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Abstract: the problem of density estimation on R from an independent sample X1, ...XN with
common density f is concerned. The behavior of the minimax Lp-risk, 1 ≤ p ≤ ∞, is studied when
f belongs to a Hölder class of regularity s on the real line. The lower bound for the minimax risk is
provided. We show that the linear estimator is not efficient in this setting and construct a wavelet
adaptive estimator which attains (up to a logarithmic factor in N) the lower bounds involved. We
show that the minimax risk depends on the parameter p when p < 2 + 1

s .
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1 Introduction

We consider the problem of estimating unknown density function f which is as follows: letX1, ..., XN

be a vector of independent realizations of a random variable X with the cumulative function F
which possesses a density f(·) with respect to the Lebesgue measure on the real line. Our objective
is to recover the unknown density function f : R → R+ given the observation sample X1, ..., XN .

This is a basic problem and it has been extensively studied in the literature on nonparametric
estimation (for an overview of various methods and approaches, see, for instance (Devroye 1987),
(Silverman 1986)). When constructing an estimation algorithm, it is generally supposed that
the estimated density f possesses certain regularity properties. In other words, f belongs to some
functional class F . This a priori knowledge allows to design an estimator fN (a measurable function
of observations) of f . However, its statistical properties can only be studied asymptotically (when
the sample size N tends to ∞). Then in order to derive the properties of the proposed estimator
for finite N a uniform over F asymptotics is needed. This explains the common use of the so-called
minimax approach.

In this setup the risk
ρ(f̂N , f) = Ef‖fN − f‖,

is associated with an estimator fN , where ‖ · ‖ is a functional norm or a semi-norm. Then the
minimax estimate f∗N is the minimizer (over the set of all estimations) of the maximal on the class
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F risk
R(f̂N ,F) = sup

f∈F
ρ(fN , f).

Thus in the minimax framework f∗N is the optimal estimator with the accuracy RN (F) = R(f∗N ,F).
RN (F) is also referred to the minimax risk. The principal question in the minimax framework is
how to design a minimax estimator and what is the value of the minimax risk RN (F).

We consider the following estimation problem:

Suppose that the density f(x), f : R → R+ belongs to a Hölder class F = F(s, L),
i.e. the derivative f (k) of f , k = max{i ∈ N| i < s} exists and

[f ]s + ‖f‖∞ ≤ L, where [f ]s = sup
x 6=y

|f (k)(x)− f (k)(y)|
|x− y|s−k

.

Our objective is to estimate f given independent observations X1, ..., XN with common
density f .

The results obtained can be summarized as follows: consider the minimax risk

R
(p)
N (F(s, L)) = inf

fN
sup

f∈F(s,L)
Ef‖f̂N − f‖p

(here the infimum is taken over all estimates fN of f), 1 ≤ p ≤ ∞. We show that there exist
“universal” constants c and C which only depend on the regularity parameter s and p such that
for 1 ≤ p <∞ the minimax risk

cϕ(N) ≤ R
(p)
N (F(s, L)) ≤ C(lnN)θϕ (N) , (1)

where

ϕ(t) =

 L
p−1
p(s+1) t−

s
2s+1 if 2 + 1

s < p ≤ ∞,

L
p−1
p(s+1) t

− s(p−1)
p(s+1) if 1 ≤ p ≤ 2 + 1

s

with θ = 0 for 1 ≤ p ≤ 2 and θ = θ(s, p) > 0 for 2 < p <∞. Further, when p = ∞,

cϕ

(
N

lnN

)
≤ R

(∞)
N (F(s, L)) ≤ Cϕ

(
N

lnN

)
.

This result can be compared with the minimax rates for linear estimators. In the latter case we
consider the minimax risk

R
(l,p)
N (F(s, L)) = min

f̂
(l)
N

max
f∈F

(
Ef‖f̂

(l)
N − f‖pp

) 1
p ,

where the minimum is taken over the class of linear estimators f̂ (l)
N . Then we obtain

cρ(N) ≤ R
(l,p)
N (F(s, L)) ≤ Cρ (N) ,

where

ρ(t) =

 L
p−1
p(s+1) t

−
s(1− 1

p )

2s(1− 1
p )+1 if 2 < p ≤ ∞,

ϕ(t) if 1 ≤ p ≤ 2.

Note that the linear estimator is minimax for 1 ≤ p ≤ 2. When 2 < p < ∞, the rate of the linear
estimator is much worse than that of a general nonlinear estimator.

These results deserve some comments.
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• From the large literature on minimax density estimation it is known that As far as the
estimation of a density on [0, 1] is concerned (cf. (Ibragimov & Khas’minskij 1981)), the
minimax risk RpN (F(s, L)) satisfies

R
(p)
N (F(s, L)) � L

1
2s+1N− s

2s+1 for 1 ≤ p <∞,

and R
(∞)
N (F(s, L)) � L

1
2s+1

(
lnN
N

) s
2s+1 . Except for p = ∞, this rate of convergence do not

depend on p. On the other hand, let the regularity class F be that of densities of “spatially
inhomogeneous smoothness” , for instance, F be a Besov class F(s, p′, q, L) with small p′ (see,
e.g., (Donoho et al. 1996) for details). In this case the rate of convergence starts to deteriorate
when p becomes larger than (2s+ 1)p′ and depends heavily on p.

