
EXTENSION OF AUTOCOVARIANCE COEFFICIENTS SEQUENCE
FOR PERIODICALLY CORRELATED PROCESSES

By Sophie Lambert-Lacroix

Laboratoire LMC-IMAG

Final Version received September 2003

Abstract. The extension of stationary process autocorrelation coefficient sequence is a
classical problem in the field of spectral estimation. In this note, we treat this extension
problem for the periodically correlated processes by using the partial autocorrelation
function. We show that the theory of the non-stationary processes can be adapted to the
periodically correlated processes. The partial autocorrelation function has a clear
advantage for parameterization over the autocovariance function which should be
checked for non-negative definiteness. In this way, we show that contrary to the stationary
case, the Yule–Walker equations (for a periodically correlated process) is no longer a tool
for extending the first autocovariance coefficients to an autocovariance function. Next, we
treat the extension problem and present a maximum entropy method extension through
the the partial autocorrelation function. We show that the solution maximizing the
entropy is a periodic autoregressive process and compare this approach with others.

Keywords. Maximum entropy method; partial autocorrelation; periodically correlated
processes; periodic autoregressive processes.

1. INTRODUCTION

The class of periodically correlated (PC) processes, introduced by Gladysev
(1961), is useful in many signal processing problems (e.g. Gardner, 1994, and
references therein). They are of interest with regard to multivariate stationary
processes. They also provide a deeper insight into these processes and facilitate
their modelling.

Although the partial correlation notion was introduced years ago by Yule
(1907), the parameterization of a stationary time series by the partial
autocorrelation function (PACF) is relatively recent (Ramsey, 1974). This result
has been established by Dégerine and Lambert-Lacroix (2003) (see also
Constantinescu, 1996) to the general non-stationary case. The PACF presents
many advantages when compared with the classical autocovariance function
(ACF). For example, the simplicity of the constraints on the PACF gave birth to
many autoregressive estimation methods in the stationary framework (Burg, 1968;
Dégerine, 1993) and PC (Sakai, 1982; Boshnakov, 1994; Lambert-Lacroix, 2000).

In the stationary case, the extension problem of autocovariance coefficient
sequence can be stated as follows. Starting from p + 1 coefficients R(0), . . . , R(p)
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(i.e. the possible covariance structure of a sequence X(t), . . . , X(t�p)), we can say
whether the values are the first coefficients of an ACF and thereby describe all the
extensions. For this purpose, it is better to use the PACF because of the simplicity
of its constraints domain. Furthermore, the maximum entropy method (MEM),
first introduced by Burg (1967), consists in extending R(0), . . . , R(p), in such a way
it maximizes the entropy of the stationary random vector X(t), . . . , X(t�n), n > p.
It turns out that the only such extension is given by the Yule–Walker equations
and the solution is an autoregressive model.

In this note, we treat this extension problem for PC processes by using the
PACF. First we show that the theory of the non-stationary processes can be
adapted to the periodical case. In particular, the PACF is periodic as the ACF. In
the stationary case, we extend the ACF to lags 0,1, . . . , p. Similarly, in the periodic
case, it is natural to consider extending ACF (or PACF) to lags 0, 1, . . . , pk, k ¼
1, . . . , T (i.e. pt lags for the season t). We show that the correspondence between
ACF and PACF is one-to-one if and only if pt £ pt�1 + 1, p0 ¼ pT. As in the
stationary case, the PACF coefficients are between �1 and 1. This has a clear
advantage for parameterization over the ACF which should be checked for non-
negative definiteness. Contrary to the stationary framework, we show that it is not
always possible to fit a PAR of given orders (p1, . . . , pT). We propose a procedure
which allows to check (for ACF coefficients and orders given) the existence of the
PAR model. As a consequence, the Yule–Walker equations (for a PC process) do
no longer provide a tool to extend the first ACF coefficients to the ACF of a PC
process. Next, we treat the extension problem in the periodical case. Finally, we
present a MEM extension through the PACF. We show that the solution
maximizing the entropy is periodic autoregressive. This approach is compared with
those of Zhang (1997) and Alpay et al. (2001).

