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Abstract

The goal of this paper is to review existing methods for protein mass spectrometry data
analysis, and to present a new methodology for automatic extraction of significant peaks
(biomarkers). For the pre-processing step required for data from MALDI-TOF or SELDI-
TOF spectra, we use a purely nonparametric approach that combines stationary invariant
wavelet transform for noise removal and penalized spline quantile regression for baseline
correction. We further present a multi-scale spectra alignment technique that is based on
identification of statistically significant peaks from a set of spectra. This method allows one
to find common peaks in a set of spectra that can subsequently be mapped to individual
proteins. This may serve as useful biomarkers in medical applications, or as individual
features for further multidimensional statistical analysis. MALDI-TOF spectra obtained
from serum samples are used throughout the paper to illustrate the methodology.

Keywords: nonparametric regression, wavelets, regression quantiles, landmark detection, curve
alignment, biomarkers identification

1 Introduction

Microarray data has been successfully used to identify genes responsible for many diseases.
However, although proteins are coded by genes, there is no one-to-one relationship between the
protein and the mRNA due to different rates of translation. Hence studying mRNA expressions
(microarrays) may be an indirect way to understand a disease etiology. This ineffectiveness of
genomics caused a big shift of interest from genomics to proteomics. Since, the proteins are
the controllers of all cell functions, they are closely connected to many diseases and metabolic
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processes, and thus it is hoped that proteomic studies may provide a more direct information
for understanding the biological functions towards a disease profile. An important tool used
for protein identification and high throughput comparative profiling of disease and non-disease
complex protein samples in proteomics is mass spectrometry (MS). With this technology it is
possible to identify specific biomarkers related to a given metabolic process or disease from
the lower molecular weight range of the circulating proteome from easily obtained biological
fluids such as plasma or serum. Recent research has demonstrated that using such technology to
generate protein expression profiles from lung cancer lystates is an alternative promising strategy
in the search for new diagnostic and therapeutic molecular targets.

There are at least two kinds of mass spectrometry instruments commonly applied to clinical
and biological problems today, namely, Matrix-Assisted Laser Desorption and Ionization Time-
Of-Flight (MALDI-TOF) and Surface-Enhanced Laser Desorption and Ionization Time-Of-Flight
(SELDI-TOF) mass spectroscopy. Whatever is the technique used, one obtains from a biological
sample a calibrated output which is a mass spectrum characterized by numerous peaks, which
correspond to individual proteins or protein fragments (polypeptides) present in the sample. The
heights of the peaks represent the intensities or abundance of ions in the sample for a specific mass
to charge ratio (m/z) value. These heights along with the m/z values represent the fingerprint
of the sample. Hence detecting location and amplitude of common peaks from a set of spectra
is a way to identify specific biomarkers that can be used to characterize patients and to compare
groups of individuals.

Such techniques result in a huge amount of data to be analyzed and generate a need for a
rapid, efficient and fully automated method for comparing multiple MS spectra. Raw spectra
acquired by TOF mass-spectrometers are generally a mixture of a real signal, noise of different
characteristics and a varying baseline. Statistically, a possible model for a given mass spectrom-
etry (MS) spectrum is to represent it schematically by the equation

Y (m/z) = B(m/z) +NS(m/z) + ǫ(m/z) (1)

where Y (m/z) is the observed intensity of the spectrum at mass to charge ratio m/z, B(m/z)
is the baseline representing a relatively smooth artifact commonly seen in mass spectrometry
data, S(m/z) is the true signal of interest consisting of a sum of possible overlapping peaks, N
is a normalization factor to adjust for possibly differing amounts of protein in each sample, and
ǫ(m/z) is an additive white noise with variance σ2

ǫ arising from the measurement process.
In our numerical experiments, we will consider samples of nipple aspirate

fluid (NAF) from breast cancer patients and from healthy women (for a com-
plete description, see [CTM+05]). These data are available from the web site
http://bioinformatics.mdanderson.org/pubdata.html and have been used by [CTM+05] to
look at the reproducibility of their method in detecting and identifying relevant peaks, since
the 24 spectra of the NAF data were independently derived from the same starting material.
Typical examples of raw spectra are displayed in Figure 1. The three spectra shown in Figure 1
will be used as an illustrative example throughout the paper.