When the estimated density is supported on R, the known results are as follows: in the paper
(Bretagnolle & Huber 1979) the behavior of the maximal risk

R(p)(f̂N ,F) = sup
f∈F

Ef‖fN − f‖p

was studied for a family of density classes F = G(s, p, L), 2 ≤ p < ∞, of finite “jauge”.

I.e., a density f ∈ G(s, p, L) if its “jauge” ρs,p(f) = ‖f (s)‖
p

2s+1
p ‖f‖ p

2
is bounded with L.

It is shown that the kernel estimator fN possesses the maximal risk of order N− s
2s+1 on

f ∈ G(s, p, L). Note that the exponent p should be the same in the definition of the risk
and of the functional class. In the paper (Ibragimov & Khas’minskij 1980), minimax rates
of convergence for Sobolev classes on R, F = F(s, p, L), 2 ≤ p ≤ ∞ and the risk R

(p)
N were

established. It was shown that in that setup the maximal risk R
(p)
N (F) � N

− s
(2s+1) . When

p = ∞ an extra logarithmic factor appears in the minimax risk: R
(∞)
N (F) �

(
lnN
N

) s
(2s+1) .

Then in (Golubev 1992) the exact asymptotics of the minimax risk was provided in that
setup when p = 2.

On the other hand, the behavior of the risk R(1)
N (F) is quite peculiar when F is the Sobolev

class F = F(s, 1, L). it has been shown in (Devroye & Gyoerfi 1985) that in this case
R

(1)
N (F) � C, i.e. one cannot construct an estimator such that R(1)

N (F) → 0 as N → ∞
in this setup. Finally, in the paper (Donoho et al. 1996) the behavior of the risk R

(p)
N (F),

1 ≤ p ≤ ∞, is studied for a family of Besov functional classes F = F(s, p′, q, L) (here p′ and
p can be different). The result of that paper which is relevant to our study can be stated
as follows: when 2 ≤ p′ ≤ p, the minimax rates of convergence R(p)

N (F(s, p′, q, L)) for the
density estimation on R are the same (up to a constant) as the minimax rates for the Besov
class F(s, p′, q, L) on [0, 1]. However, the problem of minimax density estimation on R when
p < p′ remains open: minimax rates of convergence and minimax estimators are unknown in
this case.

• We observe in (1) that the minimax risk R
(p)
N (F) on a Hölder class F = F(s, L) on R is

cardinally different when compared to that for F(s, L) on a compact. When p > 2 + 1
s , the

minimax risk R(p)
N (F) is of the same order as in the equivalent estimation problem on [0, 1].

However, the behavior of the minimax risk changes dramatically when p becomes smaller
than the critical value 2+ 1

s . In this zone the minimax risk depends heavily on p. To the best
of our knowledge, the phenomenon, observed in the current paper, is new.
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• The lower and the upper bound differ by a logarithmic factor. We suppose that the extra
logarithm of N in the upper bound is due to the specific estimator we use. Note that in the
case p = ∞, the extra logarithm appears also in the lower bound, and in this case the upper
and the lower bound coincide (up to a constant).

In fact, a rather interesting question can be asked: why convergent nonparametric estimators of a
density on a real line exist at all? Note that we want to estimate a function on an infinite domain
given only a finite number of observations. Then why the expected Lp-error, 1 < p < ∞ would
be small in this situation? The general (and sloppy) answer to this question is rather simple: the
function we estimate is a probability density. Therefore, the function f not only belongs to a
“regularity class” F , it also satisfies the conditions f(x) ≥ 0 and

∫
R f(x)dx = 1, i.e. f ∈ F ∩B1(1),

where B1(1) is an L1-ball of radius 1. This condition provides an additional constraint when
maximizing the risk R(p), p > 1 over F . Indeed, for a “reasonable” estimator fN the L1-norm
‖fN‖1 should be finite. Note that this also provides an intuitive “explanation” of the negative
result by Devroye and Györfi for the R(1) risk: this extra constraint is of no value when the error
is measured in the L1-norm. In this light the answer to the following question is of interest in the
minimax estimation setup:

(?) Let f be a regular signal on S, f : S → F , i.e. f is in some “classical” regularity
class F(·, S) on S. Moreover, let f satisfy an extra constraint f ∈ B, where B is a set in
a functional space. What are general assumptions on B which ensure that the unknown
function f can be estimated from noisy observations with the worst-case risk which is
“better in order than the minimax risk on F”?

The rest of the paper is organized as follows. The lower bound for the minimax risk in (1) is given
in Section 2. Then in Section 3 we study the properties of linear estimators and in Section 4 we
construct a wavelet adaptive estimator f̂n of f which provides the upper bound in (1). The proofs
of the results are collected in Sections 5.1 and 5.5.