2. PERIODICALLY CORRELATED PROCESSES

2.1. Parameterization by the PACF

First, let us state some preliminary known results (see Lambert-Lacroix, 2000;
Dégerine and Lambert-Lacroix, 2003; for more comments). The PC processes
X(Æ), of period T, indexed on Z with E(X(t)) ¼ 0 for any t 2 Z, were introduced by
Gladysev (1961) as non-stationary processes with periodic ACF,

Rðt þ T ; sþ T Þ ¼ EfX ðt þ T ÞX ðsþ T Þg ¼ Rðt; sÞ for all ðt; sÞ 2 Z2;

where � denotes the complex conjugate. In other words, the second-order
properties of these processes are left unchanged by time translation of length T.
The structure of {X(s + T), . . . , X(t + T)} and that of {X(s), . . . , X(t)} are the
same. This function must be non-negative definite (n.n.d.), i.e.

Rs;t ¼ fRðsþ i; sþ jÞgi; j¼0;...;t�s
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is n.n.d for all s £ t (as the covariance matrix of the random vector
[X(s), . . . , X(t)]T).

Let us now recall the definition of the PACF. In this paper, we only deal with
the second-order properties of the process X(Æ). So it is natural to use a geometrical
approach by considering the following Hilbert space M, with the Hermitian
product hU ; V i ¼ EfU �V g ¼ covfU ; V g. The elements of M are the linear
combinations, with complex coefficients, of elements of {X(t), t 2 Z} and their
mean square limits. Let Xf(t; s), s £ t, be the orthogonal projection of X(t) on the
closed linear subspace

Mðs; t � 1Þ ¼ spfX ðsÞ; . . . ;X ðt � 1Þg;

that is, the linear predictor of X(t) given X(t � 1), . . . , X(s), with the convention
Xf ðt; tÞ ¼ ~0. The (t � s)th-order forward partial innovation is ef(t; s) ¼
X(t) � Xf(t; s). We put

r2f ðt; sÞ ¼ kef ðt; sÞk2 ¼ varfef ðt; sÞg:

The associated normalized innovation is defined, for s £ t, by

gf ðt; sÞ ¼ ef ðt; sÞ
rf ðt; sÞ ; rf ðt; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2f ðt; sÞ

q
;

with the convention 0�1 ¼ 0. Note that this convention is necessary in the locally
deterministic case when X(t) 2 M(s; t � 1). All the notions obtained by reversing
the time index are denoted by ‘b’ for ‘backward’; for instance, for s £ t, the
backward innovation eb(s; t) ¼ X(s) � Xb(s; t) leads to

gbðs; tÞ ¼ ebðs; tÞ
rbðs; tÞ :

The PACF b(Æ,Æ) describes, for all (t, s) of Z2, the partial correlation coefficient
between X(t) and X(s) in the set {X(s), . . . , X(t)}. For s < t, b(t, s) is given by

bðs; tÞ ¼ bðt; sÞ ¼ Efgf ðt; sþ 1Þgbðs; t � 1Þg:

Furthermore, we set b(t, t) ¼ R(t, t) instead of 1 in order to characterize the
second-order properties of the process by this function. The advantage of the
PACF is its variation domain. It can be easily described in comparison with R(Æ,Æ)
which must be n.n.d. Precisely, for t 6¼ s, the magnitude of b(t, s) is generally
strictly < 1 and if it is equal to 1 it corresponds to linear relationships; i.e. for
s < t, |b(t, s)| ¼ 1 if and only if s is the largest integer such that X(t) belongs to
M(s; t � 1). Our convention leads to

bðt; s� kÞ ¼ bðt þ k; sÞ ¼ 0; for k � 1:

In the same way, we have

bðt; t � kÞ ¼ bðt þ k; tÞ ¼ 0; for k > 0
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when a variable X(t) is almost surely equal to 0. In both the previous situations,
the process is called locally deterministic. We easily check that a process is PC of
period T if and only if its PACF satisfies:

bðt þ T ; sþ T Þ ¼ bðt; sÞ for all ðt; sÞ 2 Z2:

We denote, by DT
b , the set of T-periodic functions which satisfy the above

conditions. Then DT
b can be parameterized by T functions defined on N, bt(n) ¼

b(t, t � n), t ¼ 1, . . . , T, which are only subject to the following conditions:

