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Abstract

One gives a recursive algorithm for the computation of the first and second
order derivatives of the entropy of a periodic autoregressive process with
respect to the autocovariances. It is an extension of the periodic Levinson-
Durbin algorithm. The algorithm has been developed for use at one of the
steps of an entropy maximization method developed by the authors. Nu-
merical examples of entropy maximization by that method are given. An
implementation of the algorithm is available as an R package.
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1. Introduction

The class of periodically correlated processes (pc-processes) introduced
by Gladishev [8] is useful in many applications, see Hurd and Miamee [11]
for a thorough exposition of the theory, Franses and Paap [7] for economic
applications, Serpedin et al [17] for a comprehensive bibliography, and Hin-
drayanto et al [9] for state space modelling.

The maximum entropy principle provides an appealing framework for the
specification of complete models from partial information. This method was
introduced to stationary time series by Burg in the influential works [4, 5].
Given a contiguous set of autocovariances for lags 0, . . . , p, the maximum
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entropy solution is an autoregressive process of order p with those autoco-
variances. In this case the problem is linear and the solution can be obtained
by solving the Yule-Walker equations with the Levinson-Durbin algorithm.
This result holds in the multivariate case as well. Lambert-Lacroix [13] gen-
eralised this result to pc-processes. Deep results on this and related problems
have been obtained by Alpay et al [1] and Castro and Girardin [6].

When the lags are not contiguous the problem is, in general, non-linear
but the solution is still an autoregression of order equal to the maximum
specified lag. For univariate stationary processes, this particular case was
studied by Politis [14] and the case of general gaps by Rozario and Papoulis
[15]. A method for the solution of the maximum entropy problem for pc-
processes in the case of general gap patterns has been developed in [3].

The entropy rate is a very complicated function of the autocovariances.
It is hardly possible to write down useful expressions for it and its derivatives
with respect to the non-specified autocovariances for general gap patterns.
The periodic Levinson-Durbin algorithm (see [16] or [13]) can be used to cal-
culate the entropy rate. For gradient and Newton-type maximization meth-
ods derivatives are also needed. In this paper we develop recursions for the
first and second order derivatives of the entropy rate. We give also numerical
examples that illustrate the behavior of our method. The R programs im-
plementing the algorithm presented here and the maximum entropy method
of [3] are available as the R package pcme [2].

The paper is organized as follows. Section 2 presents some basic results
about maximum entropy for periodically correlated processes. Section 3 gives
the algorithm for the calculation of the gradient and Hessian of the entropy.
Numerical results illustrating the maximization of the entropy are presented
in Section 4. Positive semidefinite (p.s.d.) solutions are discussed in Sec-
tion 5.

2. The maximum entropy for periodically correlated processes

Let N be the set of the non-negative integers. A zero-mean process
{Xt, t ∈ N \ {0}} is periodically correlated of period T if its autocovariance
function R(u, v) = E

{
XuXv

}
is T -periodic, i.e.

R(u+ T, v + T ) = R(u, v), for all (u, v) ∈ N2, (1)

(see [8], [10],[11]). It is convenient to think about the autocovariances in
terms of the seasons t = 1, . . . , T and the lags k ∈ N. Each pair (u, v) ∈ N2
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may be represented as (u, v) = (mT + t,mT + t−k) for some t ∈ {1, . . . , T},
m ∈ N, and integer k. From Equation (1) it follows that R(mT+t,mT+t−k)
does not depend on m. So, we may introduce the notation

Rt(k) = R(mT + t,mT + t− k), t ∈ {1, . . . , T}, m ∈ N, k—integer.

Moreover, it is sufficient to consider Rt(k) for k ≥ 0. Indeed, if u−v = k < 0,
i.e. v > u, then (v, u) = (m1T +s,m1T +s−|k|) for some s ∈ {1, . . . , T} and
the value of R(u, v) can be obtained from the identity R(u, v) = R(v, u) =
Rs(|k|). Similar notation is used by other authors, see [10].

To illustrate this notation, consider a monthly pc-process started in Jan-
uary 2000. Let u = 13 (January 2001) and v = 11 (November 2000). We
have T = 12, (u, v) = (1 ∗ 12 + 1, 1 ∗ 12 + 1− 2) and (v, u) = (0 ∗ 12 + 11, 0 ∗
12 + 11− (−2)). So, R(u, v) = R1(2) and R(v, u) = R11(−2). On the other
hand, R11(−2) = R(v, u) = R(u, v) = R1(2).

