosen as the Atlas; but, in such a case the model might be biased toward
the selected Atlas. Next, in order to capture the variations of the instances
from the average shape, a covariance matrix is calculated as below:

S = 1
N − 1

N∑
i=1

(xi − x)(xi − x)T (2.29)

Afterwards, Principle Component Analysis (PCA) is applied to the co-
variance matrix, which involves calculation of principal modes of variation
(eigenvectors, Φs) and corresponding variances (eigenvalues, λs). Therefore,
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it lets the statistical model to be described by the average shape (x) and
the eigenvectors. It is important to note however, that the model can be
described in a compact form using only the most significant modes of vari-
ation, which are defined by the eigenvectors corresponding to the largest
eigenvalues (Barratt et al. [2008]). If the eigenvalues are ordered in the
descending order of magnitude such that λ1 > ... > λN−1, the first corre-
sponding eigenvectors can therefore be used to describe the shape of other
individuals, not presented in the training dataset. Finally, the new instance
is approximated by a linear combination of the most important modes (Φs)
as below:

x = x +
C∑
s=1

bsΦs (2.30)

Where bs is the shape model parameter that describes the contribution
of the sth mode of variation. Of course, the best method to chose the number
C of retained modes for the approximation can be questioned. Clearly, the
accuracy of the approximate shape may depend critically on the number
of retained modes; in addition the compactness of the created model is
affected by it (Stegmann [2000]). In the literature, a wide range of techniques
are reported to determine the number of retained modes (Stegmann [2000];
Heimann and Meinzer [2009]). The most common approach is to use the
ratio of the accumulated variance to the total variance:

r =

c∑
s=1

λs

N−1∑
s=1

λs

(2.31)

In this case, the number C of retained modes is chosen so that it leads to
a desired ratio which is commonly from 0.9 to 0.98 (Heimann and Meinzer
[2009]). Having considered statistical shape models (SSM), one might also
need to capture texture variations within the training dataset. In other
words, image intensity-based features can also be modeled around the VOIs
(for boundary-based features) and/or inside the VOIs (for region-based fea-
tures). These models are so-called statistical appearance models (SAM). In
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summary, shape and texture instances can be generated respectively using
the shape and texture model parameters. Also, both models can be unified
to create a complete compact model. For more explanations, the reader is
referred to Heimann and Meinzer [2009] and Sarkalkan et al. [2014]. In any
case, it is clear that the only remained task is the determination of model
parameters so that it fits to unseen data as well as possible. This is a kind
of optimization problem which is also called a fitting, matching, or search
process. Model parameters are tuned in such a way that the difference be-
tween the FOIs represented by the statistical model and FOIs of unseen
data is minimized. In order to have a comprehensive overview of these algo-
rithms, the reader is referred to latter studies. In the literature, statistical
models are generally used to create FE mesh instances. For example, in
Bryan et al. [2010], the statistical model was employed to generate human
femur tetrahedral mesh instances with associated material properties (see
Fig. 2.20). In this study, at first, the VOI, i.e., the femur, was segmented
for all subjects in the CT images. Then, one subject was chosen as the
atlas/reference/baseline, and subsequently, a high quality solid tetrahedral
mesh was designed for the atlas VOI. In order to generate FE meshes for
other subjects within the training dataset, the atlas FE mesh was morphed
using a two-level registration strategy:

1. An elastic registration technique was applied to establish a correspon-
dence between the atlas and the subjects’ surfaces;

2. The atlas mesh was deformed based on the surface node displacement
vectors and solving decoupled three dimensional Laplace equations.

Then, material properties, i.e., apparent bone density, were assigned to the
meshes’ nodes based on the CT images. This process leaded to the formation
of subject-specific solid tetrahedral meshes with unique material properties
for all members of the training dataset. Then, statistical models were con-
structed by subjecting the meshes to Principal Component Analysis (PCA).
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Morphed Morphed MorphedMeshed Meshed Meshed

Femur A Femur B Femur C

Figure 2.20: Plot of morphed and manually meshed instances of the same
geometry, comparing material modulus representation and strain distribu-
tion resulting from a 1× body weight load applied vertically to femoral head,
simulating one-legged stance (Bryan et al. [2010]).

As an improvement of previous works, a statistical atlas based approach
was proposed to automatically generate subject-specific FE meshes in Wang
and Qian [2016]. Block diagram of the current method is shown in Fig. 2.21.
As can be seen, the input to this framework is the subject-specific shape,
and the output is the FE mesh of the subject shape. The mesh generation
process contains two main phases:

1. Establishing a boundary correspondence between the atlas shape and
a new given shape via shape instantiation and projection;

2. Atlas FE mesh morphing based on the boundary correspondence.

The first phase, i.e. establishing a boundary correspondence, is based on the
construction of a statistical shape model. The prior knowledge was learnt
by statistical modelling of a training set of shapes using Principle Compo-
nent Analysis (PCA). The most significant modes of variations were used to
describe a linear shape space that was originated at the average shape. In or-
der to correctly calculate the average shape, Free-From Deformation (FFD)
was employed to establish a correspondence between the training shapes
and a chosen template shape. To achieve an accurate correspondence, some
landmarks were also defined as constraints within the registration process.
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Then, all shapes were sampled by the same number of points and finally a
statistical shape model was conducted. After creation of the statistical shape
model, an atlas FE mesh was designed for the average shape. To instant
a new given shape, optimal shape parameters (w) were measured (through
an optimization or a search process) so that the shape instance fits to the
given shape. Finally, in order to obtain the best synthesized shape, the in-
stantiated shape was projected to the input shape along the normal. In the
second phase, based on the established boundary correspondence between
the Atlas and the final instantiated shape, the Atlas FE mesh was morphed
onto the input shape. Numerical results on 2D hands are shown in Fig. 2.22.
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Figure 2.22: Statistical atlas based approach for automatic meshing of
subject-specific hands shapes: (a) input shapes, (b) aligned shapes, (c) mean
shape, (d) the quadrilateral mesh of the mean shape and the Jacobians, (e)
the correspondence between the Mean and new shapes, and (f) a gener-
ated subject-specific FE mesh by morphing the atlas mesh (Wang and Qian
[2016]).

In another study (Väänänen et al. [2015]), statistical appearance models
(SAM) were employed to reconstruct the 3D shape and internal architec-
ture of the VOIs (i.e., bones) using a single 2D image. This was done by
aligning 2D images to the created statistical appearance models. The en-
tire framework is shown in Fig. 2.23. VOIs were segmented manually and
triangular surface meshes were generated for all subjects in the training
dataset. In order to represent each shape by a set of point clouds, the mesh
vertices and the centers of the surface triangles were used. A set of land-
marks were defined on the segmented surfaces that were used to establish a
global alignment (scaling and rigid transformation) between the samples us-
ing Generalized Procrustes Analysis (GPA). The obtained transformations
were applied to the landmarks and finally the average of each anatomical
landmark was calculated. Then, with the aim of creation of a template im-
age, Thin-Plate Splines (TPS) was used to warp the medical images of the
training VOIs to the shape described by the average landmarks. Also, a
template mesh containing tetrahedral elements was generated for the tem-
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plate image. Thereafter, based on the anatomical landmarks and previously
extracted point clouds, the template mesh was warped to the training shapes
using TPS in order to generate subject-specific meshes. Subsequently, den-
sity information were assigned to each element. Finally, all warped meshes
containing shape and density information were used to construct the sta-
tistical appearance model. Fig. 2.24 shows a statistical model created for
femur shapes. With the aim to generate subject-specific FE mesh using a
2D image, the subject-specific shape and the internal densities were recon-
structed by minimizing a cost function including three terms: (1) the sum
of absolute differences between the projection of the SAM (digitally recon-
structed image) and the input image, (2) the quality of the mesh, and (3)
the cost of anatomical positioning calculated using landmarks.
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Segmentation of VOIs
Placing landmarks on 
the segmented VOIs

Global alignment of landmarks, 
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Medical images
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Single 2D image

Subject-specific FE mesh

Begin
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Figure 2.23: A schematic diagram of the statistical atlas based subject-
specific FE modeling (inspired by Väänänen et al. [2015]).
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(a) (b) (c) (d)

Figure 2.24: Development of a SAM for femur application: (a) Extracted
femur shapes from quantitative CT images, (b) Generated average shape
using GPA and TPS, (c) Meshed average shape, (d) Generated FE meshes
for each training subject, including density information (Väänänen et al.
[2015]).

2.3 conclusion

Over the past years, there has been a rapidly increasing interest in mak-
ing the mesh generation process compatible with the clinical constraints.
This is done in two ways: (1) improving the standard mesh generation tech-
niques, namely by making the segmentation, surface creation and meshing
algorithms automatic as much as possible, and (2) employing atlas-based
strategies. The second group of methods are being increasingly developed
because they offer to bypass the need for any conventional meshing algo-
rithm, namely by deforming an atlas FE mesh or by adapting a generic
meshing process to the subject-specific information. Another advantage of
these methods is that the subject-specific meshes inherit the same structure
from the atlas FE mesh (i.e. same nodes and same elements organization).
However, these methods have some limitations, which include: (1) the re-
quired subject-specific information that can be provided in different forms
(e.g., a set of landmarks, contours, a created surface, and etc.), but is not
extracted easily or automatically for all the applications, and (2) from the
perspective of mesh morphing process, the deformation of an atlas mesh
may result in an irregular or a low quality mesh that reduces the accuracy
of subsequent FEAs. Therefore, developing subject-specific mesh generation
techniques that avoid these limitations is of great importance and interest.
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Generation of subject-specific 3D Finite Element (FE) models requires
the processing of numerous medical images in order to precisely ex-
tract geometrical information about subject-specific anatomy. This
processing remains extremely challenging. To overcome this difficulty,
we present an automatic atlas-based method that generates subject-
specific FE meshes via a 3D registration guided by Magnetic Resonance
images. The method extracts a 3D transformation by registering the
atlas’ volume image to the subject’s one, and establishes a one-to-one
correspondence between the two volumes. The 3D transformation field
deforms the atlas’ mesh to generate the subject-specific FE mesh. To
preserve the quality of the subject-specific mesh, a diffeomorphic non-
rigid registration based on B-spline Free-Form Deformations (FFDs) is
used, which guarantees a non-folding and one-to-one transformation.
Two evaluations of the method are provided. First, a publicly available
CT-database is used to assess the capability to accurately capture the
complexity of each subject-specific Lung’s geometry. Second, FE tongue
meshes are generated for two healthy volunteers and two patients suffer-
ing from tongue cancer using MR images. It is shown that the method
generates an appropriate representation of the subject-specific geometry
while preserving the quality of the FE meshes for subsequent FE analy-
sis. To demonstrate the importance of our method in a clinical context,
a subject-specific mesh is used to simulate tongue’s biomechanical re-
sponse to the activation of an important tongue muscle, before and after
cancer surgery.
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3.1 Introduction

FE models are used extensively in computer-aided surgery. For such con-
texts subject-specific models need to be generated. As illustrated in the
previous chapter, Atlas-based mesh morphing techniques show a great po-
tential for subject-specific FE mesh generation. During the last years, a
broad range of atlas-based mesh morphing strategies was proposed. Each
method was developed to solve a specific problem within a set of constraints
(e.g., being automatic, generating regular and high quality meshes, getting
the target geometries accurately). These methods first need an atlas’ FE
mesh, which can be designed following usual procedures. The subsequent
step is the extraction of information related to specific regions of interest
(ROI) from subject’s medical images. Such information is extracted in the
form a geometrical description, such as contours, 3D surface models, or a
set of land-marks. Finally, the atlas’ FE mesh is “morphed” onto this ge-
ometrical description and subject-specific meshes are generated. The main
advantage of all these techniques is that all the meshes inherit the same
structure from the atlas’ FE mesh (same nodes and same elements’ organi-
zation). It should be noted that after morphing the quality of the meshes
may decrease, and post-processing refinement procedures are often required.
The level of distortion is also depending on the complexity of the atlas’ and
subject’s geometries.
The extraction of the geometrical description of the ROIs is a challenging
task, which can be time-consuming, especially for the applications requiring
image segmentation. In some cases the segmentation procedure is sensitive
to noise or image quality. To illustrate this, Fig. 3.1 shows CT and MRI 2D
images of the oral cavity of three subjects. Assuming that such images are
used to extract information as concerns the shape of the tongue, it seems
quite clear that difficulties will be encountered do define the corresponding
ROIs. Indeed, for the CT image plotted on Fig. 3.1(a) segmentation of
tongue contours seems impossible. More information is provided on MR
images such as the one displayed on Fig. 3.1(b) but the boundaries between
tongue tissues and other edges of the oral cavity (lips, teeth, and cheeks)
can still be difficult to detect. Moreover, in some cases such as in the MR
image of a patient sufferings from tongue cancer displayed on Fig. 3.1(c). A
bad quality volumetric image (low contrast and noise) is clearly observed,
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(a) Normal CT images (b) Normal MR images (c) MRIs of a patient

Figure 3.1: Tongue medical images.

abnormal tissue regions in the affected areas can cause high intensity vari-
ations inside the tongue. To overcome such limitations, there is a need for
methods that avoid the segmentation steps. Considering all these aspects,
although all the atlas-based mesh morphing techniques have unfolded an
attractive prospect, there are still lots of difficulties that mostly go back to
the prior knowledge needed to be brought into the mesh morphing process.
This chapter introduces and evaluates an original Atlas-based mesh mor-

phing method that does not rely on any segmentation method. The idea
consists in using the whole 3D image (CT and/or MRI) rather than a ROI
extracted from this 3D image, to compute the 3D transformation that will
automatically morph atlas FE mesh and to generate subject-specific meshes.
The method extracts this 3D transformation by registering the atlas’ volume
image to the subject’s one, and establishes a one-to-one correspondence be-
tween the two volumes. To preserve the quality of the subject-specific mesh,
a diffeomorphic non-rigid registration based on B-spline Free-Form Deforma-
tions (FFDs) is used, which guarantees a non-folding and one-to-one trans-
formation. It was shown that the level of distortion can be dramatically
reduced, if the transformation satisfies three main constraints: being C1-
differentiable, non-folding (a local property ensuring that space orientation
is preserved) and invertible; these properties specify a C1-diffeomorphism
(Bucki et al. [2010a]; Chenchen [2013]). In summary, the proposed method
(Fig. 3.2) includes two major modules:
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• Computing without any segmentation the displacement fields that can
be used to register the volumetric atlas’ images onto the subject’s
images;

• Morphing the atlas’ FE mesh using the obtained displacement fields.

More specifically, at first, an initial Rigid/Affine transformation is performed
to roughly approximate the global deformation between the atlas’ and the
subject’s volume. Then, a non-rigid registration is done to locally refine the
deformations from the atlas to the subject. The subject-specific FE mesh
is then generated by deforming the atlas’ FE mesh using the derived 3D
transformation. Finally, the qualities of the morphed meshes is evaluated.
In the next sections, details of the method are provided and evaluated, and
an illustration of its practical usability in a clinical context is proposed with
an application in maxillo-facial computer-assisted intervention, which re-
quires the generation of patient-specific tongue FE meshes. The method
includes the volumetric image registration and the morphing of the atlas
FE mesh. We propose as a first step an evaluation of our method based on
a dataset of CT scans of the ribcage (including binary Lung masks) and con-
sisting in evaluating the accuracy of the inter-subject registration process. In
a second part tongue meshes are generated for two healthy subjects and two
patients suffering from tongue cancer, with a particular focus on the assess-
ment of the mesh’s quality. Being able to generate accurate patient-specific
tongue meshes is interesting because tongue segmentation from medical im-
ages is challenging (Iskarous [2005]) since the tongue is an extremely flexible
organ that is in contact with many other structures in the oral cavity (cheeks,
pharyngeal walls, palate, lips). Furthermore, regarding the patients with ab-
normal structures (in the case of tongue cancers for example), as there will
be intensity variations in the affected regions, automatic segmentation could
be even more complex (Lee et al. [2014]; M. Harandi et al. [2015]). Finally,
the tongue model of one of the patients is used to qualitatively evaluate
functional consequences of the surgery. The removal of the tumor and the
replacement of the corresponding tissues with a passive flap are modeled. A
tongue gesture is then simulated and analyzed, before and after surgery.
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3.2 Volume Image Registration

3.2.1 Introduction

Image registration is a process by which the most accurate geometrical trans-
formation that aligns features in two images or volumes is determined. The
images/volumes may have been taken at various times and viewpoints, by
the same or different sensors. These are fundamental problems in medical
image processing as the volumes possibly come from different modalities
(e.g., Magnetic Resonance (MR), Computed Tomography (CT), Positron
Emission Tomography (PET), Single-Photon Emission Computed Tomog-
raphy (SPECT), and etc.), different time points (e.g., in follow-up studies),
and/or from different subjects (e.g., population based studies). Theoreti-
cally, such an optimal geometrical transformation (T) that maps positions
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Figure 3.3: Iterative schematic overview of image registration process.

in one volume, so-called source, to positions in another, so-called target, is
estimated under a certain criteria (E) that measures the goodness of match-
ing between the two volumes. An iterative schematic overview of image
registration process is shown in Figure 3.3. It should be reminded that
there are two main steps in order to apply a geometric transformation to a
volume data: 1) Determination of the transformed position for each voxel,
and then 2) Computation of new voxel intensities for all grid positions in
the resulting volume. The latter step employs interpolation techniques in
order to approximate the voxel values.

3.2.2 Rigid/Affine and non-rigid transformations

Rigid body transformations are a subset of the more general affine transfor-
mations, and have six degrees of freedom in 3D space: there parameters for
translations and three parameters for rotations about the orthogonal axes.
Given a homogeneous voxel coordinate (x), the new voxel position is com-
puted by TRigid(x) = Rx + t, in which a translation matrix (t) is defined
as

t =


1 0 0 xtrans
0 1 0 ytrans
0 0 1 ztrans
0 0 0 1

 (3.1)
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and rotations about the orthogonal axes (X, Y and Z) are carried out by a
rotation matrix (R) defined as

Rx(Θ) =


1 0 0 0
0 cos(Θ) sin(Θ) 0
0 − sin(Θ) cos(Θ) 0
0 0 0 1

 ,

Ry(Φ) =


cos(Φ) 0 sin(Φ) 0

0 1 0 0
− sin(Φ) 0 cos(Φ) 0

0 0 0 1

 ,

Rz(Ω) =


cos(Ω) sin(Ω) 0 0
− sin(Ω) cos(Ω) 0 0

0 0 1 0
0 0 0 1

 ,

R = Rz(Ω)Ry(Φ)Rx(Θ) (3.2)

It is clear that through the rigid transformations TRigid, one can alter the
roll, pitch and yaw of the object to move it in the space but the actual size
and shape of the object will not change. Since, an affine transformation (M)
allows up to 12 degrees of freedom, the scale of the object can be altered or
sheer can be introduced (Fig. 3.4).