1. bt(0) ‡ 0 and |bt(n)| £ 1, n ‡ 1,
2. bt(0) ¼ 0 � bt(n) ¼ b(t+n)[T](n) ¼ 0, n ‡ 1,
3. |bt(j)| ¼ 1, j > 0 � bt(n) ¼ b(t+n�j)[T](n) ¼ 0, n > j,

where t[T ] is the integer rt in [1, . . . , T ] such that t ¼ qtT + rt and qt 2 Z. Notice
that the points (1) and (2) cater to the locally deterministic case. Otherwise, the
conditions are reduced to bt(0) > 0 and |bt(n)| < 1, n ‡ 1, for t ¼ 1, . . . , T. On
the contrary, any function in DT

b is the PACF of a PC process. In a similar way,
we denote by DT

R; the set of the n.n.d. T-periodic functions.

2.2. Correspondence between the ACF and the PACF

In the non-stationary case, the correspondence between R(Æ,Æ) and b(Æ,Æ), on a
subset E of Z2 is one-to-one if and only if {(u, v), s £ v £ u £ t} ˝ E when
(s, t) 2 E (see Dégerine and Lambert-Lacroix, 2003) (e.g. E ¼ [s, . . . , t]2). This
correspondence is one-to-one because b(t, s) depends on all the values
R(u, v), s £ v £ u £ t. Reciprocally, R(t, s) depends on all the values
b(u, v), s £ v £ u £ t. In the periodical case, because of the periodicity
property of the ACF and the PACF, it is reasonable to consider domains of
the form

Eðp1; . . . ; pT Þ ¼ fðt; sÞ 2 Z2; 0 � t � s � pt½T �g;

where p1, . . . , pT are any positive integers. Let us point out that
(t, s) 2 E(p1, . . . , pT) if and only if (t + T, s + T) 2 E(p1, . . . , pT). This means
that the variance of X(t) and the covariance, or partial correlation, between X(t)
and the elements of {X(t � 1), . . . , X(t � pt[T])} are given for each t. For instance,
it is the case for periodic autoregressive models of order (p1, . . . , pT) considered
in Section 2.3. However, we cannot take any arbitrary integer in order to have
one-to-one correspondence. We then have the following property (its proof is
given in the Appendix).

Proposition 1. The correspondence between R(Æ,Æ) and b(Æ,Æ) over E(p1, . . . , pT) is
one-to-one if and only if pt £ pt�1 + 1 for t ¼ 1,. . .T with p0 ¼ pT.
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Such a constrained set will be denoted below by Ec(p1, . . . , pT). If the orders are
equal, p1 ¼ p2 ¼ � � � ¼ pT ¼ p, then pt ¼ p £ p + 1 ¼ pt�1 + 1, t ¼ 1, . . . , T.
The correspondence between R(Æ,Æ) and b(Æ,Æ) on Ec(p1, . . . , pT) is given by the
periodic Levinson–Durbin (PLD) algorithm obtained by restricting the extended
Levinson–Durbin algorithm of the general non-stationary case of Dégerine and
Lambert-Lacroix (2003).

Sakai (1983) also proposes to characterize the autocovariance matrix sequence
of a T-multivariate non-locally deterministic stationary process by T sets of scalar
normalized partial correlation coefficients. Indeed, there is a one-to-one
correspondence between PC and multivariate stationary processes (see
Gladysev, 1961). Precisely, let us define the jth component of the T-multivariate
process Y ð�Þ ¼ fY ðtÞ; t 2 Zg by YjðtÞ ¼X ðjþ T ðt � 1ÞÞ for j ¼ 1; . . . ; T and t 2 Z:
Then Y(Æ) is wide-sense stationary if and only if the associated scalar process X(Æ) is
PC of period T (Gladysev, 1961). It follows that the autocovariance matrices
Rk ¼ E{Y(t + k)Y(t)

�
} of Y(Æ) can be expressed directly in terms of Rð�; �Þ:

fRkgij ¼ Rðiþ kT ; jÞ for i; j ¼ 1; . . . ; T :

Sakai (1982) gives a Levinson-type circular recursive algorithm which establishes
the correspondence between R0, . . . , RN, and the sets of its normalized coeffi-
cients in the non-locally deterministic case. Indeed, this algorithm is equivalent to
the PLD algorithm on Ec(NT + i�1, i ¼ 1, . . . , T ) and these coefficients are equal
to �bt(k).