Pre-processing of such data is therefore extremely important to extract S(m/z) which is the
signal of interest. Indeed, inadequate or incorrect preprocessing methods can result in data sets
that exhibit substantial biases and make it difficult to reach meaningful conclusions.
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Figure 1: A typical example of three raw spectra from different individuals from the NAF data
used in [CTM+05]. The horizontal axis is the mass to charge ratio (m/z) in Daltons. The vertical
axis is the abundance of ions in the sample for a specific m/z value.

In this paper, we propose to use the several preprocessing steps that we have developed in
detail in [ABLLL07] before analyzing MS data. These preprocessing steps include translation
invariant wavelet denoising, baseline correction and normalization along the m/z axis. These
pre-processing steps allow one to obtain an estimator of the true normalized spectra S(m/z).
However, to compare spectra from different samples further statistical analysis has to be per-
formed. Indeed, biologically significant comparisons for such data are all based on the alignment
of spectra where the ultimate goal is to identify differentially expressed proteins in samples
through the identification of common peaks. MS spectra alignment is difficult even after instru-
ment calibration with internal markers because the mass errors vary with m/z in a nonlinear
fashion as a result of experimental and instrumental complexity and data variation. In this
paper, we propose to perform automatic landmark-based curve alignment by combining the mul-
tiscale technique developed in [Big05, Big06] to detect significant landmarks (such as locations
of maxima) in a set of curves with recent results in [BG10b, BG10a, BGL09, BGV09, LMG07]
on curve and image warping. The main goal of this paper is to show that such an approach is
particularly well-suited for identifying common peaks from a sample of normalized spectra. Such
peaks can then be used as individual features for multidimensional statistical analysis (such as
classification, clustering, ANOVA), or as specific biomarkers for biomedical applications.

The rest of the paper is organized as follows. Section 2 describes the pre-processing and
normalization methods proposed in [ABLLL07]. Section 3 is devoted to the presentation of a
multiscale approach to automatically align and detect multiple peaks in MS spectra. Throughout
the paper, we review existing methods for MS spectra analysis, and we discuss their differences
or similarities with our approach.

2 Pre-processing steps

In this section, we describe the approach followed in [ABLLL07] for pre-processing raw MS
spectra. These results have been shown to be excellent when compared to other pre-processing
methods in MS spectra analysis.
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2.1 Wavelet denoising

To isolate and remove the additive noise component of a spectrum we use a translation
invariant wavelet transform in a spirit similar to the Undecimated Discrete Wavelet Transforms
(UDWT) filtering method of [CTM+05] for denoising SELDI-TOF spectra. One reason for the
popularity of the wavelet transform (see for example [Mal99] and [Dau92]) is that measured
data from most processes are inherently multiscale in nature. Consequently, data analysis and
modeling methods that represent the measured variables at multiple scales are better suited for
extracting information from measured data than methods that represent the variables at a single
scale. This is why wavelets have recently received attention as a tool for preprocessing mass
spectra (see e.g. [CL00, QAT+03, CTM+05]).

Briefly, the following steps are used to denoise an observed n-length mass spectrum Y : a
wavelet transform is used to transform Y , certain subsets of coefficients are thresholded, then
the inverse transform is applied to obtain the denoised signal.

In this paper we chose to use a translation invariant wavelet transform introduced in [CD95]
that is based of the technique of “cycle spinning”; see also [SPB+99]. Note that the denoising
performances can change drastically if one uses a wavelet transform that is not translation
invariant. The idea of denoising via cycle spinning is to apply denoising not only to Y , but also
to all possible unique circularly shifted versions of Y , and to average the results.

It is important to recall that for Y of length n cycle spinning is a transform that is overde-

termined and produces a mean-zero wavelet coefficient sequence {W̃ (Y )
j,t , t = 0, . . . , n − 1} at

each level j of the transform. Such a sequence can be written as the length-n column vector

W̃
(Y )
j = WjY where Wj is the level-j stationary wavelet transform matrix that maps Y to W̃

(Y )
j .

Then, we have adopted universal and hard thresholding for denoising MS spectra. Note that
j = 1 corresponds to the finest resolution, and j = J0 to the coarsest such that n ≈ 2J0 . Then
the algorithm is:

1. Compute a level J0 stationary wavelet transform giving coefficient vectors W̃
(Y )
1 , . . . ,W̃

(Y )
J0

and Ṽ
(Y )
J0

, where Ṽ
(Y )
J0

denotes the vector of scaling coefficients at resolution J0.