If t is one of the seasons, 1, . . . , T , and k is a non-negative integer lag, then
(t, k) will be called a season-lag pair. The T functions R1(·), . . . , RT (·), con-
sidered as functions on N, completely parameterise the second order structure
of the pc-process in the sense that for each (u, v) there is exactly one season-
lag pair (t, k) such that R(u, v) = Rt(k) (if u ≥ v) or R(u, v) = Rt(k) (if
u < v). In other words, the doubly indexed sequence {Rt(k)}, t ∈ {1, . . . , T},
k ∈ N, enumerates the autocovariances in a non-redundant way. An equiva-
lent parameterisation is given by the partial autocorrelations (pacf) {βt(k)},
t = 1, . . . , T , k ∈ N (see [13] for details).

Let I be a set of season-lag pairs and K = {Rt(k)}(t,k)∈I be a sequence
defined on I. Let Γ be the set of all periodic autocovariance sequences whose
values coincide with Rt(k) for (t, k) ∈ I (Γ may be empty). Each element of
Γ is a completion (or extension) of K. The maximum entropy extension is
the one whose entropy rate is maximal in Γ. The maximum entropy problem
can be defined as follows.

ME(K, I) problem Given a set I of season-lag pairs and a sequence K
defined on I, find the completion of K whose entropy rate is maximal or show
that such a completion does not exist. In [3], we develop a method for the
solution of the maximum entropy problem for arbitrary patterns of the set I
on which the autocovariances are given. The method involves maximization
of the entropy on season-lags sets of the form

Ec(I) = {(t, k)|t = 1, . . . , T, k = 0, . . . , pt},
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where (p1, . . . , pT ) are the smallest non-negative integers satisfying the con-
straints p1 ≤ pT+1 and pt ≤ pt−1+1 for t = 2, . . . , T, and such that Ec(I) ⊇ I.
We refer the elements of Ec(I)\I as gaps since these are season-lag pairs with
non-specified values in K.

To give the entropy rate definition we need additional notation. Let
{Xt} be a pc-process and let vt(k) be the variance of the prediction error
of Xt in terms of the k previous values Xt−1, . . . , Xt−k. Then for any given
t ∈ {1, . . . , T} the sequence {vmT+t(mT+t−1)}∞m=1 is convergent as m→∞
since it is monotonically decreasing and bounded from below by 0. Let

σ2
t = lim

m→∞
vmT+t(mT + t− 1), t = 1, . . . , T. (2)

An expression for σ2
t in terms of the partial autocorrelations is (see [13])

σ2
t = Rt(0)

∞∏
n=1

(1− ‖βt(n)‖2), t = 1, . . . , T.

It can be shown ([12]: p. 119) that for a Gaussian not locally deterministic
pc-process X the entropy rate is equal to

h(X) =
1

2
log(2πe) +

1

2T

T∑
t=1

log σ2
t ,

where σ2
t > 0 for t = 1, . . . , T . Since we are considering only second order

properties and the first term is a constant, we can define the entropy rate of
a pc-process with autocovariance sequence R by

h(R) =
1

T

T∑
t=1

log σ2
t . (3)

If σ2
t is equal to 0 for some t (i.e. R is p.s.d.), then the entropy is defined

to be −∞. This convention means that if the sequence K has only positive
semi-definite (p.s.d.) completions, then any one of them can be taken as the
solution of the ME(K, I) problem. In such situations our algorithm picks
up a p.s.d. completion with certain extremal properties, see Section 5 for a
discussion and example.
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3. PLD algorithm

Here we give formulae for the calculation of the elements of the gradient
and the Hessian matrix of the entropy rate which are needed for the Newton-
Raphson’s algorithm. We denote by σf2k (n) and σb2k (n) the variances of the

nth-order forward and backward partial innovations εfk(n) and εbk(n), defined
by

εfk(n) =
n∑
j=0

afk(n, j)Xk−j, afk(n, 0) = 1,

εbk(n) =
n∑
j=0

abk(n, j)Xk−n+j, abk(n, 0) = 1.

where the filters {afk(n, ·)} and {abk(n, ·)} can be determined recursively in

n, see below. So, σf2k (n) replaces the notation vk(n) for the variance of the
prediction error introduced in Section 2. With this notation the expression
for the entropy rate is

h(R) =
1

T

T∑
k=1

log σf2k (pk).

Its first and second derivatives are

∂h(R)

∂Rt(l)
=

1

T

T∑
k=1

∂σf2
k (pk)

∂Rt(l)

σf2k (pk)
,

∂2h(R)

∂Rt(l)∂Rs(m)
=

1

T

T∑
k=1

 ∂2σf2
k (pk)

∂Rt(l)∂Rs(m)

σf2k (pk)
−

∂σf2
k (pk)

∂Rt(l)

∂σf2
k (pk)

∂Rs(m)

(σf2k (pk))2

 ,
for gaps (t, l) and (s,m), i.e. (t, l) ∈ Ec(I) \ I and (s,m) ∈ Ec(I) \ I.