TAffine(x) = Mx =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1




x

y

z

1

 (3.3)

In practice, the input volumes to the registration process have different
dimensions and voxels’ sizes. These differences should be considered during
the registration process. For simplicity, the Euclidian space can be used in
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(a) Input (b) Translation (c) Scale

(d) Shear (e) Rotation

Figure 3.4: Affine transformations: translation, scale, shear, and rotation.

order to define distances in millimeters. Considering image’s information
(dimensions and voxels’ sizes), one can apply a pre-affine transformation to
map the voxels’ coordinates into the Euclidian space whose axes are parallel
to those of volume and distances are measured in millimeters, with an origin
at the center of volume. For instance, given an image of size 256× 256× 54
and voxels’ sizes of 1.5mm × 1.5mm × 3mm, the pre-affine transformation
can be defined as

M =


1.5 0 0 −(256×1.5

2 )
0 1.5 0 −(256×1.5

2 )
0 0 3 −(54×3

2 )
0 0 0 1

 =


1.5 0 0 −192
0 1.5 0 −192
0 0 3 −81
0 0 0 1

 (3.4)

It is obvious that Affine/Rigid transformations, as global transformation
models, are often not sufficient to capture local deformations. For instance,
linear transformations would not be able to model the local deformations
between the two images shown in Fig.3.5(a) and Fig. 3.5(b). In this example,
two different face mimics are presented and non-linear transformations (see
section 3.3) has to be defined to register the source image to the target image
(Fig.3.5(c)). In non-rigid registration, each point of image x is transformed
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(a) Source image (b) Target image (c) Deformed source

Figure 3.5: Non-rigid registration.

by a specific displacement D(x) as T (x) = x + D(x). These displacements
are estimated in such a way that the similarity between the deformed source
and the target images is increased (see section 3.3.1 for more details).

3.3 Problem Formulation

To extract a transformation that provides an accurate match between at-
las and subject volumetric images, a two-level 3D image registration is used.
First, a global transformation is calculated to provide an initial Rigid/Affine
alignment. Then, a nonrigid method is used to establish the voxel-wise cor-
respondence between the two volumes. As mentioned in previous sections,
based on preceding studies on Mesh-Match-and-Repair algorithm (Bucki
et al. [2010a]), the morphing algorithm should be continuously differentiable,
non-folding and invertible. In other words, the transformation model should
be a smooth bijective (one-to-one) mapping with a smooth inverse. Fig. 3.6
simply shows the effect of those mapping functions which do not satisfy
the above mentioned requirements. To give more understanding, only the
2D view of nodes is provided. Fig. 3.6(a) illustrates the result of a non-
continuous mapping function. For the sake of example, such a mapping
function is applied to a set of nodes (gray ones), and the transformed nodes
are shown in yellow color. As can be seen, such transformation results in
low quality mesh elements and sometimes causes mesh to tear. Fig. 3.6(b)
represents the consequence of a non-bijective mapping function; it can be
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(a) (b)

(c) (d)

Figure 3.6: Effects of C1-diffeomorphism transformations: (a) Nodes’ origi-
nal locations (in gray), (b) After applying a non-continuous mapping func-
tion, (c) After applying a non-bijective mapping function, (d) After applying
an ideal mapping function.

seen that two nodes are mapped to the same coordinate (red node) that
causes existence of irregular elements in the deformed mesh. And finally,
the result of an ideal transformation (from the point of mesh distortions) is
shown in Fig. 3.6(c).

There are two popular non-rigid diffeomorphic registration methods: (1)
Free-Form Deformations (FFDs), which are modeled by B-splines (Rueck-
ert et al. [2006]), and (2) the diffeomorphic Demons, which is a nonpara-
metric diffeomorphic registration method based on Thirion’s demons algo-
rithm (Vercauteren et al. [2009]). Generally, the FFDs based registration
algorithms are controlled by the underlying interpolation function, which
provides more regular displacement fields than Demons-based approaches.
Our group previously employed FFDs based algorithms. In this paper, the
same FFD based method is chosen as the basis for the transformation model,
which inherently generates smooth deformations. In addition, this model has
been reformulated using discrete Markov Random Fields (MRF) (Glocker
et al. [2008]). This amendment eliminates the procedure of customizing the
optimization method for different similarity measures in multi-modal volu-
metric image registration, which is a challenging problem in medical imag-
ing (Komodakis et al. [2007]). In the next sections, the explanations of the
diffeomorphic FFDs, their implementation and the employed optimization
method in the subject-specific FE mesh generation process, are provided.
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3.3.1 Free Form Deformation (FFD)

Non-rigid registration algorithms based on FFDs map each voxel of the atlas
image into the corresponding voxel in the subject image using a deformation
field that is optimally computed. The basic idea of these methods is to char-
acterize deformations based on a grid of control points that are uniformly dis-
tributed throughout the fixed image’s voxel grid (herein the subject image).
These control points partition the volume into equally sized regions (called
tiles). The transformation model is a multilevel formulation of a FFDs based
on tensor product of B-splines. B-splines enable interpolating the dense de-
formation field from a given set of control points. Let us denote the domain
of the image volume as Ω = {(x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}.
Let G denote a virtual deformable grid with spacings δx, δy, δz, which is su-
perimposed on the image volume. The nonlinear displacement field D is
computed for each image point x = (x, y, z) by B-spline interpolation of the
displacements of the grid control points:

D(x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)di+l,j+m,k+n, (3.5)

where, i, j, and k denote the coordinates of the tile containing image point
x and u, v, and w are the local coordinates of (x, y, z) within its housing
tile: i = bx/δxc, j = by/δyc, k = bz/δzc, u = x/δx − bx/δxc, v = y/δy −
by/δyc, w = z/δz −bz/δzc (b c is rounding operation). Bl represents the lth
basis function of the B-spline interpolation and the displacement of the grid
control points are denoted by d. So, di+l,j+m,k+n is the spline coefficient
defining the displacement for one of the 64 control points that influence the
image point x within tile (i, j, k). Indeed, the B-splines serve as a weighted
averaging function for the set of control points. Finally, the transformation
of image point x can be computed by

T (x) = x +D(x) (3.6)

Given the source (J) and target (I) volumes, one seeks the optimal trans-
formation by posing an energy minimization problem where the objective
function is defined by a matching criterion S:

T̂ = argmin
T
S(I, J ◦ T ) (3.7)
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According to the application at hand, the matching criterion S may be Sum
of Absolute/Squared Differences (SAD/SSD), Normalized Mutual Informa-
tion (NMI) (Maes et al. [1997]), Normalized Correlation Coefficient (NCC),
Correlation Ratio (CR) (Roche et al. [1998]), and etc.

The performance of registration methods based on FFDs is limited by the
resolution of the control point grid, which generally determines the degrees
of freedom and is linearly related to the computational complexity (Rueckert
et al. [2006]):

• A coarse control point spacing enables modeling global and intrinsi-
cally smooth deformations.

• A finer control point spacing enables modeling more localized and
intrinsically less smooth deformations.

Therefore, to refine the deformation field, a multi-level FFD is used to cover
a wide range of transformations. The algorithm starts from a coarser control
point spacing; when the algorithm reaches its optimal state, the control point
spacing is reduced by a factor of two (in each dimension) to generate a
finer grid. Also, for each level of control point spacing, several optimization
cycles are performed to model a large deformation. Within each cycle of
optimization process, an elementary transformation field is generated and
the overall transformation can be computed as below:

T (x) =

GJ︷ ︸︸ ︷
TNJJ ◦ · · · ◦ T 1

J ◦ · · · ◦

G1︷ ︸︸ ︷
TN1

1 ◦ · · · ◦ T 1
1 , (3.8)

where Gj , j = 1, · · · , J are successive grid refinements, and T ij , i = 1, · · · , Nj

are elementary deformations which have been generated during each opti-
mization cycle at grid level j.
As the FFDs are modeled by B-splines, the transformation model inher-
ently satisfies the C1-differentiability. In order to preserve the bijectivity
of the transformation, each elementary transformation is estimated by re-
stricting the displacement of control points to 0.4 times the current control
point spacing (Rueckert et al. [2006]). Since the overall transformation is
computed by the combination of the elementary ones, it will be likewise a
diffeomorphism. Although the regularity properties of the elementary reg-
istrations, namely non-folding and bijection, are enforced by restricting the
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amplitude of the displacement of the control points, it should be noted that
the non-folding property is fulfilled locally at every point. Accordingly, the
image-derived displacement fields may lead to unrealistic deformations and
the deformed mesh may finally be prone to folding, as the consequence of
crisscrossing of neighboring control points (Brock [2013]). Therefore, an ad-
ditional regularization term, which reduces mesh distortion, is considered as
below:

R(T ) =
∑
p∈G

∑
q∈N(p)

| dp − dq |2, (3.9)

where dp is the displacement of the control point p in the virtual deformable
grid G, and N(p) is the set of control points which are located in the neigh-
borhood of p, and defines the edges between p and others points in the
control grid. This regularization term, which enforces a smooth transforma-
tion, leads neighboring control points to move in the same direction. Hence,
the total cost function optimized in the registration problem is defined as
the sum of two terms: a matching criterion (S) which quantifies the level of
alignment between the two image volumes, and a regularization term (R)
which imposes a smoothness constraint. The optimal transformation can be
determined by posing an energy minimization problem where the objective
function is a weighted sum of S and R:

T̂ = argmin
T
{S(I, J ◦ T ) + λR(T )}, (3.10)

where λ parameter acts as a weighting factor, controlling the influence of the
regularization term. To obtain deformation parameters, a wide range of op-
timization strategies can be employed, including gradient descent (Rueckert
et al. [1999]), Newton’s method (Nocedal and Wright [2006]; Mattes et al.
[2003]) , Powell’s method (Powell [1978]), and discrete optimization (Ko-
modakis et al. [2008]). However, since the atlas and subject medical images
can come from different modalities (e.g. CT or MRI), the possibility of
using different similarity measures should be considered. In that case, the
optimization process will be dependent on the type of cost function and
should be customized based on the employed one. This is why a discrete op-
timization strategy which is computationally efficient and also robust with
respect to local optima, has been selected, namely the Markov Random
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Fields (MRF)-based optimization (Komodakis et al. [2007]).

3.4 Solution Estimation

To obtain the deformation parameters, a numerical method has to be used
to optimize the objective function in Eq. 3.10. For all the reasons men-
tioned in the previous section, a discrete optimization is used (Komodakis
et al. [2007]). Broadly speaking, this projects the objective function back
to the level of the control points, in order to transform it into a function of
control points displacements instead of voxels displacements. Then, the dis-
placement space is sampled in a discrete manner and the quantized displace-
ment vectors are associated with labels, so that the optimization problem
is converted to what is called “a labeling problem”. Finally, the appropriate
optimization technique can be employed to extract a group of displacement
vectors that collectively optimize the objective function. In this section, the
employed discrete optimization strategy, from the conversion of the opti-
mization problem to a labeling problem up to finding the best combination
of labels or displacement fields, is briefly explained. For more details, the
reader is referred to Komodakis et al. [2007]; Glocker et al. [2008].

3.4.1 MRF-based Optimization

The primary task is the reformulation of the optimization problem (Eq.
3.10) into a multi-labeling problem that can be expressed using first-order
Markov Random Fields (MRFs) (Geman and Geman [1984]; Li [2009]). Gen-
erally, a “labeling problem” consists of a set of objects to be classified, and
a set of classes or labels. The objective of such a problem is to assign a label
to each object, in a way that is consistent with some observed data that may
contain pairwise relationships among the objects to be classified (Breiman
et al. [1984]; Ditterrich [1997]; Li [2009]). Markov random fields are used to
model the statistical properties in the framework of probability theory. In
the MRFs model, the probability of an object to belong to a specific class
stands not only on its own feature but also on the labels of its neighboring
objects. These objects can be considered as random variables whose values
stand by the outcome of probabilistic experiments. Therefore, from the per-
ceptive of MRFs, a labeling problem is defined in terms of a set of random
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variables and a set of labels that can be interpreted as events that can be
happen to the random variables (Li [2009]). Consequently, at first, the role
of the random variables and the definition of a discrete label space should
be characterized. Considering the registration problem, a random variable
is associated with every control point, and “labels” are defined correspond-
ing to the displacements of the control points. Therefore, the continuous
displacement space of the control points is quantized to generate a discrete
set of displacement vectors Θ = {d1, ..., di}, and each displacement vector
is associated with a label (L = {l1, ..., li}). Also, assigning a label (lp) to a
control point (p) is equivalent to applying the displacement vector dlp to the
control point p. In this study, the displacements along the coordinate axes
are sparsely sampled by a factor of n, from the minimum displacement to the
maximum value (i.e., from zero to 0.4 times the current control point spacing
(Rueckert et al. [2006]), which ends up having 6n+1 labels (displacements
along the six main axes plus the zero-displacement vector are considered).
The problem can then be reformulated using the energy of first-order MRFs,
which consists of sums of unary and pairwise potential functions:

EMRF (l) =
∑
p∈G

Vp(lp) + λ
∑
p∈G

∑
q∈N(p)

Vpq(lp, lq), (3.11)

where l is the labeling that we are looking for, Vp(.) is a unary potential
function that corresponds to the energy of assigning a label to the control
point p, independently of all other control points (Li [2009]). As mentioned
before, the labels are associated with the control points displacements. So,
the unary potential term summed over all the control points encodes the
matching criterion (S) in Eq. 3.10. Vpq(.) is a pairwise potential function
that evaluates the consistency between the labels of neighboring control
points. In other words, it measures the cost of assigning displacements to
the neighboring control points p and q. Therefore, the pairwise potential
term summed over all the neighboring control points corresponds to the
regularization term (R) in Eq. 3.10. The other two parameters N(p) and
λ respectively define the control points neighboring region and control the
influence of the regularization term. To help understanding, Fig. 3.7 simply
visualizes the conversion of a registration problem to a labeling problem.
Fig. 3.7(a) depicts the voxel grid, which is partitioned into equally sized
regions by the control points. Then, in Fig. 3.7(b), the continuous dis-
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(a)

(b)
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Figure 3.7: Conversion of registration problem to a labeling problem: (a)
input image superimposed with the control points, (b) the continuous dis-
placement space of control points is quantized: Θ = {d1, d2, d3, d4}, (c) all
possible labels that can be assigned to the control points.

placement space of control points is quantized to generate a discrete set of
displacement vectors Θ = {d1, d2, d3, d4} and each displacement vector is
associated with a label (L = {l1, l2, l3, l4}). Two neighboring control points
p, q and all possible labels that can be assigned to the control points are
shown in Fig. 3.7(c). For example, the unary potential terms Vp(l4) and
Vq(l3) measure, respectively, the cost of assigning displacements d4 and d3

to the control points p and q, while pairwise potential function Vpq(l1, l4)
measures the cost of assigning displacements d1 and d4 to the neighboring
control points p and q.

It is now important to note that, the matching criterion (S) in the en-
ergy optimization problem (Eq. 3.10) is defined on the image level. This
criterion should therefore be projected back to the control points level us-
ing a weighting function so that the energy optimization problem could be
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mathematically reformulated using MRFs:

η̂(|x− p|) = η(|x− p|)∑
y ∈ Ω

η(|y− p|) , (3.12)

where η̂(.) quantifies the impact of an image pixel x to a control point p,
while η(.), quantifies the influence of a control point p to an image pixel x.
The amount of influence is related to the distance between the image pixel
x and the control point p; the farther they are, the less is the influence, and
vice versa. Herein, the η(.) function is the B-spline function used in Eq.
3.5, that can be interpreted as a weighting function. Therefore, the unary
potential function in the energy of MRF (in iteration t) can be rewritten as:

Vp(lp) =
∑

x ∈ Ω
η̂(|x− p|) . S(I(x), J(T t−1(x) + dlp)), (3.13)

where T t−1 is the overall transformation from the previous iteration and dlp

is the next elementary displacement of control point p. Accordingly, the
unary potential at control point p is defined as the weighted combination
of the data cost of those pixels that have an impact on the control point p.
However, as previously mentioned, the unary potential function is assumed
to be independent of all other control points. So, the unary potential is
computed approximately under two simplifications (Glocker et al. [2008]).
First, the elementary displacement of each image point x (i.e., Eq. 3.5) is
computed by direct translation of dlp (the displacement of control point p),
instead of doing the interpolation between the displacement of the neigh-
boring control points. Second, with the aim to decrease the approximation
error, the overlapping area for each control point is reduced by replacing
the B-spline weighting functions in η̂(.) (Eq. 3.12) with the linear ones. It
should be reminded that B-spline functions are still kept to generate smooth
transformation.
By the same token, and to have a full regularization, the deformation fields
generated from the previous iterations are considered in the pairwise poten-
tial function as below:

Vpq(lp, lq) =| (R(p) + dlp)− (R(q) + dlq) |, (3.14)

where R(.) projects the current overall transformation or displacement fields



69 3.5. MESH MORPHING

on the level of the control points as:

R(p) =
∑

x ∈ Ω
η̂(|x− p|)D(x) (3.15)

Thus, the registration problem is converted to a discrete labeling problem
in the form of MRFs, and various optimization strategies can be applied
to find the registration parameters. An efficient algorithm called FastPD is
used in this study (for a full explanation of this method the reader is referred
to Komodakis et al. [2007]. To get accurate registration results, some pa-
rameters controlling the discretization of the solution space have to be set.
The first parameter is the maximum value of displacement which has been
set to 0.4 times the current control point spacing (Rueckert et al. [2006]).
As mentioned before, to refine the deformation field, a multi-level FFD is
employed to cover a wide range of transformations; also, for each level of
control point spacing, several optimization cycles (the second parameter, O)
are performed to model a large deformation. However, as FastPD generates
quasi-optimal labelings on the discrete set of labels (Glocker et al. [2008]),
it should be noticed that keeping the initial displacement set does not bring
any further improvement. Therefore, each optimization cycle is done using
a new set of displacement vectors. In this way, the initial maximum value
of displacement is reduced by a scaling factor (the third parameter, α), and
the new range has been re-sampled using the same method (with a specific
number of steps, the fourth parameter, n). For the results provided later,
the parameters are set to O = 5, α = 0.67 and n = 5 (Glocker et al. [2008]).

3.5 Mesh Morphing

The atlas-to-subject volumetric image registration provides a pair of trans-
formations that establishes a one-to-one correspondence between the two
volumes (atlas J and subject I). The first one is a Rigid/Affine transforma-
tion (TRigid/Affine) that approximates the global transform between the two
volumes, whereas the second one is a nonrigid transformation (TNonrigid)
that locally refines the deformations from the Atlas to the subject. The
next step towards atlas-mesh morphing consists in defining the total trans-
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formation by combining the rigid and non-rigid transformations:

TTotal = TNonrigid ◦ TRigid/Affine (3.16)

Each node of the atlas mesh is transformed by TTotal in order to generate
the subject-specific mesh (with the same topology as for the atlas mesh since
nodes connectivities are kept constant).