2. For each j = 1, . . . , J0 apply hard thresholding using the level-dependent universal thresh-
old with σ2

nj
= σ2

ǫ/2
j , to obtain

Ŵ
(Y )
j,t =

{

W̃
(Y )
j,t , if

∣

∣

∣
W̃

(Y )
j,t

∣

∣

∣
> σnj

√
2 log n

0, otherwise.

3. The denoised signal is then obtained by applying the inverse stationary wavelet transform

to Ŵ
(Y )
1 , . . . ,Ŵ

(Y )
J0

and Ṽ
(Y )
J0

.

Since σǫ is unknown, it is estimated by the MAD scale estimate defined by

σ̂MAD =
median

{

|W̃ (Y )
1,0 |, |W̃ (Y )

1,1 |, . . . , |W̃ (Y )
1,n−1|

}

0.6745
.

After denoising in this manner, separating background from true signal is considerably easier.
Note that the universal threshold is a common choice in wavelet denoising that is nearly optimal
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in the case of Gaussian noise. Moreover the MAD procedure is a robust estimation technique,
and the universal threshold is not restricted to a Gaussian setting.

2.2 Baseline correction

MS spectra frequently exhibit a decreasing baseline that is unrelated to constituent protein
composition. Clearly, such a nuisance variation has to be removed before applying any meaningful
quantitative analysis since such a background component is added to the real signal and overstates
the intensities of peaks. Varying background present in warped spectra makes it difficult to
properly calculate their similarity, and thus another issue caused by varying baseline is the
difficulty with aligning spectra by maximizing a similarity measure between them (see [Hei96]).

Many numerical methods have been developed for estimating the baseline component. Among
these techniques are methods based on digital filters [vVdLV98, RJFD01]. Such filters usually in-
troduce artefacts and simultaneously distort the real signal. Other approaches rely on automated
peak rejection [RDBL93, CTM+05]. These algorithms fit some functions to find regions of signal
that consist only of the baseline without peaks of real signal. The functions being fitted may have
different forms, e.g. polynomials, splines. The main disadvantages of peak-rejection approaches
are difficulties related to identification of peak-free regions. On the other hand, threshold-based
rejection of peaks gives good results when the baseline is relatively smooth [WDRN91], and fails
for signals with significantly varying baseline.

Because of difficulties caused by automatic peak rejection other approaches have been de-
signed to fit a baseline without detecting the peaks. In [ASLOS86], the baseline is fitted with a
low-order polynomial that prevents it from fitting the real signal peaks. For signals with many
positive peaks, however, e.g. mass spectra, the baseline estimated in this way has values which
are too high. Subtraction of a background with values which are too high from a signal intro-
duces significant distortions to the analyzed signal, i.e. the values for peaks are too low. Other
approaches rely on statistical methods, such as maximum entropy [PPvdL+99]. There are also
approaches based on baseline removal in the wavelet domain [MZ03].

In [ABLLL07] we have proposed an automated approach for background elimination based
on penalized regression quantile splines. This procedure may be regarded as a method similar
to the “peak rejection” approaches. However, there is no need to detect peaks. It is based on
polynomial spline representation of the varying background signal and a L1-penalization of a
regression quantile loss function.

To be more precise, this method can be summarized as follows (see [ABLLL07] for a more
detailed presentation): denote by x the m/z variable and suppose that the baseline function
denoted by B(·) is sufficiently regular to be well represented by a linear combination of known
basis functions {hj , j = 1, . . . ,K},