2 Lower bound for density estimation

Our objective here is to establish the lower bound for the minimax risk on the Hölder class F(s, L).

Theorem 1 There is a positive constant c0 = c0(s, p) such that for any estimate f̂N of f , the

maximal risk R(p)(f̂N ,F(s, L)) satisfies

R(p)(f̂N ,F(s, L)) ≥


c0L

p−1
p(s+1)N

− s(p−1)
p(s+1) , for 1 ≤ p ≤ 2 + 1

s ;

c0L
p−1
p(s+1)N− s

2s+1 , for 2 + 1
s < p <∞.

(2)

Moreover, when p = ∞ we have

R(∞)(f̂N ,F(s, L)) ≥ c0L
1

(s+1)

(
lnN
N

) s
2s+1

. (3)
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Our next objective is to provide an upper bound for the risk RN (F). We start with a linear
density estimator.

3 Linear estimation

Let us recall some basic properties of a biorthogonal wavelet basis.

3.1 Biorthogonal wavelet basis

Let the tuple (φ, ψ, φ̃, ψ̃) be such that {φ(x−k), ψ(2jx−k), j ≥ 0, k ∈ Z} and {φ̃(x−k), ψ̃(2jx−k),
j ≥ 0, k ∈ Z} constitute a biorthogonal pair of bases of L2(R). Some most popular examples of
such bases are given in (Daubechies 1992). We require the reconstruction wavelet ψ̃ and φ̃ to be
CM+1 for some M ∈ N, (φ, ψ, φ̃, ψ̃) to have compact support and the analysis wavelet ψ to be
orthogonal to polynomials of degree ≤M .

This implies that any function f ∈ L2(R) can be represented as

f(x) =
∑
k

αkφ̃k(x) +
∑
j≥0

∑
k

βjkψ̃jk(x),

where
αk =

∫
f(x)φk(x)dx, βjk =

∫
f(x)ψjk(x)dx.

For technical reasons in the wavelet estimator below we use a specific choice of the biorthogonal
basis (φ, ψ, φ̃, ψ̃), designed in (Donoho 1994). This is the basis generated with the function φ(x) =
1− 1

2
≤x< 1

2
and following (Donoho 1994) we call it blocky biorthogonal basis. The functions ψ ,φ̃ and

ψ̃ are compactly supported. We denote δjk (or δk) the support set of ψjk(x) (respectively, φk(x)):

δjk = {x ∈ R : −m
2
≤ 2jx− k <

m

2
}, δk = {x ∈ R : −1

2
≤ x− k <

1
2
}.

for some m ∈ N, m ≥ 1.
The feature of this particular basis which is intensively used in the proofs of the of Theorem 4

below is that there exists ν > 0 such that the analysis wavelet ψ(x) satisfy

|ψ(x)| ≥ ν for −m/2 ≤ x < m/2, (4)

i.e. |ψ(x)| ≥ ν on the support of ψ.

3.2 Estimation algorithm

Let f̂N be a simple wavelet estimator of f , suggested in (Donoho et al. 1996). Consider the following
estimation algorithm:
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Algorithm 1

1. Let j0 satisfy

L
1
s+1N

1
s+1 ≤ 2j0 ≤ 2L

1
s+1N

1
s+1 for 1 ≤ p ≤ 2,

L
1
s+1N

1

2s(1− 1
p )+1 ≤ 2j0 ≤ 2L

1
s+1N

1

2s(1− 1
p )+1 for 2 < p <∞.

2. Compute empirical wavelet coefficients

yj0k =
1
N

N∑
i=1

φjk(Xi) =
1
N

N∑
i=1

12−j0k<Xi≤2−j0 (k+1),

and for the estimator

f̂N (x) =
∑
k

yj0kφ̃j0k(x).

Theorem 2 Let F(s, L), s < M + 1 be a Hölder class. The linear wavelet estimator f̂N above

satisfies for N large enough:

sup
f∈F

Ef‖f̂N − f‖pp ≤ ρpl (s, p,N,L),

where

ρl(s, p,N,L) =


C(s, p)L

p−1
p(s+1)N

− s(1−1/p)
(s+1) for 1 ≤ p ≤ 2,

C(s, p)L
p−1
p(s+1)N

− s(1−1/p)
2s(1−1/p)+1 for 2 < p <∞.

Comments: we observe that the estimator f̂N , delivered by Algorithm 1, is minimax for 1 ≤ p ≤
2. Note that the class F(s, L), which is in fact an intersection F(s, L)∩ {f, ‖f‖1 ≤ 1} is contained

in the ball of radius cL1− 1
p of the Besov space B

s(1− 1
p
)

p∞ . Therefore, the upper bound of Theorem 2 is
a simple consequence of the result in (Donoho et al. 1996) for linear wavelet estimators. However,
for 2 < p <∞ the rate of convergence of such an estimator is much worse than that suggested by
the lower bound of Theorem 1. It is important to note that this is not a property of a particular
wavelet estimator, but of the whole class of linear estimators f̂ (l)

N (x) such that

f̂
(l)
N (x) =

∫
T (x, y)dF̂N (y) =

1
N

N∑
i=1

T (x,Xi) (5)

(we call the estimator linear if it is a linear functional of the empirical cdf F̂N ). We have the
following lower bound for any estimator of that kind:
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Theorem 3 Let p ≥ 2. There is c = c(s, p) such that for N large enough and any linear estimator

f̂L it holds

sup
f∈F(s,L)

Ef‖f̂
(l)
N − f‖pp ≥ cρpl (s, p,N,L).