3.6 Evaluation

3.6.1 Image Registration Assessment

In order to quantitatively evaluate our method, manual segmentations of
the atlas’ and target’s organs are used. After the registration between the
atlas’ and target’s images, the obtained transformations are employed to de-
form the atlas’ binary mask onto the target’ images. Then, the Dice (Dice
[1945]) and volumetric overlap metrics, Hausdorff distance, and mean abso-
lute surface are computed (Gerig et al. [2001]). The Dice (D) and overlap
fraction (O) are volumetric measures that compute the relative overlap of
two volumes. For each subject, the Dice and volumetric overlap of the atlas-
transformed mask (VAtlas-trans) and the reference segmentation (VManual)
are respectively defined as

D(VAtlas-trans, VManual) = 2|VAtlas-trans ∩ VManual|
|VAtlas-trans|+ |VManual|

(3.17)

O(VAtlas-trans, VManual) = |VAtlas-trans ∩ VManual|
|VAtlas-trans ∪ VManual|

(3.18)

Both D and O values range from zero to one. A value close to one is
desirable and means that there is a perfect match between the volumes.
However, both volumetric measures depend on the size and shape complex-
ity of the objects and on the volume sampling. Large objects such as the
Lungs should be less sensitive to small local errors, which may exist at the
boundaries. Therefore, the Hausdorff (H) distance is also considered as
an evaluation of the similarity of the objects’ surfaces. Given two surfaces
SAtlas-trans and SManual, the Hausdorff distance is defined as
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H(SAtlas-trans, SManual) =

max(h(SAtlas-trans, SManual), h(SManual, SAtlas-trans))
(3.19)

where

h(SAtlas-trans, SManual) = max
p∈SAtlas-trans

(dmin(p, SManual)), (3.20)

h(SManual, SAtlas-trans) = max
p∈SManual

(dmin(p, SAtlas-trans)). (3.21)

The Hausdorff distance is overly sensitive to outliers. A single outlier
leads to misleading results. However, it can provide useful information in
conjunction with other metrics such as the mean absolute surface distance
(M), which is defined as

M(SAtlas-trans, SManual) =
dmin(SAtlas-trans, SManual) + dmin(SManual, SAtlas-trans)

2

(3.22)

where dmin(SAtlas-trans, SManual) is the average minimum distance from
all points on the surface SAtlas-trans to the surface SManual, and vice-versa
for dmin(SManual, SAtlas-trans). M indicates how much the two surfaces differ
on average.

3.6.2 Mesh Quality Assessment

The regularity and quality of the deformed meshes are evaluated based on
the Jacobian matrix (Knupp [2000]). The Jacobian matrix is the fundamen-
tal quantity describing all the first-order mesh properties (length, areas and
angles) of interest (Knupp [2000]). The regularity assessment is function of
the Jacobian matrix determinant (detJ, also called the Jacobian) and eval-
uates whether the employed FE mesh can be used for numerical analysis.
The Jacobian must be checked for all the elements of the FE mesh as it is
influenced by the configuration of the element nodes. Within each element,
the Jacobian is computed for each node, and the element (and subsequently
the FE mesh) is classified irregular if one of the nodes has a zero or negative
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value. It is worth pointing out that the Jacobian measures the distortion of
the actual mesh element with respect to its reference configuration, but not
the overall distortion information. To deal with this problem, the quality
of each element can be determined at the level of its nodes (e.g., node n)
by a ratio of nodal Jacobian value to the maximal Jacobian value among
those computed at all element nodes (thus interpreted as a global distortion
information). Such a ratio measures the node quality within its element (e)
and is called Jacobian Ratio (JR) (Knupp [2000]):

JRJRJRen = detJJJ(n)
max
n∈e
{detJJJ(n)} (3.23)

The JR values range from zero to one. Having a high (respectively low)
value for JRJRJRen means that the element (e) has a high (respectively poor)
quality at node n. The JR is computed for all the element nodes and
the minimum value is returned as an indicator of element quality (JRe

min).
In the ideal state, all elements of a given mesh are expected to have high
JR values; however in many cases this is impossible. That is why, for
example, the commercial FE analysis software ANSYS sets a minimal value
of 0.03 for JR (Kelly [1998]). It should be noted that JR is not relevant
for tetrahedral elements as the Jacobian value is the same for all nodes
of a tetrahedron which means that the JR value is always one no matter
how good or bad the element is. Therefore, we propose to measure the
quality of tetrahedral elements by computing QQQ = 2

√
6Rin/L (Rin being

the radius of the inscribed-sphere of the tetrahedron, and L the longest
edge length (Field [2000]; Du and Wang [2005]). Similarly to JR computed
on hexahedra, wedges and pyramids, the QQQ values computed on tetrahedra
range from zero to one for low and high quality elements, respectively.

3.7 Results

Before showing the results of mesh generation, it is important to illustrate
how effectively the regularization term prevents the introduction of folds in
the deformed meshes. In this respect, Fig. 3.8 shows the results of applying
two transformations that are obtained without and with the regularization
term. The same evaluation is done at the level of mesh structure formation in
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.8: Effect of regularization term, at the level of image: (a) input
image, (b) distribution of control points,(c) deformed input image without
using the regularization term (RT), (d) distribution of control points after
registration without using the regularization term, (e) deformed input image
in the presence of the regularization term (RT), (f) distribution of control
points after registration in the presence of the regularization term.

Fig. 3.9. To have a clear understanding, only a section of atlas tongue mesh
(including 11 elements) is selected and depicted. As can be seen, the level
of mesh distortions is dramatically reduced by virtue of the regularization
term. These two examples illustrate how the regularity and quality of the
meshes can be preserved thanks to the diffeomorphic constraints and the
regularization term. The value of the weight λ of the regularization term
(Eq. 3.10) has to be set according to the application and to the measure of
similarity. Generally, a higher λ value provides a smoother deformation thus
less quality degradation, but sharp morphological structures are modeled
less accurately. This raises the issue of the level of accuracy provided by our
method. To address this issue we have applied our method to a data set of
ribcage CT scans and compared the results with the manual segmentation
of the Lungs also available in the data set.
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(a) (b) (c)

Figure 3.9: Effect of regularization term, at the level of mesh: (a) a section
of atlas FE Mesh, (b) deformed section without using the regularization
term (c) deformed mesh using the regularization term (different views are
provided in each row: side, front, back, top, in order from top to bottom).
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3.7.1 Ribcage CT Image Registration

3.7.1.1 CT Scans of the ribcage

EMPIRE10 competition, as part of MICCAI 2010 Grand Challenges, has
provided 30 pairs of thoracic CT data (Murphy et al. [2011]). CT scans are
obtained for both healthy and diseased subjects from various scanners with
a variety of slice-spacings and image qualities. Most of the scans have a fine
sub-millimeter image resolution (around 0.7mm isotropic). The data include
binary Lung masks which were generated automatically (Van Rikxoort et al.
[2009]) and corrected manually when necessary. We considered the first
fifteen subjects to evaluate the performance of our method. Considering the
quality and resolution of the scans, volume #2 of the EMPIRE10 database
was chosen to be the atlas.

3.7.1.2 Simulation Results

Subject-specific Lung’s masks were generated with our method for 12 sub-
jects. Since Lungs are large objects, the non-rigid registration was applied
in two steps. First, the SAD (Sum of Absolute Differences) similarity mea-
sure with a high value of λ (i.e., regularization weight) is employed in order
to capture the main geometric properties of the target Lungs (with a very
coarse initial control point spacing of 60 mm). Second, in order to get small
details of the shape, the similarity measure is changed into SSD (Sum of
Squared Differences), and λ is decreased and an initial control point spac-
ing of 25mm is used. Fig. 3.10 shows the result of the Lung registration
for a typical CT scan. Manual Lungs segmentation in the atlas’ image and
in the target image are shown respectively in Fig. 3.10(a) and (b). The
Lung’s mask provided by our method is superimposed on the manual seg-
mentation in Fig. 3.10(c). We observe a good agreement between both
masks. However, the sharp regions, especially at the bottom of the Lungs,
are captured less accurately. The Dice (D), overlap fraction (O), Hausdorff
distance (H), and mean absolute surface (M) are calculated for all subjects.
Means and standard deviations of these variables across the subjects are as
follows: D = 0.98± 0.01, O = 0.96± 0.01, H = 34.25± 7.75 (in mm), and
M = 0.98 ± 0.26 (in mm). The values of the average quality measures (D,
O, andM) show that our method captures efficiently the geometry of target
organs; however, high values of H are observed, which show the existence of
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some strong differences between both masks at some places and/or for some
subjects. This will be discussed later in this paper.

(b)

(c)

(a)

(a)

Figure 3.10: Result of the Lungs CT image registration: (a) Manual Lung
segmentation in the atlas’ CT-image (at each column, from left to right:
front view, back view, and 3D ribcage CT reconstruction surrounding the
Lung’s manual segmentation), (b) Manual Lung’s segmentation in a sub-
ject’s CT-image (at each column, from left to right: front view, back view,
and 3D ribcage CT reconstruction surrounding the Lung manual segmenta-
tion), (c) Atlas-driven subject-specific Lungs, in grey, superimposed on the
manual segmentation, in red (at each column, from left to right: front view,
back view, and a cut-out to the region having less accuracy).
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3.7.2 FE tongue meshes generation

3.7.2.1 Tongue MR Images and Atlas’ FE Mesh

Our method was also employed to generate subject-specific FE tongue meshes.
Tongue T1-weighted MR images of two healthy volunteers (S1 and S2)
and two patients suffering from tongue cancer (P1 and P2) were obtained
with a Philips 3T scanner system (respective repetition time \ echo time:
426\10.74ms, 3.24\2.3ms, 2000\29.27ms (with injection), 400\10ms). The
image volume consisted of 32 sagittal slices with a 256×256 scan matrix and
voxel dimensions of 1×1×5mm for S1, 40 sagittal slices with a 160×160
scan matrix and voxel dimensions of 1×1×4mm for S2, 160 axial slices
with a 224×224 scan matrix and voxel dimensions of 1×1×1mm for P1,
and 29 sagittal slices with a 512×512 scan matrix and voxel dimensions of
0.5×0.5×3mm for P2. All subjects gave informed consent and the study had
received approval from ethical committee of Grenoble University Hospital
An atlas FE tongue mesh, which was previously elaborated in our group
(Buchaillard et al. [2009]), has been employed to generate subject-specific
tongue FE meshes. The atlas’ mesh was designed on the basis of 3D MR
images of the vocal tract of a male subject, collected and segmented in the
context of another study aiming at investigating the organization of artic-
ulatory configurations in the vocal tract during speech production (Badin
et al. [2000]). After building a surface mesh from the segmented images, the
hex-dominant FE tongue mesh was automatically generated using a method
that optimizes the process in terms of elements quantity and quality (Gérard
et al. [2003]; Lobos et al. [2013, 2010]; Rohan et al. [2014]). To assess the
coarseness of the mesh, a mesh sensitivity analysis was performed based
on the influence of the mesh density on the biomechanical response of the
tongue to the posterior genioglossus muscle activation (computed as the
global displacement). The atlas’ mesh is made of 2180 nodes forming 3172
elements: 796 tetrahedrals, 766 pyramids, 432 wedges, and 1178 hexahedra.
Fig. 3.11 shows the atlas’ MR images (25 sagittal slices with a 256×256 scan
matrix and voxel dimensions of 1×1×4mm) superimposed to the tongue FE
mesh.
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(a)

(b)

(c)

(d)

Mid-slice

Figure 3.11: 3D tongue atlas’ FE mesh: (a) Atlas’ MR data superimposed
with the 3D atlas’ FE tongue mesh, (b) Side view, (c) isometric view and
(d) front view respectively of the 3D FE tongue mesh.

3.7.2.2 Simulation Results

The subject-specific tongue FE meshes are shown in Fig. 3.12. The data
set includes two healthy subjects and two patients suffering from tongue
cancer. The regularity and quality of generated meshes are assessed using
the JR and QQQ (for tetrahedrals). The results are presented in Table 3.1.
None of the meshes contains any irregular element (JR < 0 or QQQ = 0). To
have a more detailed assessment of mesh quality, the elements are classified
into six categories. None of the meshes includes any element with a JR or
QQQ smaller than the threshold 0.03 considered to characterize unacceptable
poor quality. Our method is efficient to generate subject-specific FE meshes
while preserving the regularity and quality of the elements.
Fig. 3.13 focuses on the results obtained for subject S1. The external con-
tours of the FE mesh are superimposed with sagittal, axial and coronal slices
extracted from the MR exam. The enlarged tongue regions for some slices
are provided in Fig. 3.13 (d-g). In addition, elements-size-distribution for



79 3.7. RESULTS

the atlas FE tongue mesh and their nodal displacements, when our method
is applied to S2 depending on whether the constraints are used or not, are
shown in Fig. 3.14. The generated mesh using the pure non-rigid transfor-
mations contains 58 irregular elements. Volumes of all elements are com-
puted and plotted in Fig. 3.14(a), according to their element-order within
the original mesh file. Fig. 3.14(b) displays the difference (in mm) be-
tween the maximal and the minimal nodal displacements for all element.
This gives an interesting information since large differences are likely to be
associated with strong geometrical distortions of the elements. Fig. 3.13
focuses on the results obtained for subject S1. The external contours of the
FE mesh are superimposed with sagittal, axial and coronal slices extracted
from the MR exam. The enlarged tongue regions for some slices are pro-
vided in Fig. 3.13 (d-g). In addition, elements-size-distribution for the atlas
FE tongue mesh and their nodal displacements, when our method is applied
to S2 depending on whether the constraints (i.e., the regularization term)
are used or not, are shown in Fig. 3.14. The generated mesh using the pure
(i.e. without the regularization term) non-rigid transformations contains
58 irregular elements. Volumes of all elements are computed and plotted
in Fig. 3.14(a), according to their element-order within the original mesh
file. Fig. 3.14(b) displays the difference (in mm) between the maximal and
the minimal nodal displacements for all elements. This gives an interesting
information since large differences are likely to be associated with strong
geometrical distortions of the element.
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(d)

(b)

(c)

(a)

(e)

Figure 3.12: Result of atlas’ FE mesh morphing using our method: (a)
Atlas’ FE tongue mesh (b) Subject-specific FE tongue mesh (subject S1),
(c) subject-specific FE tongue mesh (subject S2), (d) Patient-specific FE
tongue mesh (patient P1), (e) Patient-specific FE tongue mesh (patient P2).
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Figure 3.13: Mesh derived tongue contours superimposed on the MR image:
(a) 3D subject-specific FE tongue mesh (Normal #1), (b) Sagittal views
(mid-sagittal to the lateral side), (c) Axial views (inferior to superior), (d)
Coronal views (anterior to posterior), (e) enlargement of the tongue region
in a sagittal slice, (f) enlargement of the tongue region in the coronal slice,
(g) enlargement of the tongue region in an axial slice.

Meshes # of irregular elements Mesh quality (%)
< 0.03 0.03-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

Atlas 0 0 24.28 2.08 13.30 15.32 45.32
S1 0 0 24.28 3.40 14.50 17.97 39.85
S2 0 0 24.28 3.15 14.00 15.26 43.31
P1 0 0 24.28 2.40 16.20 13.30 43.82
P2 0 0 24.28 5.80 12.86 18.63 38.43

Table 3.1: Mesh quality distribution for the atlas’ and subject’s FE tongue
meshes generated by our method.
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(a) Elements-volumes-distribution for the atlas FE tongue mesh (in mm).
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Figure 3.14: Representation of elements size in the atlas FE tongue
mesh, and their displacements with and without constraints: (a) Elements-
volumes-distribution for the atlas FE tongue mesh (inmm3), (b) Maximum-
Minimum nodal displacement (in mm) within each element for subject S2 in
the mesh generated with the constraints (purple) and in the mesh generated
without constraints (green), which contains 58 irregular elements (JR < 0
or QQQ = 0).

3.7.3 Qualitative evaluation with a patient-specific tongue
model

For patient P2, the activation of the posterior genio-glossus (GGp) muscle
(one of the most important muscles of the tongue) is simulated before and
after surgery. This muscle compresses the tongue in its lower part and its
activation propels the tongue frontwards and upwards in its front part, as a
consequence of the quasi-incompressibility of the tissues. Its role in speech
production is crucial since it is strongly involved in the production of the
phonemes /i/ and /s/, which exist in all the world languages. Muscle activa-
tion is modeled using the FE formulation of the Hill muscle model proposed
by Blemker et al. [2005]; Nazari et al. [2013]. This model was implemented
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using the USERMAT functionality of ANSYS. For the passive response, we
used a simplified 5-parameter Mooney-Rivlin hyperelastic model with con-
stitutive parameters (C10 = 1037 Pa, C20 = 486 Pa and bulk modulus K
= 2.107 Pa) derived from previous work (Buchaillard et al. [2009]). As con-
cerns boundary, the nodes located in the front (which should be in contact
with the mandible) and at the bottom of the tongue are fixed (i.e. all 6
degrees of freedom are fixed u1=u2=u3=r1=r2=r3=0). The assignment of
the muscle fiber direction in each element in the tongue mesh is performed
automatically based on the fibers direction extracted for the atlas’ mesh
in a previous work (Gérard et al. [2003]). Tongue surgery consisted of a
hemi-glossectomy during which half the upper tongue, mainly made of mus-
cle tissues, has been removed and reconstructed with a flap having passive
mechanical properties. It is accounted for in the tongue model by modifying
the biomechanical properties of the excised tongue tissues: the active mate-
rial properties of the GGp elements that are removed and reconstructed are
replaced with passive material properties.
Fig. 3.15 plots the response of the tongue model to the activation of the
GGp before and after the hemi-glossectomy. Both the distribution of the
Von mises equivalent strain in the GGp muscle and the displacement of the
tongue are provided.
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GGp Elements

GGp Activation Before Surgery 
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Before Surgery After Surgery

GGp Activation After Surgery 

(a)

Figure 3.15: Biomechanical response of the tongue model to the activation
of the GGp before and after surgery: (a) Sagittal view of the tongue showing
the implementation of the GGp, (b) Front view of the tongue before surgery
, (c) Front view of the tongue after surgery; the right part of the muscle
has been removed and replaced by passive tissues, (d) Distribution of the
Von Mises equivalent strain in the GGp after its activation in pre-surgery
condition, (e) Distribution of the Von Mises equivalent strain in the GGP
after its activation in post-surgery condition, (f) Displacement map in the
tongue after GGP activation in pre-surgery condition, (g) Displacement map
in the tongue after GGP activation in post-surgery condition.
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3.8 Discussion

In this paper an original method for automatic subject-specific FE mesh
generation is proposed and evaluated. Contrary to the previous efforts in
the literature, our method does not require any formal extraction of prior-
knowledge on the shape of the target organ, no meshing algorithm. We
propose to use an image-based registration method to deform an atlas FE
mesh and to automatically generate subject-specific meshes.
Our method was first evaluated on a publicly available set of images of the
ribcage by comparing manual segmentations of the lungs for various subjects
with the subject-specific Lungs masks obtained with our method. Two steps
were used, the first one with a parameterization adapted to the capture of
global geometrical properties and the second one with a parametrization
adapted to the capture of finer details. The match between results provided
by both methods is very good in average as shown by the Dice, the overlap
fraction and the mean average distance. However, the Hausdorff distance
shows that strong differences might exist at some places. A careful analysis
of our results shows that these strong differences occur in sharp regions that
exist only in the atlas’ or in the subject’s images. This is a well-known prob-
lem in registration methods, as shown for example in Zhang and Reinhardt
[2000]; Li et al. [2002]; Garcia et al. [2010]; Mansoor et al. [2015]. Applying
a third registration step with less strong constraints might be useful. An-
other idea would be to use a third registration step that does not include
any mesh quality preservation constraints. These possible solutions will be
investigated in a future work, in particular to check whether the quality of
the elements in the deformed meshed is still preserved. Also, multi-atlas ap-
proaches can partly overcome some of these errors by selection of the most
similar atlas among a large database (Acosta et al. [2011]).
Fig. 3.12 illustrates well the capacity of the method to generate various
kinds of speaker-specific tongue anatomy at rest. From a more quantita-
tive point of view, the quality assessments reveal that the regularity and
quality of the meshes are preserved. Contrary to Mesh-Morphing methods
that sometimes need to post-process the mesh because of irregular elements
(Bucki et al. [2011]), all generated meshes are regular and can be used for FE
analysis. Moreover, the quality of the mesh is almost maintained. Indeed,
the percentage of elements within the quality range of 0.8− 1 is slightly de-
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creased by less than 7% (table 3.1). This small reduction in the number of
high quality elements results in small increment in the lower quality ranges
(maximally 3.31%, 2.9%, and 3.72% for the ranges of 0.6− 8, 0.4− 0.6, and
0.2− 0.4 respectively).
Fig. 3.13 plots the contours of one generated mesh superimposed with the
corresponding MR slices. The various slices displayed in the figure illustrate
the efficiency of the method since the contours fit well with the observed
boundaries of tongue tissues. Moreover, for some slices for which it is quite
difficult to see tongue contours (the lateral sagittal views close to cheeks
tissues or tongue basement), registration method is able to suggest tongue
contours thus maintaining a coherent structure for the whole 3D mesh.
In Fig. 3.14 results of our method and the pure non-rigid registration are
shown for S2. The maximal difference between the maximum and the mini-
mum displacements within each element is decreased from 6.69 mm to 2.87
mm. This means that the probability of strong element distortion is signif-
icantly reduced and that the employed constraints have managed to control
the movement of nodes within the elements.