2.3. Periodic autoregressive processes

A process X(Æ) is periodic autoregressive of period T and order (p1, . . . , pT)
(PAR(p1, . . . , pT)) if it is PC of period T and if for all t 2 Z, some constants at(k),
k ¼ 1, . . . , pt, exist such that

Xpt
k¼0

atðkÞX ðt � kÞ ¼ eðtÞ; atð0Þ ¼ 1; atðptÞ 6¼ 0;

where e(Æ) is the innovation process with variance r2e ð�Þ and at+T(k) ¼ at(k), k ¼
1, . . . , pt. Note that this definition is slightly different from that of Jones and
Brelsford (1967), because we suppose that e(Æ) is the innovation process. The PAR
models are easily characterized by the PACF. According to the Theorem 4 of
Dégerine and Lambert-Lacroix (2003) and the properties of PC processes, a
process is PAR(p1, . . . , pT) if and only if its PACF is T-periodic and satisfies t ¼
1, . . . , T :

btðptÞ 6¼ 0 and btðkÞ ¼ 0; k > pt:

The function b(Æ,Æ) must be equal to zero outside the domain E(p1, . . . , pT).
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2.4. The Yule–Walker extension

We have the analogous form of the Yule–Walker equations (Pagano, 1978) for
the PAR(p1, . . . , pT) model:

Rðt; sÞ þ
Xpt
k¼1

atðkÞRðt � k; sÞ ¼ r2e ðtÞdt;s; t 2 Z; s � t;

where dt,s ¼ 1 if t ¼ s, else 0 and a.(Æ), r2e ð�Þ are the T-periodic parameters of the
model. It follows that the PAR models can be parameterized equivalently either
by the first autocovariance coefficients or the partial autocorrelation ones.

Let us recall the scalar stationary case (T ¼ 1) where R(0), . . . , R(p) (R(k) ¼
R(t, t � k)) are the coefficients of an ACF; the function R(Æ,Æ) is given on Ec(p). The
Yule–Walker equations are used to determine the ACF of the autoregressive
model of order less than p associated with these first coefficients outside the
domain Ec(p). Indeed, the equations

RðiÞ þ
Xp
k¼1

aðkÞRði� kÞ ¼ r2e di0; i ¼ 0; . . . ; p

have a unique solution að1Þ; . . . ; aðpÞ; r2e ; where r2e > 0 in the non-locally
deterministic case. The R(Æ) extension is then obtained by,

RðiÞ ¼ �
Xp
k¼1

aðkÞRði� kÞ; i > p:

The extension in terms of PACF is well adapted since it suffices to put b(i) ¼
b(t, t � i) ¼ 0 for i > p. The first coefficients b(0), . . . , b(p) can be obtained from
R(0), . . . , R(p) via the Levinson–Durbin algorithm.

In the periodical case, the use of the Yule–Walker equations is more delicate. Our
goal here is to explain why it does not work and give an example of this. It seems
interesting to point this result out since these equations are used in the periodical
case without being on the safe side. For example, Pagano (1978) proposes, for
autoregressive parameter estimation, keeping the model PAR(p1, . . . , pT)
associated with the biased autocovariance estimates. This method does not
always provide a solution (see Lambert-Lacroix, 2000). This problem is a
consequence of the following result. The restriction to E(p1, . . . , pT) of an ACF
R(Æ,Æ) in DT

R does not always give the first autocovariance coefficients of a PAR
model of order at most (p1, . . . , pT) [denoted by PAR(£p1, . . . , £pT)]. Indeed, when
it is a constrained set Ec(p1, . . . , pT), the PAR model is perfectly defined as the one
for which the PACF corresponds to R(Æ,Æ) on this domain and vanishes outside.
Otherwise, let Ecð~p1; . . . ; ~pT Þ be the lowest constrained set containing E(p1, . . . , pT),
and let b(Æ,Æ) be the PACF characterizing the possible solution. So b(Æ,Æ) must vanish
over Ecð~p1; . . . ; ~pT ÞnEðp1; . . . ; pT Þ: It is then possible to determine themissing values
of R(Æ,Æ) and b(Æ,Æ) on Ecð~p1; . . . ; ~pT Þ: Indeed, we compute b(t, s) with the PLD
algorithm when (t, s) 2 E(p1, . . . , pT), and otherwise R(t, s). This algorithm is given
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in the Appendix. Now the PAR(£p1, . . . , £pT) model exists if and only if b(Æ,Æ)
belongs to DT

b : That leads to R(Æ,Æ) to be n.n.d. Obviously when the
PAR(£p1, . . . , £pT) does not exist, the Yule–Walker equations lead to an R(Æ,Æ)
extension which does not respect the n.n.d. property (see the example below).