B(x) =
K
∑

j=1

βjhj(x),

Then, estimating the baseline amounts to estimate the coefficients β = (β1, . . . , βK)T . As an
example of such basis functions we took polynomial splines (basic references are [DB78] and
[Die93]). Polynomial regression splines of degree p with knots x̃1 < · · · < x̃q may be represented
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by a family of piecewise polynomial functions {hj , j = 1, . . . ,K} with K = p+ q + 1. Assuming
the initial location of the knots known, the K dimensional parameter vector β describes the
polynomial coefficients to represent the function B. The baseline can then be written as B(x) =
H(x)β where, for x given, H(x) is the matrix whose columns are hj(x), for j = 1, . . . ,K. Usually
the number K of basis functions used in the representation of B should be large in order to give
a fairly flexible way for approximating B. A small K may result in a function space which is
not flexible enough to capture the variability of the baseline, but a too large number of basis
functions may lead to serious overfitting and as a consequence to an underestimation of the
intensities of the peaks. To automatically select a small number of basis functions, we consider
the following strategy: an initial fixed large number of potential knots is chosen at fixed quantiles
of the x variable with the intention to have sufficient points at regions where the baseline curve
shows rapid changes. Selection of a small number of basis functions is then obtained by using
non-smooth at zero penalties which eliminate basis functions when they are non necessary and
mainly retain basis functions whose support covers regions with sharp features.

As a fitting criterion, we will not use the standard quadratic loss which yields a regression
function given by a conditional mean. To estimate the baseline in MS spectra, it is more natural
to have an estimate that satisfies the property that a proportion τ of the conditional distribution
of Y with respect to regressors is above the estimate. Following [KB78], define the following loss
function as

ρτ (u) = τ |u|I{u > 0} + (1 − τ)|u|I{u ≤ 0},
where I{·} is an indicator function. This loss function highlights the basic difference between the
conditional mean and the conditional quantile function. Here τ ∈ (0, 1) indicates the quantile
of interest. For τ = 0.5 minimization of such a loss function yields an estimate which is the
median. In our context, most of the signal of interest in a spectrum lies above the baseline which
is assumed to be slowly varying, and therefore it seems natural to estimate the baseline by using
quantile regression with a small value of τ . While there is no criterion for establishing when
most of the data lie above the baseline, a cutoff of τ = 0.001 works well.

Our quantile spline estimator of B is then finally given as the minimizer of

min
β∈RK

n
∑

i=1

ρτ (Y (xi) −H(xi)β) + λ

K
∑

j=1

|βj |.

Like other nonparametric smoothing methods, the smoothing parameter λ plays a crucial role
on determining the trade-off between the fidelity to the data and the penalty. Two commonly
criteria for choosing λ are the Schwarz information criterion [KNP94] (SIC) and the generalized
approximate cross-validation criterion [Yua06] (GACV). In our practical implementation we have
used SIC.

2.3 Spectra normalization

To remove the normalization factor N in model (1), we simply divide each denoised and
baseline corrected spectra by its area under the curve (AUC) which is a standard normalizing
choice in MS spectra analysis. In Figure 2, we give an example of spectra pre-processing using
denoising by wavelet thresholding and baseline correction with the SIC criterion. Note that the

6



method is fully automatic and that the peaks of the spectra are well preserved after baseline
correction.
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Figure 2: An example of wavelet-based denoising followed by baseline correction using penalized
regression quantile splines - Compare with Figure 1

3 Multiscale detection and alignment of peaks

Spectra alignment consists in finding, for each observed spectrum, a warping function in
order to synchronize all spectra before applying any other statistical inferential procedure. In
this section, we present an automatic method for detecting and aligning peaks from denoised,
baseline corrected and normalized spectra. This new peak detection algorithm for MS spectra
analysis is based on the method developed by [Big05, Big06], and the problem of aligning multiple
spectra is formulated as a non-rigid curve registration problem using recent techniques developed
in [BG10b, BG10a, BGL09, BGV09, LMG07] .