So, we need to compute the first and second derivatives of the variances of
the innovations with respect to autocovariances corresponding to gaps. Ana-
lytic closed form expressions for them in terms of the autocovariances are not
available but they can be calculated recursively using the periodic Levinson-
Durbin (PLD) algorithm (see [13]). The PLD algorithm computes, besides
the variances, the filters {afk(n, ·)} and {abk(n, ·)} which are also needed for
the calculation of the derivatives.
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We differentiate the PLD equations to develop PLD-type recursions for
the first and second order derivatives. In the formulae below we use the
convention

∑0
j=1 . . . = 0. Also, when the subscript k − 1 is equal to 0, it is

replaced by T . δi,j is the Kronecker symbol, that is δi,j = 1 if i = j, δi,j = 0
otherwise. We denote by t[T ] the integer rt in [1, . . . , T ] such that t = qtT+rt
and qt ∈ Z.

Algorithm 1 summarizes the calculations of the derivatives. It does not
include formulae since many of them are quite long. The formulae are given
in the appendix and referred to in Algorithm 1.

algorithm 1. Outline of the calculations of first and second order deriva-
tives based on the PLD algorithm. An entry like Equations XX stands for the
group of equations numbered (XXa), (XXb), . . . , while Equation XX stands
for a single equation.

for k = 1 to T do // Initialisation step

Equation (A.1)
for t = 1 to T , and l ∈ τg do

Equation (A.2)
for s = 1 to T , and m ∈ τg do

Equation (A.3)
for n = 1 to maxi=1,...T pi do // Main loop

for k = 1 to T , and n ≤ pk do
Equations (A.4)
if n > 1 then for j = 1 to n− 1 do

Equations (A.5)
Equations (A.6)
if n > 1 then for j = 1 to n− 1 do

Equations (A.7)
for t, s = 1 to T and l,m ∈ τg

if l > n ∨m > n ∨ (k = t ∧ n = l) ∨ (k = s ∧ n = m) then
Equation (A.8a)

else
Equation (A.8b)

Equations (A.9)
Equations (A.10)
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4. Numerical results

We illustrate the method presented in [3] on five examples with T = 2
and autocovariances given up to lag 3 (see Table 4) except for a gap at (1, 2)
in Examples 1–4 and (2, 1) in Example 5. We have

I =

{
{(1, 0), (1, 1), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)} (Examples 1–4),

{(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3)} (Example 5).

The constrained set Ec(I) is the same for all examples:

Ec(I) = {(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)}.

k 0 1 2 3

Example 1
R1(k) 1 0.5 ? -0.04892034
R2(k) 1 0.3 -0.09784067 -0.0293522

Example 2
R1(k) 1 0.9 ? 0.1307306
R2(k) 1 0.3 0.1452563 0.04357688

Example 3
R1(k) 1 0.5 ? 0.4880678
R2(k) 1 0.3 0.9761356 0.2928407

Example 4
R1(k) 1 0.999999 ? 0.2995947
R2(k) 1 0.3 0.299595 0.0898785

Example 5
R1(k) 1 2 0.7 0.9
R2(k) 1 0.3 ? 0.9

Table 1: Autocovariances for the numerical examples. The gaps are designated with
question marks.

The examples were constructed by computing autocovariances of peri-
odic autoregressive models specified with their partial autocorrelations. We
therefore know the solutions, when they exist, and are able to compare them
to the numerical results.
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An essential and challenging task in the solution of the ME(K, I) prob-
lem is that of finding a systematic method to obtain initial values for the
non-linear maximization routines. The method should also be capable of
detecting when the problem has no solution (i.e. the sequence K is not a
subsequence of any periodically correlated autocovariance sequence). Once
an initial value is found, the maximum entropy solution can be found by
non-linear maximization using Newton or gradient methods and computing
the derivatives of the entropy using the algorithm developed here.

The method developed in [3] does not attack directly the task of finding
initial values. It solves a sequence of modified maximum entropy problems
constructed so that they have positive definite (p.d.) solutions. We start
at step n = 1 by filling the gaps with arbitrary numbers, say zeroes, and
check if the sequence obtained in this way is p.d. If not, we make it p.d. by
adding a sufficiently large constant, c1, to the lag 0 autocovariances. The
resulting sequence is a completion of the sequence Kc1 = {Rt(k)+c1δk}(t,k)∈I
and therefore can be used as initial value for the modified maximum en-
tropy problem ME(Kc1 , I). Then at step n + 1 we check if the solution of
the ME(Kcn , I) problem is a completion of the original sequence K and, if
so, solve our ME(K, I) problem using this solution as initial value (i.e. we
set cn+1 = 0). Otherwise we solve a modified problem ME(Kcn+1 , I) where
Kcn+1 = {Rt(k)+cn+1δk}(t,k)∈I and cn+1 < cn is chosen so that the solution of
the ME(Kcn , I) problem can be used as an initial value for the ME(Kcn+1 , I)
problem.