Focusing on patient P2, we have proposed to simulate some functional
consequences of a tongue surgery. Whereas the relevance of such use of a
biomechanical model for computer assisted surgery has already been pro-
vided (Buchaillard et al. [2007a]), the objective here was to propose an
illustration of a tentative fully automatic procedure compatible with the
clinical constraints. Therefore, starting from an MRI exam of a patient,
we were able to automatically generate an FE model of that patient. All
the information included in the tongue atlas model was automatically trans-
ferred in the model of the patient. It was thus straightforward to simulate
the activation of the posterior genioglossus muscle. The corresponding re-
sults provided by Fig. 3.15 confirm a clinical observation, namely the fact
that, after a hemi-glossectomy, the tongue response is no more symmetric.
The results also predict that the patient might have difficulties to move its
tongue in the front and upper part of the oral cavity since the simulated
displacements after surgery are significantly lower than the ones simulated
before hemiglossectomy.
The atlas-based subject-specific FE model generation method proposed in
this paper seems to provide efficient results that were qualitatively and quan-
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titatively evaluated on four subjects. Tongue models were used here since
it is a clinical case for which the manual delineation of tongue contours is
a particularly complex and sometimes impossible task (M. Harandi et al.
[2015]). The counterpart of this choice is that it is impossible to design a
gold standard case to which we could compare the results proposed by our
method. Indeed, since boundaries are difficult to identify for some regions
of the tongue (e.g. at the bottom and laterally), we were not able to ask an
expert to segment a whole tongue and to guaranty that this segmentation
would be considered as the gold standard. In any case it seems clear that
when the disease is advanced and the size of tumors are high, the general
shape of the target organ is divided into sub-shapes. In other words, the
tumors can be considered as new organs inside the target organ that disturb
the registration process. To sum up, when the original shape is still remained
or there is no significant tumor size progression, the proposed method, that
employs a multi-level FFDs, is able to capture the geometry of the organs
well.
Our method still needs to define the weighting factor lambda that controls
the influence of the regularization term. This highly depends on the im-
age modality as well as the type of organ. Our method needs therefore
definitively to be more extensively evaluated on a larger set of tongue MR
images.
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Following the previous chapter on generation of subject-specific FE
meshes via 3D registration of MR images, this chapter describes a novel
approach for the integration of DTI-based muscle fibers information in
subject-specific FE meshes. Performing diffusion-based fiber tractogra-
phy enables to visualize structural connections in muscles. In addition,
such fibers can be used to correlate mechanical functions of muscular
structures with the underlying myoarchitecture. However, associating
and linking the subject-specific organization of muscular structures with
the elements of FE meshes is extremely challenging due to a variety of
reasons. Most importantly, classification and determination of muscu-
lar sub-structures need manual detection of thousands or millions of
fibers for each subject, which is highly influenced by the limitations
associated with the DTI image acqemployuisition process (e.g., time,
number of diffusion gradient directions, geometrical distortions, etc.)
and fiber tractography techniques. This may lead to poor estimations
of the true fibers’ orientations. In order to overcome theses challenges
in an atlas-based registration framework, we propose a method that
combines information provided by scalar images and DTI-based mus-
cle fibers. The method (1) extracts a 3D displacement field that can
be used to deform an atlas mesh which is then aligned with the vec-
tor coordinates of the obtained fiber tracksa or (2) provides a mapping
from the elements of the atlas mesh to the subject’s ones. In order to
demonstrate the efficiency of our approach, an atlas tongue mesh and
its fibers are deformed in order to generate subject-specific mesh and to
capture the underlying myoarchitecture.

afiber tracks or fiber tracts
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4.1 Introduction

Various atlas-based Finite Element (FE) model generation strategies were
reviewed in chapter 2. Accordingly, each possesses certain inherent advan-
tages and disadvantages. However, an important drawback of such methods
is that they either require user intervention (e.g. selection of landmarks)
or another not automated process (e.g. segmentation) to provide a pri-
ori knowledge about the target organ. To overcome these difficulties, an
atlas-based method was developed in chapter 3 in order to automate the
generation of subject-specific FE meshes. The method is based (1) on an
existing atlas FE mesh (manually designed from medical images) and (2) on
the registration of that atlas to make it fit each patient data. This mesh-
morphing process is based on image voxels information with the determi-
nation of an optimal 3D transform that matches the volume image of the
atlas onto the volume image of the patient. Such intensity-based 3D image
registration therefore avoids the complex segmentation process of patient
data which was still difficult to be carried out automatically. Although the
proposed method seems successful in generating FE meshes of muscular and
non-muscular structures, no subject-specific information about fiber bun-
dles was included in the generated meshes. Biomechanical patient-specific
tongue models were produced using anatomical images and it was shown
that such models can be used to simulate the consequences of surgical ges-
tures such as hemiglossectomies or resections of the mouth floor. However, if
one wants to estimate the patient-specific organization of tongue muscular
structures, which is very important for predicting the post-operative tis-
sues deformations due to muscles activations, additional information (such
as fiber directions) has to be included in the models. This chapter aims
at contributing to this issue, by applying Diffusion Tensor Imaging (DTI)
techniques and developing registration methods to estimate subject-specific
bundles of muscles fibers, and finally integrating them in the generated
subject-specific FE meshes.
Diffusion-weighted magnetic resonance imaging (DT-MRI) (Basser et al.
[1994a]) is a dominant non-invasive imaging technique that provides the
integrity and connectivity of the fibers by measuring water diffusion, its
directionality and the diffusion anisotropy (Basser [1995a]). In DTI, a spe-
cific number of non-collinear gradient directions (diffusion weighting) are
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applied in order to produce images of the MR signal attenuation (due to
anisotropic diffusion). The reconstructed images are used to calculate a
three-dimensional diffusion tensor for each voxel and to describe the direc-
tional dependence of water diffusion. In conventional DTI, this diffusion
process is assumed to be Gaussian, and is estimated by a rank-2 tensor for
each voxel (Basser et al. [1994a]). Fig. 4.1 provides a schematic example
for different diffusivity of the water molecules that may happen within each
voxel.
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(a) Isotropic diffusion

(b) Random diffusion

(c) Bending fiber structure

(d) Coherent fiber structure

Figure 4.1: Schematic overviews of tensors are shown for voxels with different
diffusivity in left column, and also their average-tensors in right column: (a)
water molecules are moving in an isotropic way, (b) water molecules are
moving randomly in different directions, (c) water molecules diffuse in the
direction of bending fiber structure (d) all molecules are moving in a specific
directions.
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Figure 4.2: Fiber tractography: a seed point is selected in the voxel right
down in order to track fiber according to the extension of diffusion tensors.

Fiber tracks are then reconstructed by combining the diffusion tensors
of multiple voxels which correlate with the principle direction of water
molecules in tissue structures at a microscopic scale. This process is called
fiber tractography or fiber tracking and can be done by tracing the paths
through the tensor fields (Fig. 4.2). Also, fiber tracks can be analyzed by
utilizing diffusion indicies (e.g., fractional anisotropy and mean diffusion,
see section 4.2.2.1) derived from the obtained tensors.
Although DTI has opened entirely new horizons to analyze and visualize

the detailed anatomical structure of muscular tissues, it has inherent limi-
tations such as inability to represent voxels containing multiple fibers with
different orientations, splitting and crossing fiber bundles. Of course, these
issues can be solved by reducing the voxel size (in which the chance of con-
taining a single fiber per voxel is increased) and subsequently the calculated
tensors are more reliable. However, it should be kept in mind that there
is a converse relationship between the spatial resolution and the acquisi-
tion time. Reducing the voxel size results in decrease of signal-to-noise ratio
(SNR) and makes the sequence largely sensitive to bulk motion artifacts. As
an alternative, it was further found that increasing the number of gradient
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directions improves the tensor fit quality and brings the possibility of us-
ing high order tensors (high angular resolution diffusion imaging (HARDI)
(Tuch et al. [2002]) and diffusion spectrum imaging (DSI) (Wedeen et al.
[2005])). Anyhow, this strategy also increases the acquisition time. On the
other side, there are some muscular structures that need the acquisition time
to be shortened as much as possible. For instance, in the case of tongue-
DTI, involuntary swallowings change the shape and position of the tongue.
In such a case, geometrical distortions will negatively and considerably af-
fect the performance of the fiber tractography process. In other words,
tracking algorithms can in that case lead to poor estimation of the true
fibers’ orientation and their uncertainty. In this regard, many studies have
been dedicated to the acceleration of the imaging process (Bilgic et al. [2012];
Gramfort et al. [2012]; Merlet et al. [2012]), and to the fitting of multi-tensor
models and the improvement of the fiber tractography techniques (Peled
et al. [2006]; Behrens et al. [2007]; Ramirez-Manzanares et al. [2007]; Land-
man et al. [2012]; Zhou et al. [2014]; Ye et al. [2014, 2015]). However, even
considering all these improvements and efforts, a trade-off between spatial
resolution, acquisition time, the level of noise caused by motions, and SNR
is required by clinical applications in DTI imaging.

In this chapter, an atlas-based registration method is proposed with the
aim to overcome the mentioned shortcomings of limited or distorted-DTI
imaging and to generate subject-specific meshes. The main idea behind the
proposed approach is to employ registration techniques, both at the levels
of anatomical images and fibers, in order to deform an atlas FE mesh. Dur-
ing the last years, DT-MR images registration has received great interest
from both the academic researchers and clinicians because of its unique role
in studying metabolism of different neural and muscular tissues (such as
brain, tongue, heart and etc.) and assessing properties (e.g., age-related
loss of fiber integrity) . By spatially normalizing the DT-MR images of dif-
ferent subjects, diffusion-derived-parameters (e.g., fractional anisotropy) are
mapped accurately and subsequently clinicians are able to assess them and
study their variations among normal and pathological populations. How-
ever, registration of DT-MR images is more complicated than for scalar
images, not only because of their multi-dimensionality, but also because the
tensor orientations must remain consistent with the anatomy after image
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(a) Original fiber

(b) Wrong-deformed fiber

(c) Correct-deformed fiber

Figure 4.3: Reorientation of fiber tensors after applying a typical deforma-
tion.

transformations (Alexander et al. [2001]) (Fig. 4.3).
During the last years, a variety of methods have been proposed to address
the problem of DT-MR images registration. These methods can generally
be divided into two main categories. The first category relies on scalar-
mapped based techniques that do not consider the specificity of DT images
and process scalar images derived from DT images like non-diffusion im-
age registration strategies (Jones et al. [2002]; Guimond et al. [2002]; Xu
et al. [2003]; Gee and Alexander [2006]; Muñoz-Moreno et al. [2009]; Wang
et al. [2011]; Irfanoglu et al. [2016]). It should be mentioned that some
studies belonging to this category have combined information from various
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non-diffusion images, diffusion indices and tensor components1 to produce
a multi-channel registration framework (Guimond et al. [2002]; Park et al.
[2003]; Rohde et al. [2003, 2004b]; Goh and Vidal [2006]; Yang et al. [2008];
Yap et al. [2009a,b, 2010]; Wang et al. [2013b, 2014]). The other category
includes methods based on full information provided by the tensors. This
means that some additional constraints based on tensors’ characteristics
(i.e., eigenvalues and eigenvectors) are considered to guide the registration
process. It is important however to note that these techniques are classified
into three major subgroups depending upon the tensor reorientation (Ir-
fanoglu et al. [2016]): methods that do not reorient the tensors (Alexander
et al. [1999]; Alexander and Gee [2000]; Ruiz-Alzola et al. [2002]; Rohde
et al. [2004a]), methods that ignore tensors information but then reorient
them after the estimation of the final transformation (Hecke et al. [2007];
Irfanoglu et al. [2008, 2009]), and methods that consider tensors reorienta-
tion information during the optimization of the registration problem (Zhang
et al. [2006]; Cao et al. [2006]).

Although the above-mentioned studies perform well for their specific pur-
poses, there are some points that should be noted:

• The performance of image registration techniques is limited by the
quality of the input images. In other words, these techniques need
non-distorted diffusion images as a prerequisite. For instance, we
know that echo planar imaging (EPI)-based DTI acquisitions are be-
ing used widely; however they suffer from geometric distortions that
are caused by local magnetic field inhomogeneities and eddy current
effects (Ardekani and Sinha [2005]). Many investigations have been
dedicated to the correction of distortions, but they fail in the presence
of high geometric distortions that may appear in some regions of the
images (Fig. 4.4).

• It is shown that methods considering tensors reorientation, whether
during the optimization process or after the estimation of the final
transformation, outperform the methods that do not reorient the ten-
sors (Park et al. [2003]), and can preserve anatomically consistent

1The full explanation of the terms diffusion indices (e.g., fractional anisotropy and
mean diffusion), tensor components and tensor eigenvalues are provided in section 4.2.2.
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(a) (b) (c)

Figure 4.4: Normal and distorded geometric images of the tongue: (a) axial
slice of a tongue volume, (b) and (c) axial slices of geometric distorted tongue
volumes.

structures (Adluru et al. [2013]).

• Tensor image based registration techniques rely on estimations of DTI
directions, which are intrinsically error-prone. This influences the
robustness and the accuracy of the registration.

Considering these limitations, there has been growing interest in the regis-
tration of fiber bundles (Leemans et al. [2006]; Ziyan et al. [2007]; Mayer and
Greenspan [2007]; Shadmi et al. [2010]; Zvitia et al. [2010]). Leemans et al.
[2006] proposed a method for intrasubject rigid registration of white mat-
ter fiber tracts, in which each fiber is described by curvature and torsion
features. Similarity measures between fibers are then evaluated at differ-
ent scale levels based on the mean squared difference. Finally, the global
rigid transformation is obtained using the most similar matched fibers. In
another study, Mayer and Greenspan [2007], proposed to represent fibers
using 3D points to be registered. A 12-parameters affine transformation
(i.e. 3 parameters for the 3D translation and 9 parameters for the Matrix
that combines rotation, scaling and shearing) is estimated using an effi-
cient iterative “closest feature point” algorithm (called ICF) that overcomes
the congestion of high dimensional search using a fast approximate nearest-
neighbor (NN) computation. Shadmi et al. [2010] proposed a fiber-based
piecewise-smooth affine registration, in which the fibers are first projected
into a D-dimensional feature space based on the sequence of their 3D coordi-
nates. In this space, each fiber is represented by a D-dimensional point and
fibers alignment is considered as a problem of probability density estimation
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in the D-dimensional space. The optimized transformation parameters are
obtained by maximizing the likelihood of correspondence between the two
fiber sets to be registered. Zvitia et al. [2010] also projected fibers into a
high dimensional feature space. Each fiber set is then represented by a com-
pact set of representative fiber-modes (FM) which are extracted by applying
adaptive mean-shift clustering (ACM). A Gaussian mixture model (GMM)
is later fitted to each FM and the registration problem between two fiber
sets is considered as an optimal alignment problem of two GMMs. Affine
transformation parameters are then obtained by maximizing the correlation
ratio between the GMMs. Similarly, Wassermann et al. [2011] used Gaussian
Processes (GPs) for representation of tract density maps. This representa-
tion associates each tract and each bundle of tracts with a GP. Accordingly,
each point in space is mapped to the density of tracts crossing that point,
then generating a tract density map (TDM). Then, a diffeomorphic reg-
istration is performed based on the Log-Euclidean poly-affine framework
(Arsigny et al. [2009]), by evaluating the similarity between two bundles in
terms of the mass of common density areas. Ziyan et al. [2007] explored the
use of fiber bundles for inter-subject nonlinear registration of brain diffusion
MR images. Subsequent to a global alignment of the subject’s fractional
anisotropy (FA) image and atlas’ one, subject’s major bundles are detected
and the correspondence between the fiber-bundles is obtained across the
brains. Then, the set of bundle-based correspondences is used to calculate a
smooth and invertible poly-affine nonlinear deformation between atlas and
subject. It can be seen from the above analysis that the fiber-based registra-
tion methods gain their strength from the fact that they avoid error-prone
estimation of DTI direction; however, they are mostly limited to linear reg-
istration models and can be time-consuming (e.g., Mayer and Greenspan
[2007]).

Here, in this chapter, a novel approach for the integration of DTI-based
muscle fibers in subject-specific FE meshes is proposed. In order to bene-
fit from the advantages of both image-based and fiber-based registration
techniques, the method combines information provided by scalar images and
by the extracted fiber bundles. This help us to avoid reorientation of ten-
sors. It increases the robustness to interrupted and deviating fiber artifacts
as well as outliers, that may appear because of the limitations associated
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with the DTI image acquisition (e.g., time, number of diffusion gradient
directions, geometrical distortions, and etc.) that leads to poor estimation
of the true fibers’ orientation and their uncertainty. We specifically address
the challenge of identifying tongue muscles and embedding them within a
subject-specific tongue mesh. At the beginning of the whole process we have
scalar images and DT images of the atlas and of the subject, and we have
fiber-bundles labeled according to muscle anatomy for the atlas, resulting
from fiber tractography on the Atlas’ DT images. Then, our methodology
consists of three phases, as follows:

• Phase I: Registration of atlas and target’s images (anatomical or
non-diffusion (B0) images) using the method proposed in chapter 3.
Within this phase, the general shape of the target’s organ is captured
by deforming the atlas’s anatomical shape. In order to generate the
mask of target’s organ, the obtained deformation fields (TAnatomical)
are used to deform the atlas’ mask.