On the contrary, let bt(k), k ¼ 0, . . . , pk, t ¼ 1, . . . , T, be some coefficients
satisfying the DT

b constraints. Then a PAR(£p1, . . . , £pT) is always associated with
these first coefficients. It is unique and defined by extending b(Æ,Æ) to 0 beyond the
model orders since this extension respects the DT

b constraints. Clearly that shows
that the use of the PACF is preferable to the ACF.

2.5. Example

Let R(Æ,Æ) be the ACF defined by,

Rð1; 1Þ ¼ 1; Rð1; 2iþ 1Þ ¼ ð0:9Þiþ2; Rð1; 2iÞ ¼ ð0:9Þi;

Rð2; 2Þ ¼ 1; Rð2; 2iþ 1Þ ¼ ð0:9Þiþ1; Rð2; 2iþ 2Þ ¼ ð0:9Þi i � 1;

and the remaining R(i, j) are given via symmetry and periodicity. This second
order structure is the one of a PAR(1, 2) having PACF b(Æ,Æ) given by

b1ð0Þ ¼ 1; b1ð1Þ ¼ ð0:9Þ2; b1ðkÞ ¼ 0; k > 1

b2ð0Þ ¼ 1; b2ð1Þ ¼ 0:9; b2ð2Þ ¼
0:9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð0:9Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð0:9Þ4

q ; b2ðkÞ ¼ 0; k > 2:

We want to fit a PAR(0, 2) of ACF ~Rð�; �Þ which coincides with R(Æ,Æ) over E(0, 2);
i.e. ~Rð1; 1Þ ¼ Rð1; 1Þ, ~Rð2; 2Þ ¼ Rð2; 2Þ; ~Rð2; 1Þ ¼ Rð2; 1Þ and ~Rð2; 0Þ ¼ Rð2; 0Þ.
The domain Ec(1, 2) is the lowest constrained set containing E(0, 2) and
Algorithm 1 (see Appendix) leads to

~b1ð0Þ ¼ 1; ~b1ð1Þ ¼ 0;

~b2ð0Þ ¼ 1; ~b2ð1Þ ¼ 0:9; ~b2ð2Þ ¼
0:9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð0:9Þ2
q :

So, PAR(0, 2) model having ACF given by R(Æ,Æ) over E(0, 2), do not exist since
~b2ð2Þ ¼ 2:0647 > 1. On the contrary, the extension through the Yule–Walker
equation leads to ~Rð1; 0Þ ¼ ~Rð0; 1Þ ¼ 0 and

R2;4 ¼
1 0 0:9
0 1 0:9
0:9 0:9 1

0
@

1
A:
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Since det(R2,4) ¼ 1 � 2 · 0.92 < 0, the Yule–Walker extension does not define
an ACF. This is so every time the PAR model does not exist.

3. EXTENSION OF AUTOCOVARIANCE COEFFICIENTS SEQUENCE

3.1. The extension problem

Analogous to the stationary case, the first option (see Zhang, 1997) is to consider
the second-order structure of the sequences X(t), . . . , X (t � pt), t ¼ 1, . . . , T, with
pt ‡ 0 which are not necessarily the same. Indeed, the T-periodic function R(Æ,Æ) is
known; it is defined on the set

Dðp1; . . . ; pT Þ ¼
[T
t¼1
fðu; vÞ 2 Z2 : t � pt � u; v � tg:

This domain is equal to Ecð~p1; . . . ; ~pT Þ, the lowest constrained domain containing
E(p1, . . . , pT). Let us consider the case where T ¼ 2, p1 ¼ 1 and p2 ¼ 3. The only
point which belongs to D(1, 3)nE(1, 3) is (3, 1) and D(1, 3) ¼ Ec(2, 3) (the lowest
constrained set containing E(1,3)).The solution maximizing the MEM is a PAR
model of order at most ð~p1; . . . ; ~pT Þ but not (p1, . . . , pT). According to this remark,
it is reasonable to consider directly the constrained set Ec(p1, . . . , pT).