Before introducing our framework, we briefly review few methods that have been recently
proposed for addressing the alignment problem for MS spectra (see [ABLLL07] for a more detailed
discussion). Wavelets to represent the MS data in a multiscale framework are used in [RY06].
Within their framework, using a specific peak detection procedure, they first align peaks at a
dominant coarser scale from multiple samples and then align the remaining peaks at a finer scale.
However one may question if representing peaks at multiple scales is biologically reasonable, i.e.,
if peaks at coarse scales really correspond to true peptides. A similar in spirit procedure has
been also developed by [CTM+05]. In [JWJS03] it is assumed that the peak variation is less than
the typical distance between peaks and use a closest point matching method in peak alignment.
The applicability of their method is limited by the data quality and it cannot handle large peak
variation or false positive peak detection results. A recent method is the nonparametric warping
model with spline functions to align MS spectra proposed recently in [Jef05]. While the idea of
using smoothing splines to model the warping function is interesting it is unclear if a smooth
function with second order regularities is precise enough to describe the nonlinear shift of MS
peaks encountered in practice. In [THN+04] the authors applied a hierarchical clustering method
to construct a dendrogram of all peaks from multiple samples. They cut off the dendrogram using
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a predefined parameter and clustered the remaining branches into different groups. They then
consider the centers of these groups as common peaks and align every peak set with respect to
the common peaks. The implicit assumption behind their approach is that around each of the
common peaks, the observed peaks from multiple samples obey a certain kind of distribution
with the mean equal to the location of the common peak. The assumption agrees well with the
motivation of peak alignment. However, the cut-off parameter and the final clustering results
can be influenced by changing a few nodes in the dendrogram, while some noisy points or outliers
(e.g., caused by false positive peak detection results) often cause such changes, as it is shown in
the paper by [YWL+06]. To our knowledge, frameworks that are closest to the one we propose in
this work are the recent approaches proposed by [SKS+06] and [YZ04]. Both use a robust point
matching algorithm to solve the alignment problem but an implicit assumption in [SKS+06] is
that there exists a one-to-one correspondence among peaks in multiple spectra while [YZ04] use
a super set method to calibrate the alignment. To end this subsection let us mention also that
[AS04] also discusses alignment methods that address proteomic data, yet provides few details
and no software for their implementation.

3.1 Multiscale detection of peaks

Let us now describe, the multiscale approach proposed in [Big05, Big06] to estimate the
significant peaks of a noisy signal. This method is based on the estimation of the significant zero-
crossings of the continuous wavelet transform of a noisy signal, and on a new tool, the structural
intensity, proposed in [Big05] to represent the landmarks of a signal via a probability density
function. The main modes of the structural intensity correspond to the significant landmarks of
the unknown signal. In a sense, the structural intensity can be viewed as a smoothing method
which highlights the significant features of a signal observed with noise.

Let f be a real-valued function, θ a smooth function with a fast decay such that
∫∞
−∞ θ(u)du 6=

0 and ψ(x) = ∂
∂xθ(x) a wavelet with one vanishing moment (in our numerical experiments θ is

a Gaussian density). Then, by definition, the continuous wavelet transform of f at a given scale
s > 0 is:

Ws(f)(x) =

∫ +∞

−∞
f(u)ψs(u− x)du for x ∈ R,

where ψs(u) = 1√
s
ψ(u

s ). The term zero-crossings is used to describe any point (z0, s0) in the

time-scale space such that z 7→ Ws0
(f)(z) has exactly one zero at z = z0 in a neighborhood of

z0. We will call zero-crossings line any connected curve z(s) in the time-scale plane (x, s) along
which all points are zero-crossings. Now, note that if f is differentiable in an interval [a, b], then
for all x ∈]a, b[

lim
s→0

Ws(f)(x)

s3/2
= C

∂

∂x
f(x), where C =

∫ +∞

−∞
θ(u)du 6= 0. (2)

Hence, equation (2) shows that at small scales the zero-crossings of Ws(f)(x) converge to the
zeros of the derivative of f in ]a, b[ (if any). Thus, locations of the extrema of f can be found by
following the propagation at small scales of the curves z(s) (see [Big05] for further references).
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The significant peaks of denoised and baseline corrected MS spectra can be detected by
estimating the significant zero-crossings that correspond to local maxima. A simple hypothesis
testing procedure has been developed in [Big06] to estimate the zero-crossings lines of a noisy
signal at various scales. The test proposed is based on the choice of an appropriate smoothing
parameter to separate, in a denoised and baseline corrected spectra, the zero-crossings of the
true signal of interest S(m/z) from those that are due to small fluctuations. An example of
zero-crossing estimation from MS spectra is displayed in Figure 3(d,e,f).

However, such a procedure only gives a visual representation that indicates “where” the peaks
are located, but there is generally no analytical expression of the zero-crossings lines in a closed
form. The structural intensity is a powerful tool introduced in [Big05] to identify the limits of
the zero-crossing lines when they propagate to small scales. The structural intensity method
consists in using the zero-crossing of a signal at various scales to compute a “density” whose local
maxima will be located at the peaks of f .