• Phase II: The goal of Phase II is to refine the anatomical trans-
formation (TAnatomical) resulting from phase I, by using fiber-based
information, and then identification of subject’s fiber-bundles accord-
ing to the atlas’ fiber-bundles. Subject’s fiber tracks are extracted by
utilizing fiber tractography algorithms on estimated diffusion tensors.
Atlas’ fibers are then deformed according to Tanatomical. Then, track-
density information is incorporated into the anatomical subject and
the deformed-atlas images. The generated images are locally registered
together. So, the refined-anatomical transformation (TRe−anatomical)
is produced by the combination of the obtained transformation and
TAnatomical. Afterward, with the aim to overcome the complexity of
large fiber tracks and more specifically to select non-distorted fiber
bundles and decrease the effect of incorrect fibers, subject’s fibers are
automatically classified into a set of fiber bundles and labeled by evalu-
ating a similarity measure between them and the atomically-deformed-
atlas’ fiber-bundles. Although the result of this labeling process help
us to assign each element of the anatomically generated subject-specific
mesh to a specific fiber bundle, a more accurate transformation can
be achieved according to the fibers structures (see phase III).



101 4.2. DIFFUSION TENSOR IMAGING (DTI)

• Phase III: The main objective of this phase is to estimate a transfor-
mation that can be used for deformation of meshes, in which the ele-
ments are organized according to the target’s governing fiber structures
and not only based on the target’s geometry. On this matter, each pair
of corresponding fiber-bundles, namely an atlas-deformed-fiber-bundle
and its corresponding subject’s one, are non-rigidly registered together
(TBundle), via the Coherent Point Drift (CPD) algorithm. To do this,
each fiber-bundle is considered as a set of 3D points and the alignment
of two point sets is considered as a probability density estimation prob-
lem. Finally, the overall transformation is generated based on the two
anatomical and bundle-based transformations.

The remainder of this chapter is organized as follows. In the next section,
a brief background on diffusion tensor imaging is provided. In section 3,
we describe in details the proposed method, including the above-mentioned
three phases. Section 4 provides experimental results on a diffusion tensor
imaging data set of the tongue in order to demonstrate the effectiveness and
the performance of our proposed method for the integration of tongue fibers
within subject-specif FE meshes. Finally, the advantages and disadvantages
of the proposed method are discussed in section 5.

4.2 Diffusion Tensor Imaging (DTI)

Diffusion Tensor Imaging (DTI) or Diffusion Tensor Magnetic Resonance
Imaging (DT-MRI) reconstructs structural connections by relating diffusion-
weighted measures across voxels. Therefore, we first go through the basic
concepts of diffusion weighted magnetic resonance imaging (DW-MRI) and
then describe the DTI process.

4.2.1 Principle of DW-MRI

Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-invasive
imaging modality that enables to visualize and quantify the random Brow-
nian motion of water molecules in tissues. Water molecules can not diffuse
freely in tissues; however, their movement reveals information about their
interactions with lots of obstacles such as fibers, membranes, and macro-
molecules. This information provides microscopic details about tissue struc-
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(a) (b)

Figure 4.5: The Brownian motion of water molecules: (a) when there is no
fiber structure, (b) when there is fiber structures.
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Figure 4.6: Bipolar gradients.

tures. In other words, DW-MRI probes the microscopic structure and or-
ganization of biological tissues by measuring the Brownian motion of water
molecules (Fig. 4.5). In DW-MRI, an MR pulse is designed in such a way
that it is sensitive to the diffusion of water molecules. In this regard, a
pair of gradients that are equal in magnitude but opposite in direction are
employed. These bipolar gradients, shown in Fig. 4.6, introduce diffusion
weighing into the MR signal intensity by dephasing (the fist gradient) and
rephasing (the second gradient) water molecules. Therefore, the movement
of water molecules between the dephasing and rephasing gradient pulses
leads to a loss in the MR signal (Fig. 4.7).

Now, let’s turn to the question of how to measure the diffusion constants
of water molecules from MR signals. To answer this question, we first need
to know what factors influence the signal loss:



103 4.2. DIFFUSION TENSOR IMAGING (DTI)

Figure 4.7: Signal loss in DW-MRI which is proportional to the motion of
water molecules (Mori and Tournier [2013]).

• ∆: The time interval between the bipolar gradients; the high ∆ values
give more time to the water molecules to move around, leading to a
larger signal loss.

• D: The diffusion constant of the particles that is proportional to the
variance of the particle movement. A high diffusion constant leads
to a low signal as it allows water molecules to diffuse more over a
larger distance within a fixed time ∆. Fig. 4.8 shows an application
of bipolar gradients in which the measured MR signal is maximized
when there is no diffusion among the water molecules.

• G and δ: Magnitude and duration of the gradient pulse determine the
amount of initial dephasing (the area of the gradient: G × δ). More
signal loss will occur when a larger initial dephasing is applied.
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(a) Diffusion weighting while there is no water motion.
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Phase disruption by water motion

(b) Diffusion weighting when there is water motion.

(c) MR signal illustrating signal loss after rephasing.

Figure 4.8: An application of bipolar gradients without and with the exis-
tence of diffusion among water molecules. The magnitude of magnetic field
is shown by black arrows. Also, the phase of water molecules is shown by
colors’ gradation. (a) The gradients cause desynchronizing (the fist gradi-
ent) and resynchronizing (the second gradient) of water molecules; however,
as there is no diffusion among water molecules the measured MR signal is
maximized; but in (b), water molecules are randomly moved between the
two gradients and it leads to the imperfect rephasing and loss of signal in-
tensity (molecules changing their location are indicated by boxes and yellow
color); (c) signal intensity for both cases (a) and (b).

Let S and S0 denote the signal intensities with and without the existence of
the diffusion gradients, respectively. So, the amount of signal loss is related
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to the above mentioned parameters as

S

S0
= f(∆, D,G, δ), (4.1)

∆, G, and δ are experimental parameters that can be controlled. S and
S0 are experimentally measured MR signals. Thus, the diffusion constant
(D) can be calculated from the equation above. As mentioned earlier, the
amount of phase difference is introduced by gradient pulses. After setting
the parameters G, and δ, the phase difference (φ(x)) can be calculated in
the space with respect to an arbitrary reference point (x = 0):

φ(x) = eiγGδx, (4.2)

where x is the distance from the reference point and γ is the gyromagnetic
ratio. Also, under the assumption of free diffusion, the population of water
molecules that move by x during the diffusion time (t) can be estimated
using a Gaussian distribution:

P (x, t) = 1
σ
√

2π
e−

x2
2σ2 , (4.3)

mathematically, σ controls the width of the Gaussian function; and here, it
determines how far the water molecules can move on average. The average
distance can be replaced by the estimation of Einstein’s equation: σ =√

2Dt. Thus, Eq. 4.3 can be rewritten as below

P (x, t) = 1√
4πDt

e−
x2

4Dt , (4.4)

Now, the total signal can be computed by summing up the product of pop-
ulation of water molecules and signal phase over x:

Signal =
∫
x
P (x, t)φ(x)dx = 1√

4πD∆

∫
x
e
− x2
√

4D∆ eiγGδx dx, (4.5)

By solving this integration, the signal becomes

Signal = e−γ
2G2δ2D∆, (4.6)

It’s clear that when there is no diffusion weighting (G=0), the signal value
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Figure 4.9: Diffusion-weighting sequences: (a) a simplified version (δ << ∆),
in which the gradients are applied instantaneously and diffusion of water
molecules can be negligible, and (b) a more realistic case.

is equal to one, which is the maximum value. This in turn means that the
signal intensity is normalized. Accordingly, in practical applications that
there exist diffusion gradients, Eq. 4.6 can be rewritten as

S = S0e
−γ2G2δ2D∆, (4.7)

It should be reminded that the above result is achieved under the assumption
that the gradient duration is much smaller than the time interval between
the bipolar gradients, ∆ (Fig. 4.9a). This assumption means that during
the application of gradients there is no diffusion among water molecules that
can be considered. In fact, in Eq. 4.5, the variable t was substituted by ∆.
However, in practical applications, the gradient duration (δ) is long and it
is incorrect to neglect the movement of water molecules during the gradient
pulses (Fig. 4.9b). Therefore, in such cases, the gradient magnitude (G) and
its areas (Gδ) are time-dependent variables. Consequently, the introduced
phase gradation, defined in Eq. 4.2, will be a function of both time and
location:
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φ(x, t) = e
∫
iγG(t)tx, (4.8)

Subsequently, the signal equation (Eq. 4.5) is rewritten as

Signal =
∫
x
P (x, t)φ(x, t)dx = 1√

4πDt

∫
x
e
− x2
√

4Dt e
∫
iγG(t)tx dx, (4.9)

and after solving the integral with respect to x and t, it concludes to

S = S0e
−γ2G2δ2(∆− δ3 )D, (4.10)

For more details about the mathematical procedure leading to these equa-
tions, the interested reader is highly suggested to read Mori and Tournier
[2013]. As reminded earlier, G, δ, and ∆ are the parameters that are al-
ready set by us; and S and S0 are experimentally measured. So, the term
γ2G2δ2(∆ − δ

3) can be abbreviated by a single parameter b (b-factor or b-
value), which corresponds to so-called Stejskal–Tanner equation

b = γ2G2δ2(∆− δ

3), (4.11)

and Eq. 4.10 can be simplified to

S = S0e
−bD, (4.12)

The computed diffusion constant from Eq. 4.10 is called apparent diffusion
constant (ADC), as it varies depending on the direction of applied diffusion
gradient or the sample’s orientation.
There is no optimal b-value that can be generalized for various applications;
and its value should be specified according to the anatomical features, pre-
dicted pathology, field strength, and number of signals averaged. There are
lots of studies dedicated to the investigation of the optimal b-value for dif-
ferent applications; for example Burdette et al. [2001]; Tang et al. [2007];
Goshima et al. [2008]; Metens et al. [2012]. Fig. 4.10 shows brain images that
are acquired at different b-values. As can be seen, white matter regions are
generally significantly hypointense compared with gray matter regions when
no diffusion gradient is applied (b-value=0). By raising the b-value to 1000,
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(a)

(b) (c) (d)

Figure 4.10: Brain DWI images using 3 different b-values (s/mm2): (a)
Gray and white matter of the brain(A.D.A.M. [2017]), and T2-weightedecho
planar images with (b) b-value = 0, (c) b-value = 1000, and (d) b-value
= 3000 (Burdette et al. [2001]).

white matter regions’ signal is increased relative to gray matter regions,
even though they are still remained slightly hypointense. On b-value=3000,
majority of white matter tracts are hyperintense compared with deep gray
matter and cortex structures. In addition, by comparing the images, it is
obvious that image noise is increased by increasing the b-value.

4.2.2 Principle of DTI and Fiber Tracking

Previous section introduced the concepts of diffusion weighted imaging in
which applying gradient pulses in a specific direction enables us to determine
the diffusion constant for that specific direction. For example, a gradient
which is applied in x direction makes the MR signal to be sensitized to the



109 4.2. DIFFUSION TENSOR IMAGING (DTI)

diffusion process along the x-direction. The measurement in one direction
can be generalized to other directions only when water molecules diffuse
in all directions with the same amount. In other words, if the diffusion
constant (D) for all directions is the same, we need only one measurement
to determine it, which is so-called isotropic diffusion. But within the liv-
ing systems, the diffusion process has sometimes directionality, so-called
anisotropic diffusion, and there is a specific direction or some directions
where water molecules tend to diffuse along it or them (Fig. 4.11). In
this case, more measurements are necessary to describe the diffusion pro-
cess that has directionality. Diffusion tensor imaging (DTI) extends the
concepts of DWI by modeling the diffusion process through a mathemati-
cal tensor Basser et al. [1994b]. Although an anisotropic diffusion can be
characterized by measuring the diffusion constants along a sufficiently large
amount of directions, DTI represents the tensor as an ellipsoid whose main
axis present the principle direction of diffusion. We know that each ellipsoid
is characterized by six parameters: the length of main axes (the longest,
the middle, and the shortest) and the orientation of them. The lengths are
called principal diffusivities or eigenvalues (λ1,λ2, and λ3), and the unit
vectors defining their orientations are called eigenvectors (v1 ,v2 , and v3).
Therefore, in order to estimate an ellipsoid diffusion tensor, it technically
requires imaging with at least six diffusion gradient directions (Fig. 4.12).
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Isotropic Diffusion Anisotropic Diffusion

Figure 4.11: Diffusion of water molecules.
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Diffusion gradients along 6 directions An ellipsoid tensor 

Figure 4.12: Geometric representation of the ellipsoid diffusion tensor: its
corresponding parameters (eigenvalues and eigenvectors), and the minimum
number of diffusion gradients that are necessary to estimate the tensor are
shown.
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Mathematically in DTI model, second-order tensors2 are employed in
order to describe the anisotropic diffusion within each voxel; a symmetric
3×3 tensor (having six independent parameters) that encodes elliptic shape
geometry and its diagonalization leads to the ellipsoid parameters.

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 Diagonalization
−−−−−−−−−−−→

{λ1, λ2, λ3, v1 , v2 , v3} (4.13)

So, the eigendecomposition of D results in

D = EΛE−1, (4.14)

where

Λ = [v1 v2 v3 ] and E =


λ1 0 0

0 λ2 0

0 0 λ3


Subsequently, the spectral decomposition of D can be written as

D = λ1v1v
T
1 + λ2v2v

T
2 + λ3v3v

T
3

where the superscript T denotes matrix transposition. The diagonal ele-
ments of D represent the diffusion constant along x, y, and z directions
(ADCx = Dxx, ADCy = Dyy, and ADCz = Dzz). In other words, they rep-
resent the diffusion perpendicular and parallel to the fiber. Imagine there
is a fiber structure oriented along x direction, then ADCx is larger than
ADCy and ADCz. In contrast to diagonal elements, off-diagonal elements
carry information about the rotations or the correlation of random motions
between each pair of principal directions. In case of a pure liquid for which
a perfect isotropic diffusion is expected, the diagonal elements are equal to

2A mathematical framework which is called “tensor calculus” allow to interpret math-
ematically and physically the geometric quantities using tensors.
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a single diffusion constant, D, and off-diagonal elements are all zero.

Disotropic =


D 0 0

0 D 0

0 0 D

 (4.15)

Similar to the function of signal attenuation for DWI (Eq. 4.10), a same
mathematical process can be performed in order to achieve a tensor based
function for DTI:

S = S0e
−bḡTDḡ, (4.16)

where D is the diffusion tensor represented by a symmetric positive definite
3 × 3 matrix and ḡ is a unit vector determining gradient direction. In this
equation, S is measured in the presence of diffusion weighted gradients, S0

is taken in the absence of a diffusion weighted gradient, and b is also known.
Thus, for estimating the diffusion tensor D, which holds six distinct ele-
ments, at least six measurements must be done using different noncollinear
gradient directions. Generally, a wide range of range of parametric meth-
ods can be employed to estimate tensors; for example, the least squares
(Basser et al. [1994b]; Jones and Basser [2004]; Salvador et al. [2005]; Koay
et al. [2006a,b]; Collier et al. [2015]) or the maximum likelihood (Andersson
[2007, 2008]; Fillard et al. [2007]). Within the optimization process some
a priori information such as positive definiteness constraint (Wang et al.
[2004]; Koay et al. [2006a,b]; Andersson [2007, 2008]) or spatial regulariza-
tion (Wang et al. [2004]; Koay et al. [2006b]; Andersson [2007]; Fillard et al.
[2007]) can be incorporated in order to improve the precision and accuracy
(Jones [2010]; Koay [2010]).
After estimating the diffusion tensors for each voxel, we need to analyze
them within the same or different regions. Fig. 4.13 shows the computed
tensor elements for a slice of human brain, which interpretation is difficult.
This is why other methods of visualization should be considered. The sim-
plest way can be the visualization of the 3D ellipsoids. They also can be
colored following the RGB one dimensional map, where RGB values are
set to the major eigenvector. Fig. 4.14 shows three tensors whose major
eigenvectors are directed toward x, y, and z axes.
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Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

Figure 4.13: A diffusion tensor image of a human brain. Each element
of tensor is shown in an indivigual image. As can be seen Dxy = Dyx,
Dxz = Dzx, and Dyz = Dzy (Jones [2010]).

Although, direct visualization of tensors are interesting, some scalar
maps or indices may be extracted from tensors within the voxels. These
scalar indices are visualized using a grayscale or a color-coded. In addition,
tracking techniques are employed to generate paths representing the fiber
tracks. In the following sections, we briefly explain both scalar maps and
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Figure 4.14: Color coding of tensors: the main axis of each tensor (i.e., the
major eigenvector) is directed to one of the main axes. Here, red indicates
directions in the x axis, green indicates directions in the y axis, and blue
indicates directions in the z axis.

fiber tracking methods.

4.2.2.1 Diffusion scalar maps

This section briefly reviews the most popular diffusion derived scalar maps
that are obtained from diffusion tensors eigenvalues or eigenvectors.

• Trace, that summarizes the total diffusivity (Basser et al. [1994a]),

Trace = λ1 + λ2 + λ3, (4.17)

• Mean Diffusivity (MD), that indicates the overall magnitude of water
molecules diffusion independent of anisotropy and also overall obsta-
cles to diffusion (Mori and Van Zijl [1995]; Basser and Pierpaoli [1996]).

MD or λ̄ = Trace
3 , (4.18)

• Fractional Anisotropy (FA), that reveals the degree of water diffusion
anisotropy by evaluating how much the eigenvalues differ (Basser and
Pierpaoli [1996]). Simply, this tells us how far the obtained tensor is
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from a sphere (indicating an isotropic diffusion). In other words, FA
is a normalized factor that basically describes the normalized variabil-
ity across the levels of diffusion measured in the different directions.
Therefore, the higher values of FA specify how strongly the diffusion
is directed along the principal eigenvector orientation.

FA =
√

3
2

√
(λ1−λ̄)2+(λ2−λ̄)2+(λ3−λ̄)2

λ2
1+λ2

2+λ2
3

=
√

1
2

√
(λ1−λ2)2+(λ2−λ3)2+(λ3−λ1)2

λ2
1+λ2

2+λ2
3

(4.19)

• Relative Anisotrophy (RA), that quantitatively assesses the level of
out-of-roundness of the diffusion ellipsoid (Basser and Pierpaoli [1996]).
Similar to FA, it is considered as an indice of diffusion anisotropy.

RA =
√

6
6

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ̄
(4.20)

• Volume Ratio (VR), that evaluates the ratio between the sphere vol-
ume and the ellipsoid volume (Basser [1995b]).

VR = λ1λ2λ3

λ̄3 (4.21)

Although the above mentioned diffusion indices are generally visualized as
custom grayscale images, orientation information may be added in order to
generate color-coded (cc) maps. In this regard, each component of the major
eigenvector (v1) of diffusion tensors can be multiplied by an anisotropy map
such as FA as below

FAcc =


FARcc
FAGcc
FABcc

 =


v1x ∗ FA

v1y ∗ FA

v1z ∗ FA

 (4.22)

Fig. 4.15 shows some of the obtained maps and their color-coded ones for
the human brain.
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Figure 4.15: Example of diffusion derived parameters: maps of λ1, MD,
FA, directionally encoded color map of v1 (red,green,blue), and color-coded
maps of λ1 and FA using v1 through the Eq. 4.22.
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Figure 4.16: Fiber tractography: two seed points are selected in the voxel
right down in order to track fibers according to the extension of diffusion
tensors.