This procedure has excellent properties, see [3]. In a nutshell, {cn} is
non-negative monotonically decreasing and can be chosen so that there are
three mutually exclusive possibilities which are in one-to-one correspondence
to the solvability of the ME(K, I) problem. Namely, (i) a p.d. solution
to the ME(K, I) problem exists if and only if cn becomes equal to 0 for
some finite n; (ii) if cn decreases to 0 without ever reaching it, then only
semidefinite solution(s) exist; and (iii) if cn decreases to a positive limit,
then the ME(K, I) problem has no solution.

In the first two examples the maximum entropy p.d. completion exists.
The first example illustrates the case when the starting values give at once
a p.d. completion, i.e. we can set c1 = 0. In the second example the
initial values do not give a p.d. solution and we need to solve a modified
problem at the first step. These examples represent typical situations. In
the third example, the solution exists but is p.s.d. while the fourth example
solution is “almost” p.s.d.. It represents a borderline case. This example is
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arguably artificial but it demonstrates vividly the reliability of the method.
The sequence cn decreases quickly and at the fifth iteration we can set c5 = 0.
Finally, in the last example there are no solutions.

We did the calculations with the statistical system R. We used rather
conservative stopping criteria in order to study more reliably the behaviour
of the method. In all cases we use zeroes as initial values for the gaps.

Example 1. Here the gap is at (1, 2), i.e. t = 1, k = 2. The “true” maximum
entropy solution is obtained for R1(2) = 0.15. Table 2 gives results obtained
with our procedure for this example. The first column gives the values tried
for cn. The results for each iteration at the corresponding values of cn are
given in the following columns, starting with the iteration number, then the
value for the missing autocovariance coefficient, the entropy, and the value
of the gradient. Here it is possible to set immediately cn = 0 and after 3
iterations the procedure leads to the expected solution, R1(2) = 0.15.

cn i R1(2) entropy gradient
0 0 0.0000 -0.2660 0.3814

1 0.1355 -0.2384 0.0349
2 0.1499 -0.2382 3.3148e-05
3 0.1500 -0.2382 2.8209e-14

Table 2: Results for Example 1. The initial value R1(2) = 0 is admissible, so c1 = 0 and
the optimal solution R1(2) = 0.15 is reached quickly.

Example 2. In this example we again have a p.d. solution but the value zero
is not admissible for c1. The results are given in Table 3. The optimal value,
0.27, of R1(2) was reached after two iterations (with c1 = 1 and c2 = 0,
respectively) of step 3 of our method. The ME completion here is relatively
far from the p.s.d. border, as measured, for example, by the absolute value
of the largest partial autocorrelation coefficient. This is equal to 0.9, not
very close to 1. So, the example shows also that a non-zero c1 may be needed
even if the problem is not close to singularity.

Example 3. This example is similar to Example 1 but it is set up so that
the solution is p.s.d.. The value 0.15 is an optimal solution for the missing
R1(0), as in Example 1. For this singular example the procedure leads to a
sequence of cn values that monotonically decreases to 0. Table 4 gives the
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cn i R1(2) entropy gradient
1 0 0.0000 0.5623 0.0679

1 0.1619 0.5679 0.00146
2 0.1655 0.5679 1.1178e-08
3 0.1655 0.5679 -7.2435e-16

0 0 0.1655 -1.1520 5.4523
1 0.2154 -0.9776 2.0404
2 0.2604 -0.9262 0.3238
3 0.2699 -0.9247 0.0018
4 0.2700 -0.9247 3.7871e-10
5 0.2700 -0.9247 3.4084e-10

Table 3: Results for Example 2. The initial value R1(2) = 0 is NOT admissible. However
the optimal value, R1(2) = 0.16552, obtained for the modified problem with c1 = 1 is
admissible for the original problem, so c2 = 0. The optimal solution here is R1(2) = 0.27.

results obtained for the first eight values of cn as well as for its 80th value.
For each value of cn, we give only the results for the last iteration of the
Newton-Raphson’s algorithm. Table 4 is in agreement with the theory which
says that cn → 0 in the p.s.d. case.