More precisely, the structural intensity is defined to be:

Gz(x) =

p̂
∑

i=1

∫ ŝ2

i

ŝ1

i

1

s
θ

(

x− ẑi(s)

s

)

ds, (3)

where p̂ is the number of estimated zero-crossings lines ẑi(.), i = 1, . . . , p̂ and [ŝ1i , ŝ
2
i ] represent

the supports of these lines in the time-scale plane. It can be seen from Figure 3 that, for small
values of the scale s, the zero-crossings lines ẑi(s), i = 1, . . . , p̂ are close to the locations of the
peaks of a signal. Therefore, for small values of s, the ẑi(s)’s can be viewed as random variables
which are all located near the peaks of a signal. The above definition (3) of structural intensity
can thus be interpreted as a kind of kernel density estimator with scale s playing the role of a
varying bandwidth. Since the ẑi(s)’s are concentrated around the same locations for small s, the
main modes of such a density correspond to the limits of the ẑi(s)’s for small values of s. The
significant peaks of the spectra f are then defined as the local maxima of Gz(x) on [0, 1]. The
structural intensity is therefore a tool to identify the limits of the lines ẑi(.), i = 1, . . . , p̂ in the
time-scale plane, Figure 3(d,e,f). In Figure 3, one can see that the local maxima of the structural
intensity correspond to the significant peaks of the spectra.

3.2 Spectra alignment and peaks correspondence

To identify differentially expressed proteins in samples of diseased and healthy individuals,
biologically significant comparisons and conclusions are all based on the alignment results of spec-
tra. However, MS spectra alignment is difficult even after instrument calibration with internal
markers because the mass errors vary with m/z in a nonlinear fashion as a result of experimental
and instrumental complexity and data variation. As displayed in Figure 4(a), the three spec-
tra used to illustrate our methodology clearly have significant peaks that are not aligned which
makes difficult the identification of common peaks to compare multiple spectra. In Figure 4(b),
we display the result of the alignment procedure that we describe hereafter.

Recall that spectra alignment consists in finding, for each observed spectrum, a warping func-
tion in order to synchronize all spectra before applying any other statistical inferential procedure
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Figure 3: An example of multiscale peaks detection. First row: denoised and baseline corrected
spectra with red star indicating the significant peaks. Second row: estimation of significant zero-
crossing at various scales (the vertical axis corresponds to the negative logarithmic scale). Third
row: structural intensity of the zero-crossing (note that maxima of the structural intensities are
located at the significant peaks of the MS spectra).
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Figure 4: (a) An example of mis-alignment of significant peaks. (b) Aligned spectra using
warping functions minimizing the criterion (4). For better visualization we only plotted a small
part of the spectra

(a warping function is a strictly monotone transformation of the interval onto which the spectra
are defined). Such an issue is usually referred to as the curve registration problem in statistics
and various methods have been proposed, see e.g. [KG92], [GK95], [RL98], [Big06] and references
therein. Classically, to align more than two curves, one uses the average of the observed curves
as a reference template onto which all observed are registered. We have used this approach
in [ABLLL07] combined with the automatic landmark-based registration technique proposed in
[Big06]. However, in this paper, we suggest a new method to align multiple spectra that does
not require the use of a reference template. For this, we will use a parametric representation
of warping functions proposed in [BGL09, BG10b] combined with a new criterion proposed in
[BG10a, BGV09, LMG07] to align a set of signals that does not require the use of a reference
template.

Let us first describe the parametric model for warping functions proposed in [BGL09, BG10b].
Let Ω ⊂ R be a compact interval representing the support of the spectra and denote by x the
mass to charge ratio variable m/z. Let v(·) be a smooth parametric function given by a linear
combination of known basis functions {hj : Ω → R, j = 1, . . . ,K},

v(x) =
K
∑

j=1

ajhj(x).