4.2.2.2 Fiber tractography

Fiber tractography (Jones et al. [1999]; Mori et al. [1999]; Basser et al.
[2000]) is a kind of modeling that virtually provides a 3D visualization of
fiber bundles. This technique assumes that the major eigenvector of the
estimated diffusion tensors are locally parallel to the fiber tracks. Simply
put, ellipsoids are elongated in such a way that they locally reflect the main
fiber direction. Therefore, it can be considered that the direction of fibers
is changing slowly and we can reconstruct fibers by moving from one voxel
to another one according to the shape and direction of the ellipsoids (Fig
4.16). Also, color-coded fibers are generated using the direction of major
eigenvector such as the scalar maps. Deterministic approaches can be used
based on the estimated diffusion tensors. However, these methods can be
quite inaccurate because: (1) the obtained results are prone to noise and to
error-estimation of tensors; (2) the accuracy is not high due to the fact that
crossing “×” and kissing “)(” fibers can not be detected within the voxels.
Hence probabilistic methods could be more efficient (Tuch et al. [2000]; Koch
et al. [2001]; Batchelor et al. [2001]; Beaulieu [2002]; Behrens et al. [2002];
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Parker et al. [2002]). These methods are similarly based on seed points;
however, they assume that each seed point could be connected to all other
points within the volume. The algorithm evaluates the probability of all
the possible connections and chooses the most probable one that optimizes
a specific cost function. That is to say, probabilistic tractography methods
estimate most likely fiber orientations and a probability distribution of ori-
entations that represents how likely is each other orientation to lie along a
fiber.

4.3 Integration of Muscle Fibers in the Subject-
Specific FE Meshes

In chapter 3, subject-specific FE meshes were generated by deforming an
atlas mesh according to a transformation that establishes a correspondence
between the subject’s and atlas’ anatomical volumetric images (e.g., MRI
or/and CT exams). Such transformations were extracted inherently based
on the 3D registration of anatomical images. This section explains a novel
approach that enables us to integrate additional subject-specific informa-
tion related to fiber-bundles to the generated meshes. As the elements of
atlas meshes can be organized according to the organ’s geometry or its gov-
erning fiber structures, different methodologies are taken into account for
integrating such information into the meshes. For more clarification, before
going into the details of the proposed method, let us represent different atlas
meshes that can be considered for a muscular structure containing fibers.
Fig. 4.17a shows an atlas mesh designed only based on the anatomical shape
of a region of interest, called here anatomical-mesh. For generating such
types of meshes, like the atlas tongue mesh used in chapter 3, only the infor-
mation about the shape is required; and the information about fiber bundles
can be added subsequently by defining in each element the main direction of
each specific fiber bundles. In contrast, we can generate meshes by consid-
ering fiber structures such as the one represented in Fig. 4.17b, called here
muscular-mesh. As can be seen, the elements are designed and placed
along the curved boundary of the fibers. This means that muscular-meshes
inherently hold information about fiber bundles, and deformation of such
an atlas mesh needs a mapping from the atlas’ fibers to the subject’s one.
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(a) Generated mesh based on the anatomical shape.

(b) Generated mesh based on the fibers structure.

Figure 4.17: Anatomical- and Fiber-based generated meshes.
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Consequently, we propose an approach that considers both types of atlas
meshes as follow

• In a methodology based on anatomical-meshes, subject-specific meshes
that include fibers distribution information are generated in two steps:
deforming an atlas mesh by registration of anatomical images (Phase
I), and then determining which elements of the generated mesh are
associated with specific fiber bundles in the atlas mesh (Phase II). In
other words, subject’s fibers can be labeled/grouped according to the
atlas fiber-bundles and this information can be added to the anatom-
ical mesh in order to be used during the mechanical simulations.

• In a methodology based on muscular-meshes, both anatomical in-
formation and information related to the muscles are incorporated
for estimation of an overall transformation that can be used to di-
rectly deform a muscular-atlas mesh. This deformation is modeled
by combination of an anatomical and a fiber-based transformations.
On this matter, like the process used for the anatomical-meshes, an
anatomical transformation is first estimated and then subject-specific
fiber-bundles are identified (Phase I and Phase II). Afterwards, a
fiber-based transformation is extracted by registration of fiber-bundles
through Phase III. Combination of such transformations can be fur-
ther used to directly deform the muscular-atlas mesh.

General dataflow proposed to embed fibers information within the generated
meshes is shown in Fig. 4.18; and the three main phases are being explained
in the following sections.
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4.3.1 Phase I: Anatomical Registration
(yellow boxes of the Fig. 4.18)

In order to establish a one-to-one correspondence between the atlas’ and sub-
ject’s MR images, and to extract a 3D displacement field that deforms the
atlas mesh while preserving mesh quality, the method proposed in chapter
3 is employed. Briefly, a diffeomorphic non-rigid registration based on B-
spline Free-Form Deformations (FFDs), which guarantees a non-folding and
one-to-one transformation, is employed to produce an anatomical transfor-
mation (Tanatomical). For more details on the process, the reader is referred
to chapter 3.
As explained before, depending on the type of atlas mesh that might be an
anatomical-mesh or a muscular-mesh, different strategies are considered. For
anatomical meshes such as our atlas tongue mesh, the obtained transforma-
tion is used to deform the atlas mesh and to generate subject-specific ones.
However, mesh elements still need to be assigned to specific fiber-bundles
according to the information provided in the atlas data (Phase II). On the
contrary, in the case of muscular-meshes, the anatomical transformation is
considered as an elementary transformation; and another transformation is
extracted based on the fiber-bundles (Phase III). The combination of these
two transformations results in an anatomical-muscular transformation,
that subsequently can be used to deform muscular-meshes. It is important
to note that Phase II is a prerequisite for Phase III.

4.3.2 Phase II: Detection of subject’s fiber-bundles
(purple boxes of the Fig. 4.18)

In order to add information about the fiber-bundles to the meshes, it is
assumed that DTIs are acquired for both atlas and subject. Also, atlas’
fibers are extracted in advance, manually or automatically, and grouped
into a specific number of fiber-bundles. Then, subject’s fiber-bundles are
automatically estimated based on the atlas fiber-bundles. The primary step
to this phase is fiber tracking for the subject using fiber tractography algo-
rithms and the deformed-atlas mask. This step is explained below.
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4.3.2.1 Refinement of anatomical transformation

In the previous phase, an anatomical transformation providing a geomet-
rical correspondence between the atlas’ and subject’s organs was achieved.
Although this transformation is not estimated based on the muscular struc-
tures, it can be used to deform atlas fibers and bring them into the subject’s
space. The transformation of fiber point x can be computed by

T (x) = x +D(x), (4.23)

where D is the 3D displacement field obtained from phase I. Therefore, both
atlas’ fibers and anatomical image are deformed using Tanatomical. At this
stage, in the aim to refine Tanatomical, deformed-atlas and subject’s anatom-
ical images are weighted using the fibers information (see below for de-
tails about how “weighted-images” are generated). The produced weighted-
images are registered together using the same method as in Phase I.
In this regard, track density images (TDIs) (Calamante et al. [2010]) are
first created by sampling the deformed-atlas’ and subject’s fiber tracks in
isotropic intervals (e.g, 0.5mm) and counting the fibers that pass through
each voxel. Then, weighted-images (WIs) are created by linear combination
of anatomical images and TDIs as

WI = (1− ω)×MRI + ω × TDI, (4.24)

where ω is a weighting factor between zero and one. Fig. 4.19 shows
a weighted-image which is created for a human brain (the phantom DTI
data set is obtained from ISMRM−challenge [2015 (accessed November 28,
2016]). More weighted-images for different slices of the same DTI are pro-
vided in Fig 4.20. By looking at the weighted-images, it can be noted that
the increment of anatomical contrast is achieved in the regions having high
density of passing-fibers. This means that we can map fibers information
into the anatomical images and use them to refine Tanatomical. In light of
this, weighted-images are subsequently registered using the same process as
defined in phase I; and the anatomical transformation is refined as below

TRef−Anat = TWI ◦ Tanatomical, (4.25)
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(a) (b)

(c) (d)

Figure 4.19: Linear combination of anatomical MR and track density images:
(a) Anatomical MR image, (b) MR image superimposed with the 3D fiber
tracks, (c) Track density image, (d) Linear combination of (a) and (c).

where TRef−Anat and TWI are respectively the refined-anatomical transfor-
mation and the transformation derived from registration of weighted-images.
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Figure 4.20: Examples for linear combination of anatomical MRIs and TDIs:
the left, middle, and right columns respectively represent the anatomical im-
ages, MRIs superimposed with the 3D fiber tracks, and generated weighted-
images.
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4.3.2.2 Determination of subject’s fiber-bundles

Within the refinement process, the anatomical transformation was guided
by regions having high-density of fibers, as natural landmarks within the
muscular regions. However, it should be noted that we can not expect such
a transformation could provide an accurate mapping for low density regions.
In other words, as TRef−Anat is not achieved solely by the registration of
atlas’ and subject’s fibers, and should be rather seen as a transformation that
captures anatomical geometries including the overall distribution of fibers.
At this stage, we can deform the atlas fiber using TRef−Anat through an
equation similar to Eq. 4.23, and obtain refined atlas-deformed-fiber-bundles
(ADFB) that will serve at reference to automatically group subject’s fiber
tracks into subject-specific fiber-bundles. In this aim, a similarity measure
(S) is evaluated for each fiber of the subject by computing its distance to
the centroids of the atlas-deformed-fiber-bundles, according to the method
that is explained in details below.
Each fiber is represented by a variable number of points that may differ
from one fiber to another. Since some similarity measures require fibers to
be represented with the same number of points, each fiber of subject f is
re-sampled along its trajectory using B-spline interpolation at a fix number
N of points (p), and represented by a N × 3 matrix.

f =


p1
...

pN

 =


x1 y1 z1
...

...
...

xN yN zN

 (4.26)

Also, each Atlas-Deformed-Fiber-Bundle (ADFB) is represented by a triple
b = (bInd, bCnt, bn), in which bInd is a list containing indices of the fibers
that are included in the bundle, bn is the number of fibers in the ADFB,
and bCnt is the centroid of the bundle that is computed as

bCnt =
∑bn

i=1 fbIndi

bn
(4.27)

where
∑

is matrix-addition. Now, let’s define the index subject’s fibers and
ADFBs respectively with i = 1, · · · , NS and j = 1, · · · , Natlas, and summa-
rize the whole process that enables grouping subject’s fibers into the Natlas
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Data: Subject’s fibers (f) and ADFBs (b)
Result: Subject’s fiber-bundles
Initialization:

Re-sampling all fibers using N number of points;
Computation of ADFBs’ centroids (bCnt);
Defining a fiber-similarity measure (S);

for i← 1 to NS do
f labeli ← arg max

j
(S(fi, bCntj ));

end

Algorithm 1: Determining subject’s fiber-bundles based on atlas-
deformed-fiber-bundles.

number of bundles, as shown in Algorithm 1.
As described in this Algorithm, the automatic determination of subject-
specific fiber-bundles is based on a pairwise similarity or distance between
each pair of subject’s fibers and ADFBs’ centroids. In the literature, a wide
range of similarity measures are proposed that could be used to group/cluster
fibers for inter- and intra-subject applications: Hausdorff distance (Gerig
et al. [2004]; Xia et al. [2005]; Corouge et al. [2004]), Closest point distance
and Mean distance of closest distances (Corouge et al. [2004]), Symmetrized
mean closest point distance, which is the average of the two directed mean
closest points distances between the two fibers (Guevara et al. [2011]), pair-
wise Euclidean distance of the fiber descriptors, including mean and square
root of the covariance matrix of fiber points (Brun et al. [2004]), Maha-
lanobis distance (Maddah et al. [2008]), the average mean distance (Gerig
et al. [2004]; Xia et al. [2005]; O’Donnell et al. [2006]; Corouge et al. [2004]),
associativity vector which describes the relationship between the fiber and a
certain anatomical ROI in a fuzzy manner (Wang et al. [2013a]), minimum
average direct-flip distance (Garyfallidis et al. [2010]; Visser et al. [2011]),
etc. Some methods like the Hausdorff distance ignore the sequential nature
of fibers’ points and treat them as a cloud of points. Given two fibers f1

and f2, the Hausdorff distance is computed as

dH(f1, f2) = max(dh(f1, f2), dh(f2, f1)) (4.28)

with dh(f1, f2) = max
pk∈f1

(min
pl∈f2

‖pk − pl‖)
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(a) ddirect (b) dflipped

Figure 4.21: The components of MDF distance: (a) direct distance and (b)
flipped distance; fibers are drawn in solid lines, and the pairs of points which
distances contribute to the MDF are connected with dashed lines.

where ‖ . ‖ is the Euclidean norm. Evidently, dH does not require the fibers
to be sampled with the same number of points. In contrast, often methods
like the minimum average direct-flip distance (MDF) consider the sequential
order of points and need the fibers to be sampled with the same number of
points. Given two fibers f1 = [ pf1

1 , · · · , p
f1
N ] and f2 = [ pf2

1 , · · · , p
f2
N ], and

their flipped version fflipped1 = [ pf1
N , · · · , p

f1
1 ] and fflipped2 = [ pf2

N , · · · , p
f2
1 ],

MDF is computed as

MDF(f1, f2) = min(ddirect(f1, f2), dflipped(f1, f2)), (4.29)

with

ddirect(f1, f2) = d(f1, f2) = 1
N

N∑
i=1

∥∥∥pf1
i − p

f2
i

∥∥∥ ,
dflipped(f1, f2) = d(f1, f

flipped
2 ) = d(fflipped1 , f2),

The components of MDF, namely direct and flipped distances, are shown
in Fig.4.21. To sum up, each distance or similarity measure has specific
advantages and shortcomings. For instance, closest point distance encodes
coarse information about fibers’ similarity and closeness, and therefore can
not be expected to achieve a good discrimination (Corouge et al. [2004]).
However, since the atlas fibers are mapped into the space of subject’s fibers
using TRef−Anat before measuring similarity, it is reasonnable to think that
the performance of all these different similarities measures should be good.
Coming back to Algorithm 1, it should be mentioned that, due to robustness
limitations of fiber tractography methods in noisy low-contrast regions or
at junctions, there might be some outliers in the subject’s fibers. With the
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Data: Subject’s fibers (f) and ADFBs (b)
Result: Subject’s fiber-bundles
Initialization:

Re-sampling all fibers using N number of points;
Computation of ADFBs’ centroids (bCnt);
Defining a fiber-similarity measure (S);
Selecting Smin, according to the type of S;

for i← 1 to NS do
label← arg max

j
(S(fi, bCntj ));

if S(fi, bCntlabel) < Smin then
This is an outlier;

else
f labeli ← label;

end
end

Algorithm 2: Determining subject-specific fiber-bundles based on
ADFBs, with similarity constraint.

term “outliers” we understand subject-specific fibers that cannot reliably re-
lated to a ADFB. Indeed the ADFB is considered as a reliable information
about muscle organization in the subject-specific anatomy. Hence, to be
treated as a reliable fiber, a subject-specific fiber should be close enough to
one of the ADFBs. This is why, to evaluate whether a subject-specific fiber
is an outlier or not, we have introduced a constraint at the level of similari-
ties or distances. In other words, the highest similarity measure between a
subject’s fiber and ADFBs should be more than a minimum value (Smin).
Adding this constraint in Algorithm 1, we obtain Algorithm 2.
If we now come back to the problem of subject-specific meshes, our main
objective is to determine the muscular affiliation of each element in the
generated subject-specific anatomical-meshes using the knowledge provided
by the atlas. As a result of phase II, we can identify which element of
the subject-specific mesh belongs to which muscle-fiber-bundle and, on this
basis, attribute to each element specific mechanical properties and function-
ality. Fig. 4.22 shows an example of such an anatomical transformation and
of the derived-correspondence between the elements. Thanks to the detec-
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tion of fiber-bundles in the geometrical space of the subject, we are now in a
position where we can consider computing a fiber-bundle-based transforma-
tion mapping the atlas-fiber-bundles into the subject-specific-fiber bundles.
Focusing on fiber-bundles instead of fibers, we overcome the problems linked
to the inaccuracy of fiber-tracks detection that we mentioned above. The
next phase will address this problem by non-rigid registration of ADFBs to
the subject’s identified fiber-bundles (SIFBs).
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(a) Atlas anatomical-mesh, (b) Subject-specific mesh,

(c) Atlas mesh superimposed with the
subject-specific mesh

(d) Elements in the atlas’ mesh, (e) Elements in the subject’ mesh

Figure 4.22: An example of an anatomical-mesh deformation and achieved
elements correspondence: (a) Atlas anatomical-mesh, (b) Deformed-atlas
mesh or subject-specific mesh, (c) Atlas mesh superimposed with the
subject-specific mesh, (d) Elements belonging to different fiber-bundles in
the atlas mesh, (e) Elements belonging to different bundles in the subject-
specific mesh (the correspondence is achieved by Phase II).
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4.3.3 Phase III: Fiber-bundles non-rigid registration
(pink boxes of the Fig. 4.18)

In Phase II, subject-specific fiber-bundles (SIFBs) were identified and as-
sociated with atlas’s fiber-bundles. This correspondence could be used to
identify elements belonging to different bundles in the generated anatomical
subject-specific meshes. However, we need to compare each pair of fiber-
bundles locally for inter-subject studies of functional data or intra-subject
longitudinal studies of fiber tracts (e.g, to study normal aging (Sullivan et al.
[2010]) or age-related decline in fiber tracts (Voineskos et al. [2012])). In
addition, a fiber-derived transformation could be used to deform muscular-
meshes. In this respect, we are going to non-rigidly register each pair of
fiber-bundles.
Before going into the details of the registration process, let us remind a few
facts:

• Each fiber-bundle contains a variable number of fibers. Hence, even
if all the fibers were re-sampled to the same number of points, each
bundle is represented by a different number of 3D points;

• Although we are going to locally register two sets of 3D points, we
should keep in mind that the topological structure of the fiber-
bundles must be preserved. In other words, we are interested in ex-
ploiting global relationships in the point sets;

• It is very important to keep local structures3 among neighboring
points.

In light of these considerations, it is quite important that the registration
method should use the global and local structures, and also preserves the
topological structure of the point sets. Accordingly, a probabilistic method
called Coherent Point Drift (CPD) (Myronenko and Song [2010]) is employed
to provide a correspondence between the two fiber-bundles, using motion
coherence theory (MCT) (Yuille and Grzywacz [1988, 1989]) and regardless
of the transformation model. According to this theory, points that are close
to each other tend to move coherently. Considering this theory and the
need for a smooth transformation, CPD deals with the movements as a

3The terms topological and local structures refer to the connectivity and adjacency
of the points that form a fiber and the fibers that form a fiber-bundle.
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(a) (b) (c)

Figure 4.23: Velocity fields having different level of coherency with the given
point correspondences: (a) two point sets, Coherent velocity field, (b) high
coherent velocity field, (c) less coherent velocity field (Myronenko et al.
[2006]).

temporal motion process, and then enforces a motion coherence constraint
over the velocity field or displacement. Velocity fields having different level
of coherency with the given point correspondences are illustrated in Fig.
4.23.