Example 4. In this example the solution is “almost” p.s.d.. It would have
been exactly p.s.d. if R1(1) = 1, a difference of only 0.000001 from the
value used in this example, see Table 4. The optimal solution for R1(2)
is 0.2999997. Table 5 gives results obtained for this example. Here the
procedure is slower than in Examples 1–2 but, bearing in mind the close
proximity to singularity, the fact that the solution was obtained with only 5
iterations of step 3 of the method seems an excellent result.

Example 5. Our last example illustrates the case when the given sequence is
not completable. Here this is straightforward to check by observing that all
correlations corresponding to a proper autocovariance sequence must be in
the interval [−1, 1], while the given autocovariances imply that the correlation
coefficient R(3, 2)/

√
R(3, 3)R(2, 2) = R1(1)/

√
R1(0)R2(0) = 2 > 1. Table 6

gives the results obtained for the first eight values of cn as well as for its
83th value. For each values of cn, as in the previous example, we give only
the results for the last iteration of the Newton-Raphson’s algorithm. The
procedure converges quickly to the value c = 1.069440 > 0, which shows that
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cn i R1(2) entropy gradient
1.000000 3 0.1362538 0.5102 -8.2608e-09
0.050000 3 0.1616193 -1.2162 -2.2817e-10
0.002500 3 0.1511813 -2.7275 3.7530e-10
0.000125 2 0.1500620 -4.2261 4.6311e-12
6.250e-06 2 0.1500031 -5.7240 -1.5291e-13
3.125e-07 2 0.1500002 -7.2219 -6.4537e-07
1.563e-08 1 0.1500000 -8.7197 -5.8958e-08
7.813e-10 1 0.1500000 -10.2176 -9.5701e-09
. . . . . . . . . . . . . . .
7.994e-16 2 0.1500000 -17.1731 -0.0012

Table 4: Results for Example 3. The solution here is p.s.d.. In this case cn converges to
0 but can never be set equal to 0. In floating point calculations this cannot be detected
exactly but the decision rules used for our examples stopped the algorithm after solving
the 80th modified problem (with c80 = 7.994 · 10−16) and declared that the solution is
p.s.d..

no solution exists.
The gradients are large for the same reasons as in the p.s.d. case. In

fact, when cn converges to c = 1.069440 > 0, R1(2) converges to 0.4410555,
which provides a p.s.d. completion to the modified problem ME(Kc, I) for
the modified sequence Kc = {Rt(k) + c}(t,k)∈I , not to the original problem,
ME(K, I), see [3] for further details.

5. Remarks on p.s.d. solutions

From numerical viewpoint there is little distinction between the “exact”
and “almost” p.s.d. case. One might expect erratic behaviour of numerical
algorithms in these cases. It is therefore interesting that our method not
only successfully deals with them but it also distinguishes the two cases.

For example, in the singular case illustrated by Example 3 the solution
changes very little from about c15, but it does change. On the other hand,
the “almost” p.s.d. case of Example 4 reached the value cn = 0 for n = 5
iterations and finished successfully. We run Examples 3–5, and many other
similar examples, for far more iterations that would be needed in practice in
order to get a better understanding of the behaviour of the method. Our re-
sults were qualitatively similar—the method finishes successfully and fails to
distinguish “almost” from “exact” p.s.d. only when the solution is extremely
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cn i R1(2) entropy gradient
1.000000 0 0.0000000 0.5184 0.1046

1 0.2152802 0.5300 0.0045
2 0.2253450 0.5300 3.5921e-07
3 0.2253458 0.5300 -6.5702e-13

0.050000 0 0.2253458 -1.6121 18.3505
1 0.2452564 -1.3671 8.2140
2 0.2738726 -1.2187 2.8691
3 0.2960202 -1.1841 0.3400
4 0.2992355 -1.1836 0.0007
5 0.2992426 -1.1836 -1.7116e-12

0.002500 0 0.2992426 -2.7068 30.9271
1 0.2999629 -2.6953 1.3467
2 0.2999965 -2.6953 0.0001
3 0.2999965 -2.6953 -2.1290e-12

0.000125 0 0.2999965 -4.1905 48.7861
1 0.2999996 -4.1904 0.0147
2 0.2999996 -4.1904 5.2170e-10

0.000000 0 0.2999996 -6.6560 16725.18
1 0.2999997 -6.6554 33.9126

Table 5: Results for Example 4. The solution here is almost p.s.d.. Despite that the
algorithm finds an admissible solution after solving 4 modified problems and after only
one additional iteration gives the optimal value, R1(2) = 0.2999997. The large gradients
are discussed in the main text and Appendix B.
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cn i R1(2) entropy gradient