4 Adaptive wavelet estimator

We start with the description of the wavelet adaptive estimator.

4.1 Estimation algorithm

Let (φ, ψ, φ̃, ψ̃) be a blocky biorthogonal wavelet basis as above. We suppose that ψ is orthogonal
to polynomials of degree ≤M .

Consider the following algorithm:

Algorithm 2

1. Take positive parameters ρ, κ and λ (cf. the proof of Theorem 4 for the admissible

values). Set mN = ρ lnN and compute j1 ≥ 0 such that

2j1 ≤ κN

lnN
< 2j1+1. (6)

2. For 0 ≤ j ≤ j1 compute empirical wavelet coefficients

yjk =


1
N

∑N
i=1 ψjk(Xi), if #δjk ≥ mN ,

0, if #δjk < mN .

zk =


1
N

∑N
i=1 φk(Xi), , if #δk ≥ mN ,

0, if #δk < mN ,

(here #δ =
∑N
i=1 1{Xi∈δ} is the ‘‘cardinality’’ of the set δ). Next, for j and

k such that #δjk ≥ mN, compute empirical estimates σ̂2
jk of the variance of yjk:

σ̂2
jk =

1
N2

N∑
i=1

(ψ2
jk(Xi)− y2

jk),
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3. Shrink wavelet coefficients:

β̂jk = yjk1|yjk|≥γ̂jk , (7)

where

γ̂jk = λ
√

lnNσ̂jk.

4. Compute the estimate

f̂N (x) =
j1∑
j=0

∑
k

β̂jkψ̃jk(x) +
∑
k

zkφ̃jk(x)

The properties of the estimator f̂N , delivered by the above algorithm, are summarized in the
following result:

Theorem 4 Let F (M) = {F(s, L), 0 < s < M +1, 0 < L <∞} be a family of Hölder classes. The

parameters ρ, κ and λ of the algorithm can be chosen so that for any class F(s, L) ∈ F (M) there

exist constants C = C(s, p) such that for N large enough

sup
f∈F(s,L)

Ef‖f̂N − f‖p ≤ C



L
p−1
p(s+1)

(
lnN
N

) s(p−1)
p(s+1) for 1 ≤ p < 2 + 1

s ,

L
1

2s+1 lnN
(

lnN
N

) s
2s+1 for p = 2 + 1

s ,

L
p−1
p(s+1)

(
lnN
N

) s
2s+1 for p > 2 + 1

s .

Comments: Wavelet shrinkage estimator described above is tightly related to that of (Donoho
et al. 1996). When the problem of adaptive estimation on the Besov classes on [0, 1] is concerned,
the proposed estimator attains the same performance as that in the latter paper.

When compared to the estimator in the latter paper data-dependent thresholds are implemented
in Algorithm 1. The idea of data-driven thresholds for wavelet estimators is not new and has
been used, for instance, in (Birgé & Massart 2000), (Donoho & Johnstone 1995) and (Juditsky
1997), among many others. However, it is implemented differently in Algorithm 1, where the
thresholds are computed individually for each wavelet coefficient. In other words, in order to take
the decision to keep or to cut the empirical coefficient yjk it is compared to the estimate σ̂jk of its
standard deviation. A closely related idea of adaptive window selection for kernel estimator has
been implemented in (Juditsky & Nazin 2001) for regression estimation on R and in (Butucea 2000)
for adaptive density estimation at a point.
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Note that another implementation of the same idea is provided with the celebrated
√
f -estimator

of a density (cf. (Anscombe 1948), (Nussbaum 1996)), when the empirical wavelet coefficients are
“normalized” to stabilize the value of σjk.

One can observe that the estimator f̂N is adaptive. Indeed, note that the parameters of the
estimation algorithm do not depend on a particular functional class F(s, L), but the maximal over
F(s, L) risk of f̂N coincides up to a logarithmic factor with the lower bound in (2) of Theorem 1.
The extra logarithm factor is the price often paid in adaptation (cf. (Lepskij 1992), (Goldenshluger
& Nemirovski 1997)). However, we think that in our case (Lp-risks and Hölder function classes)
this extra factor is due to the particular construction of the estimator. Note that when the density
estimation problem on [0, 1] is concerned, one can get rid of the extra logarithm (cf., for instance,
(Juditsky 1997)). Nevertheless, for a moment, we do not know an estimator of f which attains the
lower bound in (2).

5 Proofs

In the proofs below C, C ′ and C ′′ stand for positive constants which values can only depend on s,
p and the wavelet parameters.