4.3.3.1 Coherent Point Drift (CPD)

Basically, CPD considers the alignment of two point sets as a problem of
probability density estimation. In order to preserve the topological struc-
tures, the first data set, which is represented by Gaussian Mixture Model
(GMM) centroids, is fitted to the second data set by maximizing the like-
lihood (Dempster et al. [1977]). As a consequence of the motion coherence
constraint over the velocity field, the centroids move coherently as a whole
so that the topological structure of the second data set is preserved. In the
optimal state estimation, the two point sets are aligned and the correspon-
dence is achieved by the posterior probabilities of the GMM components. In
addition, regularization of displacement field is considered to have a smooth
non-rigid registration. In the following the problem formulation and CPD
algorithms are briefly described.
Given a pair of corresponding fiber-bundles being aligned, fADFB =̂ fSIFB ,
two sets of different point count are considered:

• Y = [fADFB points]M×3

• X = [fSIFB points]N×3
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where M and N represent the number of points in each fiber-bundle. The
points in Y are considered as the centroids of a GMM to be fitted to the
points in X, by maximizing the likelihood function. The current positions
of centroids are defined as

Y = v(Y0) + Y0 (4.30)

where Y0 is the initial centroid position and v is a continuous velocity or
displacement function. In order to model the problem, the points in X are
looked as the data points generated by the GMM.
Therefore, a Gaussian mixture density p(x) =

∑M
m=1

1
M p(x|m) with p(x|m) ∼

N (ym, σ2I3) is considered, whereY includes 3D centroids of equally-weighted
Gaussians with equal isotropic covariance matrices. Also, in order to apply
a smooth motion constraint over the movement of the centroids, the prior
p(Y|λ) ∝ exp(−λ

2φ(Y)) is defined, where λ is a weighting factor and φ(Y)
is a regularization function that smooths the motion. In other words, φ
brings our prior knowledge about the motion to the problem. In this man-
ner, the optimal values of Y are estimated by maximizing the a posteriori
probability:

E(Y) = −
N∑
n=1

log
M∑
m=1

e−
1
2

∥∥ xn−ym
σ

∥∥2

+ λ

2φ(Y) (4.31)

Knowing the fact that the smoothness of a function can be considered as a
measure of its oscillatory behavior (Girosi et al. [1995]), the regularization
term (φ) is replaced by a function measuring the high frequency content,
and the energy function in Eq. 4.31 is then rewritten as

E(ṽ) = −
N∑
n=1

log
M∑
m=1

e−
1
2

∥∥ xn−ym
σ

∥∥2

+ λ

2

∫ |ṽ(s)|2

G̃(s)
ds (4.32)

where ṽ(s) and G̃(s) represent the Fourier transform of the velocity, and a
symmetric positive definite low-pass filter that approaches zero when ‖s‖ →
∞, respectively. Using a variational approach (Myronenko et al. [2006]), it
is shown that the energy function in Eq. 4.32 is minimized for all vectors z
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by a radial basis function as below

v(z) =
M∑
m=1

wmG(z− y0m), (4.33)

with

wm = 1
λ

N∑
n=1

e−
1
2

∥∥ xn−ym
σ

∥∥2
1
σ2 (xn − ym)∑M

m=1 e
− 1

2

∥∥ xn−ym
σ

∥∥2

where GM×M is chosen to be a Gaussian affinity matrix. Such a Gaussian
kernel form for G brings some advantages:

• the required properties are satisfied: being a symmetric positive defi-
nite matrix and when ‖s‖ → ∞, G̃ approaches zero;

• no fluctuation is included in both time and frequency domains for a
low-pass filter having a Gaussian form;

• the size of Gaussian filter enables us to control the range of filtered
frequencies or the level of spatial smoothness;

• the regularization term imposes the points to move coherently accord-
ing to the Motion Coherence Theory (MCT) (Yuille and Grzywacz
[1988, 1989]), as it becomes equivalent to the sum of weighted squares
of all order derivatives of the velocity field (Yuille and Grzywacz [1988])

φMCT (v) =
∫ ∞∑

m=1

β2m

m!2m (Dmv(x))2dx (4.34)

where D is a derivative operator in that D2mv = ∇2mv and D2m+1v =
∇(∇2mv).

The obtained solution for v, Eq.4.33, is subsequently substituted into Eq.4.32

E(W) = (4.35)

−
N∑
n=1

log
M∑
m=1

e
− 1

2

∥∥∥∥ xn−y0m−
∑M

k=1 wkG(y0k−y0m)
σ

∥∥∥∥2

+ λ

2 tr(W
TGW),
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where the kernel matrix is represented by GM×M whose elements are gij =

e
− 1

2

∥∥∥ yi−yj
β

∥∥∥2

, and WM×3 = (w1, · · · , wM )T includes the Gaussian kernel
weights in Eq. 4.33.

In order to derive an optimal transformation, as the problem is equiva-
lent to the Expectation Maximization (EM) algorithm for GMM, the upper
bound of the energy function in Eq. 4.35 can be find as (E-step)

Q(W) = (4.36)
N∑
n=1

M∑
m=1

P old(m|xm)‖xn − y0m −G(m, .)W‖2

2σ2 + λ

2 tr(W
TGW),

where P old is a posteriori probability distributions of mixture components
which is calculated using previous parameter values, G(m, .) is the mth row
of G. Minimizing the upper bound, Eq. 4.36, will decrease the value of
energy function in Eq. 4.35. On this matter, the optimal parameters can be
achieved by taking the derivative of Eq. 4.36 with respect to W (M-step)

∂Q

∂W = 1
σ2G(diag(P1)(Y0 + GW)−PX) + λGW = 0 (4.37)

where diag(.) specifies a diagonal matrix, 1 is a column vector of all ones,
and P is the matrix of posterior probabilities with elements

pmn = e
− 1

2

∥∥∥ yoldm −xn
σ

∥∥∥2

∑M
m=1 e

− 1
2

∥∥∥ yoldm −xn
σ

∥∥∥2 (4.38)

For consideration of outliers, a uniform probability density function is also
added to the mixture model and the whole process of CPD is summarized
as (Myronenko et al. [2006]; Myronenko and Song [2010])

• Initialize parameters λ, β, and σ,

• Construct G matrix, and intitialize Y = Y0

• Deterministic annealing:

EM algorithm, repeat until optimization:

– E-step: Compute P
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– M-step: Solve for W from Eq. 4.37

– Update Y : Y = Y0 + GW

Anneal σ = α× σ

• Compute the velocity field: v(z) = G(z, .)W

• Establish the correspondence from posterior probabilities P

For more details about the mathematical procedure leading to the equations
and EM algorithm, the interested reader is highly suggested to read (My-
ronenko et al. [2006]; Myronenko and Song [2010]). Fig.4.24 shows a 2D
example of CPD registration. It is evident that the points in the template
set (blue) are moved coherently so that the inherent topological structure
is preserved while they are aligned to the reference point set (red). Also, a
3D example of nonrigid CPD registration for a pair of corresponding fiber-
bundles is shown in Fig. 4.25.

4.3.3.2 Mesh Morphing

Nonrigid CPD registration was introduced as a technique that can be used to
align each pair of fiber-bundles while preserving topological structures.
On this matter, a nonrigid transformation is estimated for mapping each
ADFB to its corresponding SIFB.

fADFB =̂ fSIFB
CPD−−−−−−−→

registration
fCPD−ADFB ||| fSIFB

here, =̂ and ||| mean corresponding and aligned, respectively. This in turn
means that the number of CPD-derived transformations would be equal to
the fiber-bundles count. However, from a mesh morphing perspective, a
smooth overall transformation is required that can be applied to the whole
mesh. This point of view is particularly important in the case of neighboring
or crossing fiber bundles “×”, where neighboring elements belong to different
fiber-bundles. Fig. 4.26 shows a tongue mesh which was generated accord-
ing to muscles’ distribution (Buchaillard et al. [2007b]). It can be seen that
elements are designed and placed along the curved boundary of the mus-
cles, and the mesh inherently holds information about fiber bundles. It is
for this reason that an overall transformation should be computed for the
whole mesh space using interpolation techniques such as thin-plate spline
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(a) Initialization (b) Iteration 5

(c) Iteration 10 (d) Iteration 20

(e) Iteration 30 (f) Iteration 40

Figure 4.24: A 2D example of nonrigid CPD registration: (a) the two point
sets before registration, the template and reference point sets are shown in
blue and red colors receptively, (b)-(f) achieved correspondences using CPD
registration after different number of iterations.
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(a) Template (b) Reference

(c) Before-Reg (d) After-Reg

Figure 4.25: A 3D example of nonrigid CPD registration for a pair of
corresponding fiber-bundles: (a) template fiber-bundle, (b) reference fiber-
bundle, (c) both fiber-bundles before registration, (d) both fiber-bundles
after registration.
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(a) Frontal view (b) Sagittal view

Figure 4.26: A muscular tongue mesh; muscles are displayed in different
colors (Buchaillard et al. [2007b]).

(TPS) (Bookstein [1988]). In this context, the TPS transform is created
by consideration of two point sets, ADFBs and CPD-ADFBs, as the source
landmark positions and their target positions. The obtained TPS transform
subsequently could be considered as an overall muscular transformation that
introduces a smooth mapping for deformation of muscular-meshes.

4.4 Results

In chapter 3, an automatic method was proposed to generate subject-specific
tongue FE meshes using anatomical images, while no subject-specific infor-
mation about fiber bundles were included. With the aim to continue our pre-
vious study, we are going to investigate the performance of our Image-and-
Fiber based Identification-and-Registration (IFIR) technique using tongue
diffusion tensor images. However, prior to the tongue application, it is nec-
essary to have a comprehensive understanding on the performance of IFIR
approach using a physical phantom which contains several crossing fiber
configurations. Therefore, the evaluation in this section consisted of two
parts: a phantom test and a human tongue test.

4.4.1 FiberCup Phantom

FiberCup competition, as part of MICCAI 2009, has provided an MR phan-
tom for the evaluation of fiber tractography methods (Fillard et al. [2011]).
Different realistic fibers configuration such as bending, crossing and kissing
are included in this phantom. Also, other replications of the FiberCup phan-
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Figure 4.27: Replication of the FiberCup phantom (Neher et al. [2014b]):
the seven fiber-bundles of the recreated FiberCup phantom are superim-
posed on the original acquisition.

tom are generated using an extensible system for the generation of phantoms
(so called Fiberfox) (Neher et al. [2014a,b]). Although this phantom has
been employed as a ground truth for fiber tracking methods, we are going
to use a recreated FiberCup phantom (Neher et al. [2014b]), which is shown
in Fig. 4.27, as our reference fiber-bundles. For the template/atlas phan-
tom, we followed the same method and generated a new one with the same
structure but having different geometries and shapes for fiber-bundles. Fig.
4.28 shows both the template (our generated) and the reference FiberCup
data. As can be seen, additional bending, crossing and kissing structures are
embedded in our template that do not exist in the reference one; this should
help us to evaluate the performance of IFIR method in recognition and reg-
istration of various fiber-bundles. Some information about fiber-bundles for
both reference and template is given in Table 4.1. The template phantom is
then deformed using IFIR approach so that it captures muscular structure
of the reference phantom.

In the explanation of IFIR technique, it was mentioned that we pri-
marily are seeking an optimal anatomical transformation that captures the
geometrical shape of the target organ. However, by having a look at the
Fig. 4.27 and Fig. 4.28, it can be noted that there is no remarkable geo-
metrical difference between the phantoms. In fact, the phantoms are being
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(a) Reference FiberCup (b) Template FiberCup

Figure 4.28: Recreated FiberCup phantoms: (a) reference FiberCup data
(Neher et al. [2014b]) and (b) our generated template FiberCup data.

Fiber-bundles Information
# of fibers Min Length Max Length Mean Length

F1 Reference 1500 80.106 106.372 93.331
Template 900 79.001 106.592 92.189

F2 Reference 1500 139.442 143.755 141.613
Template 900 151.461 151.799 151.607

F3 Reference 1500 129 129 129
Template 900 132.283 133.43 132.854

F4 Reference 1500 57.156 87.932 72.432
Template 900 74.769 104.21 89.84

F5 Reference 750 111.438 119.215 115.474
Template 900 109.67 129.945 120.081

F6 Reference 656 132.016 132.018 132.017
Template 900 128.603 130.946 129.729

F7 Reference 750 142.109 146.565 144.251
Template 900 143.603 143.659 143.621

Table 4.1: Information of the recreated FiberCup phantoms fiber-bundles :
the number of fibers and the minimum, maximum, and mean lengths (mm).
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(a) (b)

(c) (d)

Figure 4.29: Anatomical image registration of FiberCup phantoms: (a) ref-
erence (b) template, (c) deformed-template, and (d) superimposition of tem-
plate (gray) onto its deformed one (red).

used to specifically evaluate the performance of fiber-bundles recognition
and registration processes (phases II and III). Therefore, we decided to per-
form a coarse registration of template and reference phantoms to estimate
TAnatomical. The obtained results are shown in Fig. 4.29. Template fibers
are deformed using TAnatomical in order to bring them into the space of
reference’s fibers. With the aim to refine anatomical transformation, the
weighted-images for both deformed-template and reference are produced
(see section 4.3.2.1), as illustrated in Fig. 4.30(a-b), and then registered to-
gether using the same strategy (Fig. 4.30(c-d)). Accordingly, the obtained
refined-anatomical transformation (TRef−Anat) is applied to the template
fibers, Fig. 4.30(e-f).
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(a) (b)

(c) (d)

(e) Template FiberCup (f) Deformed-template FiberCup

Figure 4.30: Registration of FiberCup’s weighted-images and fibers defor-
mations: (a) reference’s weighted-image, (b) weighted-image of deformed-
template (TAnatomical), (c) registered (b) to (a), (d) superimposition of (a)
and (b), respectively in gray and red, (e) template fibers, and (f) deformed
fibers using the obtained TRef−Anat.
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After deformation of template fibers using TRef−Anat, we can expect that
the template-deformed-fiber-bundles are the most similar to the reference’s
ones and they can be used to group template’s fibers (see section 4.3.2.2).
On this matter, all template-deformed and reference fibers are re-sampled
along their trajectories using B-spline interpolation at a fix number of points
(N = 20). Then, the minimum average direct-flip distance (MDF), equa-
tion 4.29, is chosen as the similarity measure. MDF is evaluated for each
fiber of deformed template by computing its distance to the centroids of
reference-fiber-bundles (Fig. 4.31). All deformed-template fibers are suc-
cessfully grouped and the average MDF of them is computed with respect
to all the reference-fiber-bundles, namely their centroids, and the obtained
values are reported in Table 4.2. It is clear that each identified fiber-bundle
has the least distance from its corresponding fiber-bundle.

(a) (b)

Figure 4.31: Centroids of reference-fiber-bundles: (a) Reference fiber-
bundles and (b) their centroids.
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Finally, each pair of corresponding fiber-bundles are registered together
using CPD algorithm (phase III). During the registration process, the width
of the Gaussian kernel (β), the regularization weight (λ), and the max num-
ber of iterations are set to 20, 50, and 50, respectively. After registration
of fiber-bundles, the average MDF is again computed for the registered-
template and reference fiber-bundles, and reported in Table 4.3. Comparing
to Table 4.2, the distance between each pair of corresponding fiber-bundles
is evidently decreased, which means that the similarity between them is in-
creased. Also, the template, the reference, and the registered-template are
illustrated in Fig. 4.32.

I-Fiber-bundles Reference fiber-bundles
F1 F2 F3 F4 F5 F6 F7

IF1 0.4971 4.9262 1.9292 7.3034 6.9753 6.0331 5.0991
IF2 5.6352 0.8118 4.6793 3.8203 5.4306 5.2369 4.7599
IF3 2.1346 4.7045 0.5927 7.0051 6.1511 5.0940 4.7410
IF4 7.7691 4.2733 7.0179 0.3656 6.2112 6.4813 6.3768
IF5 6.9924 4.9140 5.6236 5.5369 0.7927 1.7952 2.6297
IF6 6.5201 4.6509 5.1977 6.0792 1.0810 0.6658 1.4304
IF7 5.4705 3.9287 4.9468 6.5156 2.6920 1.6351 0.8487

Table 4.2: The average MDF of each identified fiber-bundle in the template
data (IF1 to IF7) is computed with respect to all the reference-fiber-bundles
(F1 to F7), namely their centroids. The least-distances of identified fiber-
bundles are colored in blue.

R-Fiber-bundles Reference fiber-bundles
F1 F2 F3 F4 F5 F6 F7

RF1 0.2857 5.3108 2.0506 7.6660 7.3215 6.3359 5.3688
RF2 5.3276 0.3146 4.4964 4.2274 5.1472 4.8300 4.3130
RF3 2.0607 4.4486 0.3169 6.9268 5.9637 4.8927 4.5877
RF4 7.6301 4.2308 6.9084 0.2612 6.0975 6.3793 6.2866
RF5 7.3171 5.1377 5.9792 6.1588 0.3500 1.4060 2.3384
RF6 6.2031 4.8140 4.8075 6.5758 1.5879 0.4556 1.1140
RF7 5.1085 4.3469 4.3691 6.5886 2.7072 1.5264 0.6107

Table 4.3: The average MDF of each registered fiber-bundle in the tem-
plate data (RF1 to RF7) is computed with respect to all the reference-fiber-
bundles (F1 to F7), namely their centroids. The least-distances of identified
fiber-bundles are colored in blue.
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(a) Template

(b) Reference

(c) Registered-Template

Figure 4.32: Result of IFIR method for FiberCup data.
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4.4.2 Tongue DTI imaging

To simulate lingual deformations during swallowing, masticating and speak-
ing, it is necessary to design a tongue FE model considering muscle fibers
that can be extracted by DTI tractography. Fig.4.33 shows a schematic
representation of principle fiber-bundles and also two fibers paths that are
extracted by tracking algorithms. However, it is worth noting that the DTI-
derived fibers might be noisy on account of tractography and DTI imaging
limitations, e.g., low resolution and crossing fibers issues. Therefore, the
analysis of the complete tracks (that may contain spurious bundles) can be
extremely complicated and it needs manual intervention. Herein, we are
going to investigate how IFIR method can be used for the tongue-DTI ap-
plication, under the assumption that the fiber-bundles associated with the
main tongue muscles are previously detected and identified for an atlas data
on the basis of classical anatomical knowledge.

(a) Styloglossus fibers

(b) Genioglossus fibers

Figure 4.33: DTI tractography of the human tongue: (a) Styglossus fibers
and (b) Genioglossus fibers.
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4.4.2.1 Image acquisition and preprocessing

MRI DTI data was acquired at 3T for two subjects in a rest position: (1)
the atlas/template with an in-plan resolution of 1.52 mm, a slice thickness
of 2 mm, and a b-value of 750 seconds/mm2, and (2) the reference/subject
with an in-plan resolution of 1.74 mm, a slice thickness of 2 mm, and a
b-value of 1000 seconds/mm2. DTI weighting gradients were applied in 32
directions for both acquisitions.
Preprocessing of DTI data consists of atlas’ tongue mask generation and
correction for eddy current distortion that is caused by diffusion-sensitizing
and spatial encoding gradients. The level of distortions (i.e., the strength
and appearance) depends on the diffusion-sensitizing gradients directions.
Practically, these distortions result in misalignment errors between the im-
ages (shear, scale, and shift). Therefore, affine transformations are used to
correct them and to compensate for small subject movements. Also, the re-
gion of interest (ROI) was previously generated by doing the segmentation
in a non-diffusion MR image for the atlas’ data. In this scheme, to warp the
binary mask to the diffusion space, the participant’s MR image is linearly
co-registered to the image with a b-value of 0 seconds/mm2. The obtained
binary image is used later to mask tensor images.
To extract the main tongue muscle fibers, a single tensor model is first fitted
for each voxel of the preprocessed corrected diffusion-weighted MR data in
order to calculate diffusion maps. Then, to reconstruct tongue fiber tracks,
a deterministic tractography is performed4 using the interpolated streamline
algorithm with fixed step-length of 0.5 mm which follows the direction of
the interpolated principle eigenvector (Conturo et al. [1999]; Basser et al.
[2000]). Fiber tracts are launched from every voxel in the tongue and end up
entering a voxel if one of the following circumstances is present: (1) voxel-
to-voxel deflection angle would be larger than 35◦, or (2) streamline exceeds
the participant’s tongue mask.