The function v is thus parametrized by the set of coefficients a = (a1, . . . , aK)T ∈ R
K and

we write v = va to stress this dependency. In what follows, it will be assumed that the basis
functions are continuously differentiable on Ω and such that hj and h′j vanish at the boundaries
of Ω. For the hj ’s we took in our simulations a set of K = 20 B-spline functions that form a
basis for polynomial splines of degree p = 3 with equally-spaced knots x̃1 < · · · < x̃q on Ω with
q = 16. Then, let x ∈ Ω and for t ∈ [0, 1] consider the following ordinary differential equation
(ODE)

∂

∂t
φ(t, x) = va(φ(t, x))

with initial condition φ(0, x) = x. Then, it can be shown (see [BGL09, BG10b]) that for any
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t ∈ [0, 1] the solution of the above ODE is unique and such that x 7→ φ(t, x) is a strictly increasing
function on Ω such that φ(t,Ω) = Ω. Then, denote by φa(x) = φ(1, x) the solution at t = 1.
In this way we thus obtain a warping function φa that is parametrized by the set of coefficients
a ∈ R

K .
Now, to compute warping functions to synchronize the spectra, we will search to align the

structural intensities displayed in Figure 3 rather than the spectra themselves. As the structural
intensities have their local maxima located at the significant peaks of the spectra this will force the
search of warping functions that put into correspondence the main peaks of the spectra. Assume
that one has to align a set of N spectra with corresponding structural intensities G1, . . . , GN .
Then N warping functions φ1, . . . , φN can be computed by minimizing the following cost that
has been recently proposed in [BG10a, BGV09, LMG07] as a new matching criteria for curve
and image warping:

(â1, . . . , âN ) = arg min
(a1,...,aN )∈RK×N

1

N

N
∑

i=1

n
∑

k=1

(

Gi ◦ φai
(xk) −

1

N

N
∑

i′=1

Gi′ ◦ φai′
(xk)

)2

(4)

where x1, . . . , xn are the design points in Ω where the spectra are observed. Then, the warping
functions are given by

φi = φâi
for i = 1, . . . , N.

Minimization of the criterion (4) over the set R
K×N is possible by a gradient descent algorithm

with an adaptive step as described in [BGV09]. Note that minimizing (4) automatically yields
warping functions vi, i = 1, . . . , N and compute a reference template given by

1

N

N
∑

i=1

Gi ◦ φi(x) for x ∈ Ω.

Then the warping functions φ1, . . . , φN can be used to align the spectra. An example of such
alignment is displayed in Figure 4(b). Then, to identify common peaks to a set spectra, one
simply takes the significant peaks given by the structural intensities that are at the same locations
after alignment using the warping functions φ1, . . . , φN . An example of common peaks detection
by this procedure is displayed in Figure 5. Locations and intensities of such peaks can then be
used as biomarkers and individual features for further multi-dimensional statistical analysis.

3.3 Comparison with another algorithm for automatic peaks correspondence

and spectra alignment

Let us now compare our method with the algorithm proposed by Jeffries in [Jef05] which
also performs automatic peaks correspondence and spectra alignment. For this purpose, we
propose to test the two methods on the data described in [Jef05] that are available from
http://krisa.ninds.nih.gov/alignment/.

Let us first describe these data. As part of a larger study examining proteomic spectra from
healthy individuals and those with multiple sclerosis, reference samples from a large pool of
serum were included as part of a quality control procedure. As patient and control samples were
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Figure 5: An example of common peaks detection. The blue curves are denoised and baseline
corrected spectra (not aligned) with red stars indicating the significant common peaks found
using our alignment procedure.

processed, a few spectra were consistently drawn from this common, fixed reference pool and
analyzed to alert investigators to deviations related to sample processing. Ideally, all the spectra
from the reference samples should look very similar. Samples were processed on six distinct
days using identical calibration procedures, staff, equipment, and sample handling techniques.
Samples from the first four days were processed within a single week while samples for the last
two days were processed approximately 2 and 3 months later (see [Jef05] for further details). We
have chosen to consider the simple problem of aligning two spectra: a reference spectrum from
the third day and a spectrum for the fifth day. Both spectra are displayed in Figure 6. It can
be seen that the data produced on the fifth day are not well aligned with those of the third.
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Figure 6: SELDI-TOF proteomic data from [Jef05]: (a) reference spectrum from the third day,
(b) spectrum from the fifth day, (c) superposition of the two spectra on the interval [5700, 6200]
(mass to charge ratio (m/z) in Daltons).