In this situation, the PACF allows the resolution of this problem even in the
locally deterministic case. With the PLD algorithm, we obtain the coefficients
bt(n), t ¼ 1, . . . , T, n ¼ 0, . . . , pt, from the values of R(Æ,Æ) on Ec(p1, . . . , pT). So
these previous values are those pertaining to ACF if and only if the quantities
bt(n) satisfy the constraints of DT

b . Indeed, the correspondence between R(Æ,Æ) and
b(Æ,Æ) is one-to-one on such a domain. When the coefficients R(t, s) represent some
ACF values, all the extensions are described through the extensions of bt(n)
remaining in DT

b : However, in the locally deterministic case, we must verify that
R(Æ,Æ) satisfies the constraints related to the finite-order singularities. For example,
if |bi(k)| ¼ 1, the PLD algorithm gives

rfi ðk þ nÞ ¼ rbðiþnÞ½T �ðk þ nÞ ¼ 0; n � 0;

and the convention 0�1 ¼ 0 (see Dégerine and Lambert-Lacroix, 2003) leads to

biðk þ nþ 1Þ ¼ bðiþnþ1Þ½T �ðk þ nþ 1Þ ¼ 0; n � 0:

Then the coefficients bt(n) always satisfy the DT
b constraints related to the sin-

gularities. In this case, we must verify that the values R(t, s),(t, s) 2 Ec(p1, . . . , pT),
are associated with bt(n), i.e. for l ¼ i, (i + n + 1)[T]:

Rðl; l� k � n� 1Þ þ
Xkþn
j¼1

afl ðk þ n; jÞRðl� j; l� k � n� 1Þ ¼ 0:
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Notice that the extension problem considered here is more general than the one of
R0, . . . , Rp, in the multivariate stationary case. It coincides with it only when pi ¼
pT + i�1, i ¼ 1, . . . , T.

The problem is more difficult when the domain is not constrained. Indeed, we can
use the Algorithm 1 to check if there exists a PAR(£p1, . . . , £pT). But answering in
the negative does not imply that the coefficients R(t,s) are not the one of ACF (as in
the example of Section 2.5). To conclude, we should be able to try all the possible
combinations of the PACF coefficients over Ecð~p1; . . . ; ~pT ÞnEðp1; . . . ; pT Þ in the
Algorithm 1, which is clearly impossible in practice.

3.2. The maximum entropy method

In the non-locally deterministic stationary case, the MEM was introduced by
Burg (1967) in the following way. Let R(0), . . . , R(p) be some values of the ACF of
a stationary process. The MEM consists in finding the spectral density f that
satisfies Z p

�p
f ðkÞeikkdk ¼ RðkÞ; k ¼ 0; . . . ; p;

and maximizes
Z p

�p
ln det f ðkÞdk ¼ 2p ln

r2e
2p

� �
;

where r2e is the innovation process variance. So this method is equivalent to
choosing the process with maximum variance r2e and the solution is the
autoregressive model associated with R(0), . . . , R(p). In the non-stationary case,
we have a relation between the variances r2e ðtÞ and the PACF (see Dégerine and
Lambert-Lacroix, 2003) which leads to

r2e ðtÞ ¼ bkð0Þ
Yþ1
n¼1
½1� jbkðnÞj2�; k ¼ t½T �;

for PC processes of period T. In the non-locally deterministic case, no
relationships exist between these T variances. We can maximize each of the
variances r2e ðkÞ; k ¼ 1; . . . ; T ; separately. Furthermore, we have,

r2e ðkÞ � bkð0Þ
Ypk
n¼1
½1� jbkðnÞj2�;

with equality if and only if bk(n) ¼ 0 for n > pk. So the solution is the model PAR
(£p1, . . . , £pT) associated with the values bk(n). In the locally deterministic case,
some of the variances r2e ðkÞ are equal to 0 and the PACF must vanish in places.
Thus, the same approach can be used but only for the variances not already equal
to 0. Then the solution is again the PAR model.
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It is easy to see that the functions bt(Æ), t ¼ 1, . . . , T, are a set of PACF of second-
order stationary processes [i.e. for fixed t; btð�Þ 2 D1