5.1 Proof of Theorem 1

The lower bound for the minimax risk R(p)(f̂N ,F(s, L)) when p > 2 + 1
s can be easily obtained

using the construction of Theorem 5.1 in (Ibragimov & Khas’minskij 1981). Our objective here is
to show the bound in (2) in the case 1 ≤ p ≤ 2 + 1

s .
To this end we consider the following construction. Let the density f0 ∈ F(s, L/2) satisfy

f0(x) = c1(s)L
1
s+1N− s

s+1 for 0 ≤ x ≤ L−
1
s+1N

s
s+1 . Now, let γ = (LN)−

1
s+1 and γk =](k − 1)γ, kγ]

for k = 1, . . . , N ; and ψ0 be a regular function such that

ψ0(x) = 0, ∀x /∈ [−1
2
,
1
2
], ‖ψ0‖∞ = 1, ψ0(−x) = ψ0(x), ∀x ∈ [−1

2
,
1
2
].

Consider the set ΞN of 2N binary vectors ξ = (ξ1, . . . , ξN ), ξk ∈ {−1, 1}, k = 1, . . . , N. For each
vector ξ, we define the function f (ξ) in the following way:

f (ξ)(x) = f0(x) +
N∑
k=1

ξkψk(x), ψk(x) = ψ

(
x−

(
k − 1

2

)
γ

)
,

where ψ(x) = α(s)Lγsψ0(x/γ), where α = α(s) is a positive constant small enough to ensure that
ψ belongs to F(s, L/4) and that

|ψ(x)| ≤ c1(s)L
1
s+1N− s

s+1 .

Note that
∫
f (ξ)(x)dx = 1, so such a function is well a density. On the other hand, due to the

definition of ψ, the function f (ξ)−f0 belongs to F(s, L/2). This implies immediately f (ξ) ∈ F(s, L).
Let now ρH(ξ, ξ′) be the Hamming distance between two vectors of ΞN , namely

ρH(ξ, ξ′) = ]{k : 1 ≤ k ≤ N, ξk 6= ξ′k}.
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There exist (see (Korostelev & Tsybakov 1993): Lemma 2.7.4 p. 79) M = [2N/8] vectors ξ1, . . . , ξM

such that ρH(ξj , ξk) ≥ N/16, 1 ≤ j < k ≤M.We denote by FM the set of functions f (ξ1), . . . , f (ξM ).
Note that the ‖·‖p-distance between two distinct functions f and g of FM is at least C(p)N1/p‖ψ‖p.
The problem of proving the lower bound over F(s, L) can be reduced to the one over FM , that is

sup
f∈F(s,L)

Ef‖f̂N − f‖p ≥ sup
f∈FM

Ef‖f̂N − f‖p.

We associate with a method M related to any estimator f̂N an other method M′ for distinguishing
between the M hypotheses, k-th of the them stating that the observations X1, . . . , XN are drawn
from the k-th element of the set FM . This method M′ is as follows: given observations, use an
estimator f̂N to find the closest in Lp-norm to f̂N element in FM (any one of them in the non-
uniqueness case) and claim that this is the density which underlies the the observations.

Assume that the true hypothesis is associated with f ∈ FM . Note that if the method M′ fails
to recognize the true density, this implies that that f̂N is at least at the same Lp-distance from f
as from other g ∈ FM . In other words,

‖f̂N − f‖p ≥ ‖g − f‖p/2 ≥ C ′(p)N1/p‖ψ‖p.

On the other hand, the Fano inequality states that the probability of the wrong choice among M
hypotheses is no less than

1− N maxf,g∈FM K(f, g) + ln 2
lnM

,

where K(f, g) is the Kullback distance between f and g (cf. (Birgé 1983)). Otherwise,

sup
f∈FM

Ef‖f̂N − f‖p ≥ C

1−
N max

f,g∈FM
K(f, g) + ln 2

lnM

N1/p‖ψ‖p. (8)

We have the following lemma.

Lemma 1 There is α > 0 such that

N

lnM
max

f (ξj),f (ξk)∈FM
K(f (ξj), f (ξk)) ≤ 1

2
.

Proof : Recall that the Kullback distance between f and g is defined by

K(f, g) =
∫
f(x) ln

f(x)
g(x)

dx.

Then for f (ξj), f (ξk) ∈ FM , we have

K(f (ξj), f (ξk)) =
N∑
l=1

∫
γl

[
f0(x) + ξjl ψl(x)

]
ln
f0(x) + ξjl ψl(x)
f0(x) + ξkl ψl(x)

,

≤
N∑
l=1

∫
γl

[
f0(x) + ξjl ψl(x)

] (ξjl − ξkl )ψl(x)
f0(x) + ξkl ψl(x)

dx,
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≤ 2N
∫
γ1

1 + α
c1(s)

1− α
c1(s)

α

c1(s)
f0(x)dx,

≤ C
1 + α

c1(s)

1− α
c1(s)

α

c1(s)
.