2.000000 4 0.4514833 0.7068 -7.8642e-08
1.073418 4 0.4477606 -2.9850 -1.9047e-05
1.070620 8 0.4431905 -4.1350 -0.3180
1.069847 6 0.4417908 -5.1751 -4.8700e-05
1.069569 8 0.4412777 -6.2893 -9.9963e-05
1.069480 7 0.4411105 -7.3921 -12.6808
1.069451 6 0.4410558 -8.4504 -14.0478
1.069440 1 0.4410556 -11.1154 -1077458
. . . . . . . . . . . . . . .
1.069440 1 0.4410555 -20.8842 -3.3077e+14

Table 6: Results for Example 5. The sequence cn converges to a positive value since the
maximum entropy problem has no solution here.

close to being p.s.d.. Note that the “distance” of 10−6 from singularity in
Example 4 is not extremely close in this context. In some examples it seemed
not possible to make the gradient at the declared solution sufficiently small.
However, the huge value of the gradient in examples like Example 5 is not sur-
prising since as we are approaching a p.s.d. solution (of a possibly modified
problem, see end of Section 4) the entropy diverges to −∞, see Appendix Ap-
pendix B. It may be better to maximize eh in such cases and we did some
limited experiments but the results are similar. So, we may confidently con-
clude that our method is very reliable even in cases close to singularity. Since
it also detects when the completion problem has no solution, it is a complete
all round method.

In the p.s.d. case there are, in general, infinitely many solutions. The
one chosen by the algorithm discussed here is a limit of solutions of slightly
modified p.d. problems, which seems a desirable property. In many cases it
also maximizes

∑
t log σ2

t , where the sum is over t such that σt 6= 0, which
seems a desirable property, as well, but we do not know if this is always the
case.

A p.s.d. solution implies that observations for one or more seasons are
exact linear combinations of past values. It is possible to interpret a p.s.d.
solution as corresponding to unit root or periodic integration models (see [7,
Chapter 4]), especially in applications to economic data.

The following example illuminates some of the points discussed above. Let
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T = 2, R1(0) = R2(0) = 1, R1(2) = α, R2(4) = β, where |α| < 1 and |β| <
1. Here Ec(I) = {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3)}.
So, the gaps are (1, 1), (1, 2), (1, 3), (2, 1), (2, 3). For the maximum entropy
solution we have R1(1) = R1(2) = R1(3) = R2(1) = R2(3) = 0 which
corresponds to the PAR(4,2) model

Xt =

{
αXt−2 + εt for odd t,

βXt−4 + εt for even t,

where εt is periodic white noise. Now, let β = 1, i.e. R2(4) = 1. In this
case the solution is p.s.d. The algorithm will try modified problems with
R1(0) = R2(0) = 1 + c. For each c > 0 the solution of the modified problem
is

R1(0) = R2(0) = 1 + c, R1(2) = α, R2(4) = β = 1,

R1(1) = R1(2) = R1(3) = R2(1) = R2(3) = 0, (4)

which corresponds to the PAR(4,2) model

Xt =

{
αcXt−2 + εt for odd t,

βcXt−4 + εt for even t,
(5)

where αc = α/(1 + c), βc = 1/(1 + c), and εt is periodic white noise.
As c → 0 we obtain in the limit R1(0) = R2(0) = 1, the remaining

autocovariances being as in Equation (4). Since R2(4) = 1 we can see that
if {Xt} is a process with these autocovariances, then with probability one
Xt = Xt−4 for even t and so the values of the time series for even t represent
a periodic function. On the other hand, the limit of the models (5) is

Xt =

{
αXt−2 + εt for odd t,

Xt−4 + εt for even t,

where σ2
t = Var(εt) = 0 for even t. In applications, especially to economic

data, it may be more natural to consider the above model with σ2
2t > 0,

which corresponds to a periodic integration model. Here we have essentially
separate models for the two seasons. This of course does not hold for more
general autocorrelation patterns.
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Appendix A. PLD algorithm steps

Appendix A.1. Initialisation step

For k = 1, . . . , T , t, s = 1, . . . , T , l,m ∈ τg, set the following initial
values.

βk(0) = σf2k (0) = σb2k (0) = Rk(0), (A.1)

∂σf2k (0)

∂Rt(l)
=
∂σb2k (0)

∂Rt(l)
= 0, (A.2)

∂2σf2k (0)

∂Rt(l)∂Rs(m)
=

∂2σb2k (0)

∂Rt(l)∂Rs(m)
= 0. (A.3)

Appendix A.2. PLD step for the parameters

These are the standard PLD calculations, see [13].
The equations for step n are:

Ak(n) = Rk(n) +
n−1∑
j=1

afk(n− 1, j)R(k−j)[T ](n− j), (A.4a)

βk(n) =
Ak(n)

σfk (n− 1)σbk(n− 1)
, (A.4b)