4Probabilistic methods were also implemented; however, because of the existence of
noises and distortions, better results were obtained via the deterministic methods.
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(a) (b)

Figure 4.34: Tongue FE meshes: (a) Atlas mesh and (b) subject-specific
mesh.

4.4.2.2 Phase I: generation of subject-specific tongue FE mesh

Anatomical guidance images, that were acquired for DTI imaging, are used
to generate subject-specific tongue mesh. As the atlas tongue FE mesh was
designed based on the geometrical shape of the tongue, subject’s anatom-
ical mesh is designed using the process explained in chapter 3. Atlas and
subject-specific meshes are illustrated in Fig. 4.34. Also, the atlas tongue
mask is deformed by employing the obtained anatomical transformation so
that the subject’s ROI is defined and its tensor images are masked for fiber
tractography process.

4.4.2.3 Phase II: Detection of subject’s fiber-bundles

Under the assumption that atlas’ fibers are extracted and grouped into a
specific number of fiber-bundles in advance, this section shows how subject’s
fiber-bundles could be determined automatically based on the atlas ones. As
explained in section 4.3.2, the refinement of the anatomical transformation
is the primary step to the identification of subject’s fiber-bundles. This is
done by registering the atlas’ and subject’s weighted images (see section
4.3.2.1), namely the images that are created by combining the anatomical
and track density images. Whereas it is very difficult to map atlas’ fibers to
the subject’s ones using only fibers’ density information, it is important to
note that the high dense muscular structures within the soft tissues can be
considered as natural landmarks for the image registration process. Some
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weighted-images are therefore created for tongue images of different modal-
ities and shown in Fig. 4.35, the subject, and Fig. 4.36, our atlas.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.35: An example of tongue weighted-images (subject): (a), (c), and
(e) are anatomical images, from medial to lateral slices, and (b), (d), and
(f) are the corresponding weighted images.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.36: An example of tongue weighted-images (atlas): (a), (c), and
(e) are anatomical images, from medial to lateral slices, and (b), (d), and
(f) are the corresponding created weighted images.
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Looking at the images shown in Fig. 4.35 and Fig. 4.36 it seems that
even though a good visualization is provided for embedded fibers, only the
regions having high density of passing-fibers could improve anatomical reg-
istration. Therefore, the registration of tongue-weighted images is employed
as a procedure to refine the anatomical transformation (TAnatomical). To
do this, the atlas’ anatomical image and its fibers are first deformed using
TAnatomical; weighted-images are then created and registered using the same
process as in phase I. Finally, the anatomical transformation is refined ac-
cording to Eq. 4.25. In Fig. 4.37, atlas’ fibers and their deformations, by
TAnatomical and TRef−Anat, are respectively superimposed on the atlas’ and
subject’s anatomical images. A section of deformed fibers is zoomed in and
illustrated in Fig. 4.38. As expected, fibers’ deformation is refined by re-
gions having high density of fibers, such as the region identified by a circle.
More sections from different slices are shown in Fig. 4.39.
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(a)

(b)

(c)

Figure 4.37: Deformed atlas tongue fibers: (a) atlas’ fibers superimposed
on its anatomical image, (b) deformed atlas fibers, by TAnatomical, superim-
posed on subject’s anatomical image, (c) deformed atlas fibers, by TRef−Anat,
superimposed on subject’s anatomical image.
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(a)

(b) (c)

Figure 4.38: Enlargement of deformed atlas tongue fibers: (a) subject’s
anatomical image and a selected bounding box, (b) deformed atlas fibers by
TAnatomical within the box, (c) deformed atlas fibers by TRef−Anat within
the box, which has more similarity to the subject’s ones.
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After deforming the atlas fibers using TRef−Anat, it is the time to de-
termine corresponding fiber-bundles in atlas and subject data through the
method explained in section 4.3.2.2. In order to show the generality of
our technique, five fiber-bundles are selected within/surrounding the atlas
tongue. These fiber-bundles are illustrated in Figs. 4.40, 4.41, and 4.42.
The corresponding subject’s fiber-bundles are determined as shown in Figs.
4.43, 4.44, and 4.45.

(a)

(b)

Figure 4.40: Atlas tongue fiber-bundles (1-2).
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(a)

(b)

(c)

Figure 4.41: Atlas tongue fiber-bundles (3-5).
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Figure 4.42: All five selected fiber-bundles in atlas data.
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(a)

(b)

(c)

Figure 4.43: Atlas and subject’s identified tongue fiber-bundles (1-3).
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(a)

(b)

Figure 4.44: Atlas and subject’s identified tongue fiber-bundles (4-5).
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(a)

Figure 4.45: All five identified subject’s fiber-bundles.
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4.4.2.4 Phase III: Registration of atlas and subject’s fiber-bundles

The atlas-deformed fiber-bundles, using TRef−Anat, and subject’s detected
fiber-bundles are registered non rigidly using the method explained in sec-
tion 4.3.3. Atlas’ fiber-bundles and their deformed ones, through phase III,
are shown in Figs. 4.46 and 4.47. Looking at the resulting fiber-bundles, it
is clear that the IFIR technique enables comparison of fiber-bundles on the
basis of their inherent structures. In another word, the inherent rela-
tionships between (1) the points that form a fiber, and (2) the fibers that
form a fiber-bundle is still preserved after applying deformations. This
fact becomes very important and crucial as the anatomical transformation
cannot manage to capture the distribution of subject’s fiber-bundle and a
further alignment of the fibers is necessary.

In short, as a principle statement, we can say that

“Anatomical transformations of muscular structures can ap-
proximately deform fibers distributed according to the geo-
metrical shapes; however, for distributions not following the
underlying geometries it is crucial to embed the orientation
information within the registration process which is attain-
able by alignment on the level of fibers or diffusion tensors.”

For a better understanding, let’s come back to our selected fiber-bundles,
where the forth and fifth fiber-bundles, which are respectively a section
of tongue and neck muscles, support the tongue by providing a muscular
housing. This so called compartment, containing these two fiber-bundles,
is formed according to the shape of the tongue so that the tongue can be in-
serted into the housing. Therefore, any anatomical transformation extracted
from geometrical shape of the tongue will accordingly affect the shape of the
compartment, and subsequently its embedded fiber-bundles. On the other
side, we have fiber-bundles like the first three ones having more complicated
distributions of fibers’ paths that may not have conformity with the shape.
For an overall overview, the reader is refereed to atlas fiber-bundles, Fig.
4.42, subject’s fiber-bundles, Fig. 4.45, and atlas-deformed fiber-bundles,
Fig. 4.48. In addition, track density images of the fiber-bundles are created
and the rendered volumes are shown in Fig. 4.49. We can see that the inner
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muscle anatomy with the tongue is much better accounted for after the final
transformation provided by Phase III.

(a)

(b)

Figure 4.46: atlas fiber-bundles and their deformed ones (1-2).
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(a)

(b)

(c)

Figure 4.47: atlas fiber-bundles and their deformed ones (3-5).
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(a)

Figure 4.48: All atlas-deformed fiber-bundles.
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4.5 Discussion

In this chapter, a novel atlas-assisted approach for recognition and registra-
tion of fiber-bundles is presented and evaluated. The method exploits infor-
mation from both the anatomical images and fibers. Contrary to the DT-MR
images registration methods that need tensors reorientation within or af-
ter the transformation estimation, our IFIR technique avoids this issue and
directly aligns fiber-bundles. The IFIR method is evaluated using a phan-
tom and a human tongue data. In the following, we are going to discuss the
proposed scheme methodology and its algorithm, more specifically based on
the obtained results.

IFIR is basically a bundle-to-bundle registration technique, in which cor-
responding fiber-bundles are selected based on a similarity measure. In the
FiberCup and Tongue experiments, it is assumed that for each atlas fiber-
bundle, there exists a corresponding one in the subject data with the highest
similarity (Algorithm 1). However, in the case of distorted-DTI imaging, it
is expected that some subject’s fiber-bundles are not reconstructed through
the fiber tracking process. This in turn means that there are some fiber-
bundles in the atlas data that do not exist in the subject data. Therefore,
utilizing IFIR based on the Algorithm 1 (IFIR-1) leads to a miss-recognition
of corresponding fiber-bundles. Therefore, in such cases, IFIR based on the
Algorithm 2 (IFIR-2) must be used (see section 4.3.2.2), and accordingly for
the atlas fiber-bundles that do not have any corresponding in order to fit it,
the transformation could be computed using interpolation techniques like
thin-plate spline (TPS) (Bookstein [1988]). In this way, a complete set of
fiber-bundles can be generated for the subject by deformation of atlas data,
notwithstanding the distorted-DTI imaging.

The IFIR-2 becomes very interesting when the ultimate goal of the DTI-
registration is Spatial Normalization. To clarify, let us imagine a study
in which a set of DTI data are acquired and a DTI image registration tech-
nique (e.g., Park et al. [2003]) is being used for generation of an atlas that
represents the statistical distribution of the whole data set. In the presence
of distortions that may exist in some of DTIs, the generated atlas would be
incomparably poorer or generally be biased towards the low quality of the
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DTIs. In this respect, IFIR-2 could be used to put aside the distorted fiber-
bundles based on their similarity degree and then implement normalization
on the basis of non-distorted fiber-bundles.

By reviewing the obtained results for the tongue experiment (section 4.4.2)
and considering the fact that segmentation of the tongue has always been a
tremendous and challenging task since it is an extremely flexible organ that
is in contact with many other structures in the oral cavity, namely cheeks,
pharyngeal walls, palate, and lips, it brings to the mind that IFIR technique
can be taken into account as an atlas-assisted DTI-based segmentation ap-
proach; and more over, it can be used for inter/intra-subject variability
analysis of fiber-bundles. For more clarification, let’s go over the anatomy
of lingual musculature, as shown in Fig. 4.50.
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Although the atlas fiber-bundles in section 4.4.2 are not selected by inter-
pretation of the lingual and jaw musculature, there is a good correspondence
between them and the anatomical structures illustrated in Fig. 4.4.2. To
investigate this correspondence, some fiber muscles are highlighted in Fig.
4.51 and explained below

• Geniohyoid (Red-colored): a narrow tongue muscle that originates
from inferior mental spine of the mandible and runs backward and
slightly downward to be inserted on to the anterior and upper border
of the body of the hyoid bone in the throat. It is positioned superior
to the medial border of the mylohyoid muscle.

• Hyoglossus (Blue-colored): a tongue muscle that arises from the hy-
oid bone on the superior border of the greater cornu and approximately
passes upward to insert on the side of the tongue, between the the in-
ferior longitudinal muscle of the tongue and styloglossus.

• Genioglossus (Orange-colored): the main tongue muscle having the
shape of a fan located in the central part of the tongue along the left-
right direction that forms the majority of tongue’s body. It originates
from the upper part of the mental spine of the mandible and inserts
within the tongue at around 1cm below its surface and on the upper
part of the body of the hyoid bone.

• Mylohyoid (Green-colored): a paired muscle of the neck that forms
the floor of the oral cavity of the mouth and connects the mandible to
the hyoid bone.

• Digastric (Yellow-colored): a curved formed muscle of the neck that
lies below the jaw. This muscle is composed of two muscular sec-
tions called bellies, anterior and posterior, joined by an intermediate
round tendon. The anterior belly extends from the lower section of the
mandible while the posterior belly originates from the mastoid notch
of the temporal bone. These two bellies are attaches to the hyoid bone
by a fibrous membrane.
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As can be seen, there is a good analogy between the hightailed-drawing mus-
cles (Fig. 4.51) and the selected fiber-bundles (Figs. 4.40 and 4.41). It is
likely that the first three fiber-bundles belong to the geniohyoid, hyoglossus,
and genioglossus muscles, while the forth and fifth ones are associated to the
mylohyoid and anterior belly of digastric. This correspondence reveals that
if an accurate selection of tongue’s and neck’s fiber-bundles is performed,
our method leads to the identification of all subject’s fiber-bundles and fi-
nally to the segmentation of muscular structures.

In short, IFIR can be considered as an automatic atlas-assisted multi-
purpose approach for

• generation of subject-specific meshes (anatomical or muscular),

• segmentation of soft tissues on the basis of their embedded fibers,

• analyzing the inter/intra-subject variability of fiber-bundles,

• implementation of the bundle-based normalization techniques.
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Our aim in this chapter is to briefly conclude the thesis and introduce
the critical contributions of this research project. This thesis is con-
cerned with the automatic generation of subject-specific FE meshes.
On this matter, an image-based registration method is proposed to de-
form an atlas FE mesh and to automatically generate subject-specific
meshes. It is shown that DTI-based muscle fibers can also be embedded
within the meshes using an atlas-assisted registration scheme. The pro-
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posed approaches are successfully evaluated using different data sets.
To demonstrate the importance of our methods in the clinical context,
human tongue meshes are generated and it is investigated that associ-
ating and linking of subject-specific organization of muscular structures
with the elements of meshes can be achieved in an automatic way.

5.1 Thesis contributions

In this section, the previous chapters are briefly reviewed and the main
contributions made in each are described. In addition, the concluding results
of the associated research works are presented.

5.1.1 Chapter 2: Introduction to the Subject-Specific FE
Mesh Generation Techniques

In this chapter, a wide range of subject-specific mesh generation approaches
are reviewed. Generally, all the methods produce meshes on the basis of a
previously provided information on the geometry of the region of interest
(ROI) or target organ. This information might be a set of landmarks, con-
tours or a created surface, and depending on the strategy chosen, they are
employed in different ways. The majority of methods utilize the provided
information for deformation of an atlas/template mesh, while some methods
are proposed to adapt the meshing process according to the subject-specific
information. Notwithstanding all these efforts, there are some facts to con-
sider: (1) it can not be expected that subject-specific information can easily
or automatically be extracted for all the applications, and (2) deformation
of an atlas/template mesh may lead to an irregular mesh or a low qual-
ity mesh that decreases the accuracy of subsequent numerical simulations.
Therefore, finding a method which would allow to generate subject-specific
meshes while avoiding difficulties due to the segmentation and meshing is of
great importance and interest.

5.1.2 Chapter 3: Atlas-Based Automatic Generation of Subject-
Specific Finite Element Tongue Meshes

In this chapter, an automatic approach is proposed for the automatic gen-
eration of subject-specific meshes. Our main objective has been to develop
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a method that does not require any prior-knowledge about the organ’s ge-
ometry from subjects’ medical images and does not include any meshing
process. On this matter, it is proposed to deform an atlas FE mesh using
a 3D displacement field derived from the registration of atlas’ and subject’s
medical images. This mapping is performed in such a way so that the re-
sulted deformed meshes are not distorted while target’s anatomical features
are captured. To establish such a mapping that guaranties a non-folding and
one-to-one correspondence, the transformation model is considered to be dif-
feomorphic (B-spline Free-Form Deformations). However, in practice, this
is not sufficient to preserve the quality of atlas meshes; and therefore, two
additional constraints are considered: (1) a maximum value of displacement
for control points is defined, and (2) a regularization term which enforces a
smooth transformation is added (leading neighboring control points to move
in the same direction). To estimate registration parameters, a derivative-free
optimization technique in utilized which enables to employ any user-defined
or complicated similarity measure/cost function. The optimization problem
is reformulated into a multi-labeling problem that is expressed by first-order
Markov Random Fields (MRFs). Therefore, the parameters estimation prob-
lem is equivalent to a labeling problem in a discrete space. The proposed
mesh generation approach is evaluated on the level of image registration and
atlas mesh deformation. The obtained results reveal that even though mesh
quality constraints are applied to the registration problem, the anatomical
structures of target organ are successfully captured and high quality meshes
are produced.

5.1.3 Chapter 4: Atlas-Based Automatic Integration of DTI-
based Fibers in Subject-Specific FE Meshes

In this chapter, with the aim to extend our mesh generation technique to the
diffusion tensor images, we present a novel approach for adding fibers’ infor-
mation to the meshes. To do this, the first solution that comes to mind is
registration of diffusion weighted images and reorientation of estimated dif-
fusion tensors, but our proposed method is basically developed on the idea of
registration of the reconstructed fiber-bundles and anatomical images. This
enables one to interact with limited or distorted DTIs and deforms an
atlas fibers’ structure toward the most reliable and non-distorted equivalent
muscle structures detected in the subject’s images. In this methodology, the
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anatomical meshes are first generated using our method explained in chap-
ter 3. Then, a similarity measure is evaluated between the thus deformed-
atlas fiber-bundles (their centroids) and the reliable subject’s fibers so that
subject’s corresponding fiber-bundles are detected. This classification of
subject’s fibers or identification of subject’s fiber-bundles can directly be
employed for assignment of each element of subject’s anatomical mesh to a
specific fiber-bundle. In the case of muscular meshes, we investigated that
atlas fiber-bundles can smoothly be deformed according to the subject’s
ones and finally produce a transformation that can be used for deformation
of muscular atlas meshes. To evaluate the performance of our method in
identification of subject’s fiber-bundles and accordingly deformation of at-
las ones, a simulated data set is utilized. The feasibility of the proposed
method is also demonstrated on a clinically acquired human tongue data
set. The obtained results show the efficiency our method in identification
and registration of fiber-bundles.

5.2 Future works perspectives

Although we intend to improve the obtained results of image/fiber registra-
tion and mesh generation techniques, some suggestions on future researches
motivated by this thesis are put forward

• Anatomical subject-specific meshes are generated by deformation of an
atlas mesh using a 3D displacement field. These displacement fields
are estimated using an image registration process and without any
consideration of the atlas mesh structure (e.g., being a large scale or
low scale mesh). Therefore, our ongoing efforts are focused on insert-
ing atlas mesh’s information into the image registration process by
defining new regularization constraints that accounts the distribution
and relations of mesh nodes that the quality of all type of atlas meshes
are preserved after deformations.

• Incorporating IFIR technique for group wise registration of DTIs and
accordingly generation of muscular atlas meshes.

• It would be of great interest to evaluate the performance of IFIR tech-
nique for registration of data sets coming from different imaging pro-
tocols (e.g., DTI and DSI).
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• Selection of all atlas tongue fiber-bundles on the basis of classical
anatomical knowledge and subsequently creation of a muscular atlas
tongue mesh.

• Incorporating IFIR technique for inter/intra-subject variability anal-
ysis of tongue fiber-bundles.
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