Further, note that N
lnM = 8

ln 2 . Thus a positive α can be found such that the quantity

C
N

lnM

1 + α
c1(s)

1− α
c1(s)

α

c1(s)
≤ 1

2
.

Hence, from (8) and Lemma 1 we conclude that

sup
f∈FM

Ef‖f̂N − f‖p ≥ CN1/p‖ψ‖p ≥ c0L
p−1
p(s+1)N

− s(p−1)
p(s+1) .

5.2 Translation into the sequence space

In what follows we will use some properties of blocky biorthogonal multi-resolution analysis {φ(x−
k), ψ(2jx− k), j ≥ 0, k ∈ Z} and {φ̃(x− k), ψ̃(2jx− k), j ≥ 0, k ∈ Z}, described in Section 3.1.

Let f ∈ L2(R). If {αk, βjk, j ≥ 0, k ∈ Z} the wavelet coefficients of f . Then for 0 < p, q ≤ ∞,
1
p − 1 < s < M + 1, the quantity

‖f‖spq = ‖α‖p +

∑
j≥0

∑
k

2qj(s+1/2−1/p)‖βj·‖qp

1/q

is equivalent to the norm ‖f‖Bspq of the Besov space Bs
pq (cf. (Donoho 1994), (Delyon & Juditsky

1997)).
When using classical injection theorems (see, for instance, (Triebel 1992)), we conclude that

there are Ci which may only depend on s, p such that

(i) ‖f‖1 ≤ 1 implies that ‖α‖1 ≤ C1 and sup
j≥0

2−j/2‖βj·‖1 ≤ C1; (9)

(ii) for anyf ∈ F(s, L), ‖α‖∞ + sup
j≥0

2j(s+1/2)‖βj·‖∞ ≤ C2L; (10)

(iii) ‖f‖p ≤ C3

‖α‖p +
∑
j≥0

2j(
1
2
− 1
p
)‖βj·‖p

 . (11)

On the other hand, when p ≥ 2,

(iv) ‖f‖p ≥ C4

‖α‖pp +
∑
j≥0

2j(
p
2
−1)‖βj·‖pp

 1
p

. (12)

11



The inequality (11) implies, in particular, that

‖f̂N − f‖p ≤ C

(∑
k

|zk − αk|p
) 1
p

+
∑
j≥0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk)|p
)1/p

 (13)

5.3 Proof of Theorem 2

We consider here the case p ≤ 2. The result for p > 2 follows from Theorem 1 of (Donoho
et al. 1996).

We have the following bound for the error of the estimation:

‖f̂N − f‖p ≤ C

2j0( 1
2
− 1
p
)‖α̂j0· − αj0·‖p +

∞∑
j=j0

2j(
1
2
− 1
p
)‖β̂j· − βj·‖p


= C2j0( 1

2
− 1
p
)‖yj0· − αj0·‖p + C

∞∑
j=j0

2j(
1
2
− 1
p
)‖βj·‖p

= δ
(1)
N + δ

(2)
N . (14)

The bound for the second term is immediate:

δ
(2)
N ≤ C

∞∑
j=j0

2j(
1
2
− 1
p
)

(
‖βj·‖p−1

∞
∑
k

|βjk|
) 1
p

≤ C ′
∞∑
j=j0

2j(
1
2
− 1
p
)
L1−1/p2−j(s+1/2)(1−1/p)2j/2p ≤ C ′′L1−1/p2−j0s(1−1/p). (15)

Let us now bound the first summand. To this end we decompose

E|yj0k − αj0k|p = E|yj0k − αj0k|p(1pj0k≥1/N + 1pj0k<1/N ). (16)

Note next that

E|yj0k − αj0k|p1pj0k<1/N ≤ C
(
E|yj0k − αjk|p1pj0k<1/N1yj0k=0 + E|yj0k − αj0k|p1pj0k<1/N1yj0k 6=0

)
≤ C|αj0k|p1pj0k≥1/N +

(
E|yj0k − αj0k|2

)p/2
P (yj0k 6= 0)1−p/21pj0k<1/N .

Recall that yjk = 0 iff there are no observations on the support of φj0k. The latter probability can
be easily bounded for pjk small:

P (yj0k 6= 0) = 1− (1− pj0k)
N ≤ C(1− exp(−pj0kN)) ≤ Cpj0kN,

and

(
E|yj0k − αj0k|2

)p/2
P (yj0k 6= 0)1−p/21pj0k<1/N ≤ C

(
2j0pj0k
N

)p/2
(pj0kN)1−p/2

= C2j0p/2pj0kN
−p+1.

Further, for pj0k ≤ 1/N
|αj0k|p ≤ 2j0p/2ppjk ≤ 2j0p/2pj0kN

−p+1.

12



On the other hand,

E|yj0k − αj0k|p1pj0k≥1/N ≤
(

2j0pj0k
N

)p/2
1pj0k≥1/N ≤ 2j0p/2pj0kN

−p+1.