σf2k (n) = σf2k (n− 1)− Ak(n)2

σb2k−1(n− 1)
, (A.4c)

σb2k (n) = σb2k−1(n− 1)− Ak(n)2

σf2k (n− 1)
, (A.4d)

afk(n, n) = −− Ak(n)

σb2k−1(n− 1)
, (A.4e)

abk(n, n) = − Ak(n)

σf2k (n− 1)
. (A.4f)

The following calculations are done after the above when n > 1.

afk(n, j) = afk(n− 1, j) + afk(n, n)abk−1(n− 1, n− j), (A.5a)

abk(n, j) = abk−1(n− 1, j) + abk(n, n)afk(n− 1, n− j), (A.5b)

(for j = 1, . . . , n− 1).
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Appendix A.3. Gradient PLD step

For t = 1, . . . , T, l ∈ τg,

∂Ak(n)

∂Rt(l)
=



0, when l > n,

1, when k = t and n = l,

δt,(k−n+l)[T ]a
f
k(n− 1, n− l)

+
n−1∑
j=1

∂afk(n− 1, j)

∂Rt(l)
R(k−j)[T ](n− j),

otherwise.

(A.6a)

∂σf2k (n)

∂Rt(l)
=
∂σf2k (n− 1)

∂Rt(l)
−

2Ak(n)∂Ak(n)
∂Rt(l)

σb2k−1(n− 1)
+
Ak(n)2

∂σb2
k−1(n−1)
∂Rt(l)

(σb2k−1(n− 1))2
, (A.6b)

∂σb2k (n)

∂Rt(l)
=
∂σb2k−1(n− 1)

∂Rt(l)
−

2Ak(n)∂Ak(n)
∂Rt(l)

σf2k (n− 1)
+
Ak(n)2

∂σf2
k (n−1)
∂Rt(l)

(σf2k (n− 1))2
, (A.6c)

∂afk(n, n)

∂Rt(l)
= −

∂Ak(n)
∂Rt(l)

σb2k−1(n− 1)
+
Ak(n)

∂σb2
k−1(n−1)
∂Rt(l)

(σb2k−1(n− 1))2
, (A.6d)

∂abk(n, n)

∂Rt(l)
= −

∂Ak(n)
∂Rt(l)

σf2k (n− 1)
+
Ak(n)

∂σf2
k (n−1)
∂Rt(l)

(σf2k (n− 1))2
. (A.6e)

And, if n > 1, for j = 1, . . . , n− 1,

∂afk(n, j)

∂Rt(l)
=
∂afk(n− 1, j)

∂Rt(l)
+
∂afk(n, n)

∂Rt(l)
abk−1(n− 1, n− j)

+ afk(n, n)
∂abk−1(n− 1, n− j)

∂Rt(l)
, (A.7a)

∂abk(n, j)

∂Rt(l)
=
∂abk−1(n− 1, j)

∂Rt(l)
+
∂abk(n, n)

∂Rt(l)
afk(n− 1, n− j)

+ abk(n, n)
∂afk(n− 1, n− j)

∂Rt(l)
. (A.7b)
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Appendix A.4. Hessian PLD step

For t, s = 1, . . . , T, l,m ∈ τg,
If l > n or m > n or (k = t and n = l) or (k = s and n = m), put

∂2Ak(n)

∂Rt(l)∂Rs(m)
= 0. (A.8a)

Otherwise put

∂2Ak(n)

∂Rt(l)∂Rs(m)
= δt,(k−n+l)[T ]

∂afk(n− 1, n− l)
∂Rs(m)

+ δs,(k−n+m)[T ]
∂afk(n− 1, n−m)

∂Rt(l)
+

n−1∑
j=1

∂2afk(n− 1, j)

∂Rt(l)∂Rs(m)
R(k−j)[T ](n− j),

(A.8b)

∂2afk(n, n)

∂Rt(l)∂Rs(m)
=

∂σb2
k−1(n−1)
∂Rs(m)

∂Ak(n)
∂Rt(l)

(σb2k−1(n− 1))2
−

∂2Ak(n)
∂Rt(l)∂Rs(m)

σb2k−1(n− 1)
+

∂Ak(n)
∂Rs(m)

∂σb2
k−1(n−1)
∂Rt(l)

(σb2k−1(n− 1))2

− 2
Ak(n)

∂σb2
k−1(n−1)
∂Rs(m)

∂σb2
k−1(n−1)
∂Rt(l)

(σb2k−1(n− 1))3
+
Ak(n)

∂2σb2
k−1(n−1)

∂Rt(l)∂Rs(m)

(σb2k−1(n− 1))2
,

(A.9a)

∂2abk(n, n)