Then, for sake of completeness, let us briefly recall the method proposed by Jeffries in [Jef05]
for peaks correspondence and spectra alignment. This approach uses a reference spectrum (e.g.
data from the third day) to which the other spectrum (data from the fifth day) will be compared
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and aligned. To begin with, define a subrange of the mass values say [5000, 5000 + a] Daltons
(with a = 500 or a = 250). For this range locate the largest peak in the spectrum to be aligned
and note its location denoted as p1. Then, consider all the peaks in the reference spectrum
that are located within a fixed window around p1, say [0.98p1, 1.02p1]. If there are k peaks
within this 2% window they are denoted as m1

1, . . . ,m
1
k. For each of these peaks consider a

small window centered at m1
j , such as [0.95m1

j , 1.05m
1
j ], for j = 1, . . . , k. For each one of these

windows, compute the correlation coefficients of the intensities in the reference spectrum over
this mass range with the intensities over a small window centered about p1, say [0.95p1, 1.05p1],
in the spectrum to be aligned. From these k correlation coefficients choose the corresponding
target peak as that with the highest correlation. This procedure is then repeated on the ranges
[5000 + a(u − 1), 5000 + au] for u = 2, . . . , q with q = 10 for a = 500 and q = 20 for a = 250.
Thus, in this way, one obtains a set of q peaks locations p1, . . . , pq in the spectrum to be aligned,
and a set of q peaks locations m1, . . . ,mq in the reference spectrum. Further details regarding
implementation are available at http://krisa.ninds.nih.gov/alignment/.

Then, a warping function φ̂ to align the spectra from the fifth day onto the reference spectra
(from the third day) can be computed by finding the mapping φ̂ which minimizes the following
cost:

φ̂ = arg min
φ∈Φ

q
∑

u=1

(pu − φ(mu))2,

where Φ denotes a set of smooth increasing functions (e.g. monotone cubic splines or homeo-
morphic splines, see [BG10b] for further details on this issue).

The results obtained using our method and the above described procedure with q = 10 and
q = 20 are displayed in Figure 7, Figure 8 and Figure 9 respectively. It can be seen that both
methods perform very well for the alignment of the two spectra. However, when comparing
the common peaks found by our method and those found by Jeffries’ procedure, it can be seen
that the results are very much different. Our method detects all the significant common peaks
that would have been found manually by a visual comparison of the spectra. This is not the
case for Jeffries’ procedure: for either q = 10 or q = 20, a significant number of spurious
common peaks are found in intervals without visually significant peaks, and the method also
fails in detecting truly significant common peaks. This example shows that our method clearly
outperforms Jeffries’ procedure, in the sense that it not only performs spectra alignment but also
allows an automatic correspondence between truly significant peaks.

4 Conclusion

In this paper we have first reviewed some commonly used statistical methods for pre-
processing of raw MS data. We have also proposed to use a multi-scale detection procedure
based on the continuous wavelet transform to improve peak detection in observed high-resolution
spectra. The ability of this multi-scale detection procedure to detect efficiently potential peaks
has allowed us to investigate a new method for aligning multiple spectra without the need of
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Figure 7: Results of spectra alignment and peaks correspondence (with red stars indicating the
common peaks) using our method: (a) reference spectrum from the third day, (b) spectrum from
the fifth day, (c) alignment of the two spectra on the interval [5700, 6200] (Mass/Charge Weight
in Daltons).
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Figure 8: Results of spectra alignment and peaks correspondence (with red stars indicating the
common peaks) using Jeffries’ method with q = 10: (a) reference spectrum from the third day,
(b) spectrum from the fifth day, (c) alignment of the two spectra on the interval [5700, 6200]
(Mass/Charge Weight in Daltons).
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Figure 9: Results of spectra alignment and peaks correspondence (with red stars indicating the
common peaks) using Jeffries’ method with q = 20: (a) reference spectrum from the third day,
(b) spectrum from the fifth day, (c) alignment of the two spectra on the interval [5700, 6200]
(Mass/Charge Weight in Daltons).

a reference template. We applied this method to several spectra with baseline distortion, and
demonstrate it is effective for spectra with over- crowded peaks. Our study extends the ap-
plication scope of both the continuous wavelet transform and the deformation based warping
methodology for spectra alignment. We have also compared our method with another procedure
for spectra alignment and automatic peaks correspondence. Both methods perform similarly for
the alignment of two spectra, but the results indicate that our method is clearly much better for
the identification of truly significant common peaks. This example shows some of the benefits
of our approach over existing methods in the literature. We hope that the methods presented
here will stimulate further investigation into the development of better procedures for multi-scale
modeling and analysis of high-resolution MS spectra.
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