When substituting these results into (14) and then into the definition of δ(1)N , we obtain

E(δ(1)
N )p ≤ C2j0( p

2
−1)

∑
k

2j0p/2pj0kN
−p+1 ≤ C

2j0(p−1)

Np−1
. (17)

In order to get the required bound it suffices now to substitute the value of j0 into the bounds (15)
and (17) for δ(2)

N and E(δ(1)
N )p.

5.4 Proof of Theorem 3

In order to prove the lower bound we implement the following idea due to A. Nemirovski (cf.
(Nemirovsky 1986)): we construct a family of densities G ⊂ F and a probability measure P on G.
Then we substitute the original problem with the equivalent parameter one: that of estimating the
vector of wavelet coefficients (βjk) of f ∈ G by those of the linear estimator f̂ (l)

N , i.e.

β̂jk =
∫
f̂

(l)
N (x)ψjk(x)dx =

1
N

N∑
i=1

∫
T (x,Xi)ψjk(x)dx. (18)

We use the Cramer-Rao inequality to show that the Bayesian risk of any estimator of that type on
the family (G, P ) is bounded from below.

Let j satisfy

L
1
s+1N

1
2s(1−1/p)+1 ≤ 2j ≤ 2L

1
s+1N

1
2s(1−1/p)+1 . (19)

We consider the density v0 ∈ F(s, L2 ) such that v0(x) = C1(s)2−jsL for 0 < x ≤ 2js/L. Let now

u0 be a density in F(s, L2 ) such that u0(x) = C2(s)L
1
s+1 for 0 ≤ x ≤ L−

1
s+1 and is a polynomial of

degree [s] when x < 0 and x > L−
1
s+1 . Let l∗ =

[
N

s
2(s−1/p)+1

]
. We set for l = 0, ..., l∗ − 1

gl(x) =
1
2

(
v0(x) + u0(x− L−

1
s+1 l)

)
. (20)

One can easily verify that gl ∈ F(s, L2 ). Let η be a random variable such that P (η = l) = 1
l∗

for l = 0, ..., l∗ − 1. We set m =
[

2j(s+1)

L

]
. Now consider a random vector ξ = (ξ1, ..., ξm) with

independent components such that P (ξk = 1) = P (ξk = −1) = 1/2 for k = 1, ...,m. For each
realization of (η, ξ) we define the function

f (ηξ)(x) = gη(x) +
m∑
k=1

ξkβψ̃jk,

where the coefficient

β = C3(s)L2−j(s+1/2) (21)
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is chosen to ensure that f (ηξ) ∈ F(s, L) along with the condition

f (ηξ)(x) ≥ 1
2
gη(x).

We consider the family G of functions f (ηξ) with the associated probability P = Pη ⊗ Pξ on G. We
denote Eξ (resp. Eη) the expectation over the distribution of the vector ξ (resp. η) and E the
expectation associated with P.

Let now

f̂
(l)
N (x) =

1
N

N∑
i=1

T (x,Xi)

be a linear estimator of f ∈ G and

β̂jk =
1
N

N∑
i=1

∫
T (x,Xi)ψjk(x)dx

the corresponding “estimate” of the wavelet coefficient βjk = ξkβ for k = 1, ...,m.

Lemma 2 Let β̂jk be an estimator of βjk, k = 1, ...,m as above. Then

Ef |β̂jk − βjk|p ≥ C|λjk|pN−p/2
(

min
x∈δjk

gη(x)

)p/2
+ |Ef β̂jk − βjk|p,

where δjk is the support of ψjk and

λjk =
∂Ef β̂jk
∂βjk

=
∫
T (x, y)ψjk(x)ψ̃jk(y)dxdy.

Proof : Let f(x) = f (ηξ)(x) be a function in G. The Cramer-Rao inequality, applied to any estimate
β̂jk gives

Ef (β̂jk − βjk)2 ≥

(
∂Ef β̂jk
∂βjk

)2

NIjk
+ (Ef β̂jk − βjk)2,

where Ijk is the Fisher information of the density f with respect to the parameter βjk:

Ijk =
∫ (

∂f(x)
∂βjk

)2

f(x)
dx

Let us compute a bound for Ijk. Note that

∂f(x)
∂βjk

=
∂

∂βjk
(gη(x) +

m∑
k=1

βjkψ̃jk(x)) = ψ̃jk(x),
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and

Ijk =
∫ ψ̃2

jk(x)
f(x)

dx ≤ ( min
x∈δjk

f(x))−1 ≤ 2( min
x∈δjk

gη(x))−1,

where δjk is the support of ψ̃jk. Further,

∂Ef β̂jk
∂βjk

=
∫
ψjk(x)T (x, y)

∂f(x)
∂βjk

dxdy =
∫
ψjk(x)T (x, y)ψ̃jk(y)dxdy = λjk.

Finally,

Ef |β̂jk − βjk|p ≥ (Ef (β̂jk − βjk)2)p/2 ≥
(
C|λjk|2N−1 min

x∈δjk
gη(x)

)p/2
+ |Ef β̂jk − βjk|p.

Lemma 3 Eξ|Ef β̂jk − βjk|p ≥ βp|λjk − 1|p.