b]. Let Yt(Æ), for t ¼ 1, . . . , T, be a
stationary process with second-order structure given by bt(Æ). The stationary process
Yt(Æ) has the same variance as the variables X(t). Furthermore, the partial correlation
between Yt(s) and Yt(s � k) in the set {Yt(s � k), . . . , Yt(s)}, s 2 Z, k ¼ 0,1, . . . , is
given by the partial correlation between X(t) and X(t � k) in the set
{X(t � k), . . . , X(t)}. So our MEM extension deals with maximizing the entropy
of each stationary vector Yt(1), . . . , Yt(pt), t ¼ 1, . . . , T of second-order structure
given by bt(0), . . . , bt(pt).

3.3. Comparison with other approaches

Zhang (1997) considers a T-periodic function R(Æ,Æ) defined on the set D(p1, . . .,pT)
(described in Section 3.1) with any positive integers p1, . . . , pT, such that Rt�pt:t is
positive definite for all t ¼ 1, . . . , T. Next, the author claims that there is a
Gaussian PAR(£p1, . . . , £pt) (see proof of the Theorem 1) which covariance
structure coincides with R(Æ,Æ) over D(p1, . . . , pt). Let us recall that this domain is
equal to the lowest constrained domain Ecð~p1; . . . ; ~pT Þ containing E(p1, . . . , pT).
When the orders ð~p1; . . . ; ~pT Þ differ from (p1, . . . , pt), this approach is incorrect.
First, as in Section 2.4, there does not always exist a PAR(£p1, . . . , £pt). Second,
even if the PAR exists, there is no reason that its second-order structure is given
by R(Æ,Æ) over D(p1, . . . , pt)nE(p1, . . . , pt). We can only claim that there exists a
PAR of order ð�~p1; . . . ; �~ptÞ but not (£p1, . . . , £pt). Consequently, the domain
D(p1, . . . , pt) seems to be ill defined.

In Alpay et al. (2001), another approach based on the cyclo-correlation
functions is used to treat an extension problem similar to ours. Indeed, from the
periodicity in t of R(t + n, t), Gladysev (1961) introduces the cyclo-correlation
functions Bk(n), k ¼ 0, . . . , T � 1, of the representation

Rðt þ n; tÞ ¼
XT�1
k¼0

BkðnÞe
2pikt
T ; ðt; nÞ 2 Z2:

The inverse Fourier transform leads to

BkðnÞ ¼
1

T

XT�1
t¼0

Rðt þ n; tÞe�2pikt
T ; n 2 Z: ð1Þ

Now these functions characterize an element R(Æ,Æ) of DT
R if and only if the matrices

B(n), n ‡ 0, defined by

BðnÞl;j ¼ Bj�lðnÞe�
2piln
T ; l; j ¼ 0; . . . ; T � 1;

where B�k(n) ¼ BT�k(n), k ¼ 1, . . . , T � 1, are the autocovariance matrices of
some T-dimensional stationary random process. In Alpay et al. (2001), the authors
have considered the extension problem of such functions from the data Bk(n), k ¼
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0, . . . , T � 1, 0 £ n £ N, and in the non-locally deterministic case. Then the whole
extension of such data is described through the B(n) values respecting eqn (1). The
problem is shifted to a Caratheodory–Fejer problem with symmetry constraints.
This procedure consists in extending a particular sequence of autocorrelation
matrices. They find again the PAR model as solution of the MEM. Clearly, this
approach ismore delicate that the one presented here. On the contrary, this problem
is equivalent to the one presented in the Section 3.1 with the particular set
Ec(N, . . . , N) and the use of the PACF allows to resolve this one, even in the
degenerate case.