∂Rt(l)∂Rs(m)
=

∂σf2
k (n−1)
∂Rs(m)

∂Ak(n)
∂Rt(l)

(σf2k (n− 1))2
−

∂2Ak(n)
∂Rt(l)∂Rs(m)

σf2k (n− 1)
+

∂Ak(n)
∂Rs(m)

∂σf2
k (n−1)
∂Rt(l)

(σf2k (n− 1))2

− 2
Ak(n)

∂σf2
k (n−1)
∂Rs(m)

∂σf2
k (n−1)
∂Rt(l)

(σf2k (n− 1))3
+
Ak(n)

∂2σf2
k (n−1)

∂Rt(l)∂Rs(m)

(σf2k (n− 1))2
, (A.9b)

∂2σf2k (n)

∂Rt(l)∂Rs(m)
=

∂2σf2k (n− 1)

∂Rt(l)∂Rs(m)
− 2

∂Ak(n)
∂Rs(m)

∂Ak(n)
∂Rt(l)

σb2k−1(n− 1)
− 2

Ak(n) ∂2Ak(n)
∂Rt(l)∂Rs(m)

σb2k−1(n− 1)

− 2
Ak(n)

∂σb2
k−1(n−1)
∂Rt(l)

(σb2k−1(n− 1))3
+ 2

Ak(n)∂Ak(n)
∂Rt(l)

∂σb2
k−1(n−1)
∂Rs(m)

(σb2k−1(n− 1))2

+ 2
Ak(n) ∂Ak(n)

∂Rs(m)

∂σb2
k−1(n−1)
∂Rt(l)

(σb2k−1(n− 1))2
+
Ak(n)2

∂2σb2
k−1(n−1v)

∂Rt(l)∂Rs(m)

(σb2k−1(n− 1))2
, (A.9c)
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∂2σb2k (n)

∂Rt(l)∂Rs(m)
=
∂2σb2k−1(n− 1)

∂Rt(l)∂Rs(m)
− 2

∂Ak(n)
∂Rs(m)

∂Ak(n)
∂Rt(l)

σf2k (n− 1)
− 2

Ak(n) ∂2Ak(n)
∂Rt(l)∂Rs(m)

σf2k (n− 1)

− 2
Ak(n)

∂σf2
k (n−1)
∂Rt(l)

(σf2k (n− 1))3
+ 2

Ak(n)∂Ak(n)
∂Rt(l)

∂σf2
k (n−1)
∂Rs(m)

(σf2k (n− 1))2

+ 2
Ak(n) ∂Ak(n)

∂Rs(m)

∂σf2
k (n−1)
∂Rt(l)

(σf2k (n− 1))2
+
Ak(n)2

∂2σf2
k (n−1)

∂Rt(l)∂Rs(m)

(σf2k (n− 1))2
. (A.9d)

And, if n > 1, for j = 1, . . . , n− 1,

∂2afk(n, j)

∂Rt(l)∂Rs(m)
=
∂2afk(n− 1, j)

∂Rt(l)∂Rs(m)
+ afk(n, n)

∂2abk−1(n− 1, n− j)
∂Rt(l)∂Rs(m)

+abk−1(n, n− j)
∂2afk(n, n)

∂Rt(l)∂Rs(m)
+
∂afk(n, n)

∂Rt(l)

∂abk−1(n− 1, n− j)
∂Rs(m)

+
∂afk(n, n)

∂Rs(m)

∂abk−1(n− 1, n− j)
∂Rt(l)

, (A.10a)

∂2abk(n, j)

∂Rt(l)∂Rs(m)
=
∂2abk−1(n− 1, j)

∂Rt(l)∂Rs(m)
+ abk(n, n)

∂2afk(n− 1, n− j)
∂Rt(l)∂Rs(m)

+afk(n, n− j)
∂2abk(n, n)

∂Rt(l)∂Rs(m)
+
∂abk(n, n)

∂Rt(l)

∂afk(n− 1, n− j)
∂Rs(m)

+
∂abk(n, n)

∂Rs(m)

∂afk(n− 1, n− j)
∂Rt(l)

. (A.10b)

Appendix B. Gradient of eentropy

Let h be the entropy rate and consider eh. Maximizing h and eh is
equivalent. Let y be any of the parameters w.r.t. which we are maximizing.
We have ∂

∂y
eh = eh ∂h

∂y
. Hence, ∂h

∂y
= e−h ∂

∂y
eh. Therefore the gradient of h is

e−h times the gradient of eh. Near the optimal values both partial derivatives
are “close” to zero but differ by a factor of e−h. So, near the p.s.d. border
where h goes to −∞ and e−h goes to ∞, the derivative of H can be large
even very close to the optimal value.
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