APPENDIX

PROOF OF THE PROPOSITION 1

In the non-stationary case, the correspondence between R(Æ,Æ) and b(Æ,Æ) on a subset E of Z2 is

one-to-one if and only if {(u, v), s £ v £ u £ t} ˝ E when (s, t) 2 E (see Dégerine and
Lambert-Lacroix, 2003). Let E(p1, . . . , pT) be a domain for which the correspondence
between R(Æ,Æ) and b(Æ,Æ) is one-to-one. For t ¼ 1, . . . , T, b(t, t � pt) depends on the value
R(t � 1, t � pt) and the point (t � 1, t � pt) must belong to E(p1, . . . , pT); i.e.

pt�1 ‡ t � 1 � (t � pt) ¼ pt � 1 (with p0 ¼ pT). Conversely, we must show that if
E(p1, . . . , pT) is a set with pt £ pt�1 + 1 for t ¼ 1, . . . , T (with p0 ¼ pT), then it is a domain
of one-to-one correspondence. We propose a proof by contradiction. Let us suppose that

there exists t such that pt > pt�1 + 1 and that the set E(p1, . . . , pT) is a domain of one-to-one
correspondence. Since pt > pt�1 + 1, we have t � 1 � (t � pt) ¼ pt � 1 > pt�1 and the
point (t � 1, t � pt) does not belong to E(p1, . . . , pT). On the contrary, since the set

E(p1, . . . , pT) is a domain of one-to-one correspondence, we can show as above that the point
(t � 1, t � pt) belongs to E(p1, . . . , pT). That leads to a contradiction.

ALGORITHM

The input variables for the following procedure are given by (p1, . . . , pT) and

RkðnÞð¼ Rðk; k � nÞÞ; k ¼ 1; . . . ; T ; n ¼ 0; . . . ; pk:

Algorithm 1

1 Computation of ð~p1; . . . ; ~pT Þ step
kmax ‹ argmax{pk, k ¼ 1, . . . , T}
indice ‹ (kmax, kmax � 1, . . . , 1, T, T � 1, . . . , kmax + 1)
~pindice½1�  pindice½1�
for (k ¼ 2 : T)
~pindice½k�  maxðpindice½k�1� � 1; pindice½k�Þ
endfor (k ¼ 2 : T)
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2 Computation of bkðnÞ; k ¼ 1; . . . ; T ; n ¼ 0; . . . ; ~pk Step

for (k ¼ 1 : T ):

bkð0Þ  Rkð0Þ
rf 2k ð0Þ  Rkð0Þ
rb2k ð0Þ  Rkð0Þ

endfor (k ¼ 1 : T)
for ðn ¼ 1 : pkmax

Þðwith the conventions
P0

j¼1 . . . ¼ 0 and 0�1 ¼ 0Þ
for (k ¼ 1 : T)

if ðn � pkÞ and ðn � ~pkÞ

bkðnÞ  
RkðnÞþ

Pn�1
j¼1 a

f
k ðn�1;jÞRðk�jÞ½T �ðn�jÞ

rfk ðn�1Þr
b
ðk�1Þ½T �ðn�1Þ

endif ðn � pkÞ and ðn � ~pkÞ

if ðn > pkÞ and ðn � ~pkÞ

bkðnÞ  0

RkðnÞ  �
Xn�1
j¼1

afk ðn� 1; jÞRðk�jÞ½T �ðn� jÞ

endif ðn > pkÞ and ðn � ~pkÞ

if ðn � ~pkÞ

rf 2k ðnÞ  ½1� jbkðnÞj
2�rf 2k ðn� 1Þ

rb2k ðnÞ  ½1� jbkðnÞj
2�rb2ðk�1Þ½T �ðn� 1Þ

afk ðn; nÞ  �bkðnÞ
rfk ðn� 1Þ

rbðk�1Þ½T �ðn� 1Þ

abkðn; nÞ  �bkðnÞ
rbðk�1Þ½T �ðn� 1Þ

rfk ðn� 1Þ
for (j ¼ 1 : n � 1)

afk ðn; jÞ  afk ðn � 1; jÞ þ afk ðn; nÞabðk�1Þ½T �ðn � 1; n � jÞ

abkðn; jÞ  abðk�1Þ½T �ðn� 1; jÞ þ abkðn; nÞa
f
k ðn � 1; n � jÞ

endfor (j ¼ 1 : n � 1)

endif ðn � ~pkÞ

endfor (k ¼ 1 : T)

endfor (n ¼ 1 : pkmax
)

3 Return

bkðnÞ; k ¼ 1; . . . ; T ; n ¼ 0; . . . ; pk :
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