Proof : First note that if

f+
k (x) = gη(x) +

m∑
l 6=k

ξlβψ̃jl(x) + βψ̃jk(x),

f−k (x) = gη(x) +
m∑
l 6=k

ξlβψ̃jl(x)− βψ̃jk(x),

then

Ef+
k
β̂jk − Ef−

k
β̂jk =

∫
T (x, y)ψjk(x)[f+

k (y)− f−k (y)]dxdy

= 2β
∫
T (x, y)ψjk(x)ψ̃jk(y)dxdy = 2βλjk.

As for p ≥ 1, |x|p + |y|p ≥ 21−p|x− y|p, when averaging over the distribution of ξk we obtain

Eξk |Ef β̂jk − βjk|p =
1
2

[
|Ef+

k
β̂jk − β|p + |Ef−

k
β̂jk + β|p

]
≥ 2−p|Ef+

k
β̂jk − β − Ef−

k
β̂jk − β|p ≥ βp|λjk − 1|p.

Thus |Ef β̂jk − βjk|p ≥ βp|λjk − 1|p.

Let us now bound from below the risk of the estimate f̂ (l)
N on the family G. Recall (cf. (12))

that for p ≥ 2,

‖f‖pp ≥ C
∞∑
i=0

2i(
p
2
−1)‖βi·‖pp ≥ 2j(

p
2
−1)‖βj·‖pp

for any j ≥ 0. When using Lemmas 2 and 3,

EEf‖f̂
(l)
N − f (ηξ)‖pp ≥ C2j(

p
2
−1)EEf

∑
k

|β̂jk − βjk|p ≥ C2j(
p
2
−1)EEf

m∑
k=1

|β̂jk − βjk|p

≥ C ′2j(
p
2
−1)

m∑
k=1

|λjk|pN−p/2Eη

(
min
x∈δjk

gη(x)

)p/2
+ βp|λjk − 1|p

 . (22)
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Note that by definition of the family G (cf. (20)),

Eη

(
min
x∈δjk

gη(x)

)p/2
≥ C

L
p

2(s+1)

l∗
,

and

N−p/2Eη

(
min
x∈δjk

gη(x)

)p/2
≥ L

p
2(s+1)N

− p(s+1/2)
2s(1−1/p)+1 ≥ Cβp

since, by definition of β (cf. (21)) and j,

β = CL2−j(s+1/2) ≤ C ′L
1

2(s+1)N
− s+1/2

2s(1−1/p)+1 .

Thus we get from (22):

EEf‖f̂
(l)
N − f (ηξ)‖pp ≥ C2j(

p
2
−1)

m∑
k=1

βp(|λjk|p + |λjk − 1|p) ≥ C ′2j(
p
2
−1)mβp.

When substituting the latter inequality the bound for 2j from (19), one finally obtains

EEf‖f̂
(l)
N − f (ηξ)‖pp ≥ CL

p−1
(s+1)N

− ps(1−1/p)
2s(1−1/p)+1 .

Since
sup

f∈F(s,L)
Ef‖f̂

(l)
N − f‖pp ≥ sup

f∈G
Ef‖f̂

(l)
N − f (ηξ)‖pp ≥ EEf‖f̂

(l)
N − f (ηξ)‖pp,

this implies the desired bound.

5.5 Proof of Theorem 4

We start with some technical results. Let δjk be the support bin of ψjk and δk that of φk. We put

pjk =
∫
δjk

f(x)dx, pk =
∫
δk

f(x)dx,

σ2
jk = Eξ2jk =

1
N

(E(ψ2
jk(X1)− β2

jk),

where ξjk = yjk − Eyjk = yjk − βjk.
Note that

Eψ2
jk(X1) =

∫
δjk

ψ2
jk(x)f(x)dx ≤ ‖f‖∞

∫
δjk

ψ2
jk(x)dx ≤ L

1
s+1 .

and

Eψ2
jk(X1) =

∫
δjk

ψ2
jk(x)f(x)dx ≤ ‖ψjk‖2

∞

∫
δjk

dx = 2j‖ψ‖∞pjk.

By the Kolmogorov inequality, as f ∈ F(s, L), ‖f‖∞ ≤ L
1
s+1 , and we conclude from these bounds

that

σ2
jk ≤

1
N
Eψ2

jk(X1) ≤
1
N

min(L
1
s+1 , 2j‖ψ‖2

∞pjk). (23)
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We also denote

γjk = λ
√

lnNσjk.

Note that σ2
jk and γjk are the deterministic counterparts of the empirical values σ̂2

jk and γ̂jk, i.e.

Eσ̂2
jk =

N − 1
N

σ2
jk, and Eγ̂2

jk =
N − 1
N

γ2
jk.

Since m is the diameter of the support bin δjk, the wavelets ψj,mi and ψj,mi′ have disjoint supports.
Thus

∑
k

pjk =
m∑
l=1

∑
i

pj,mi+l ≤
m∑
l=1

∫
f(x)dx = m. (24)

This relation will be often used in the sequel.

Lemma 4 There is ρ <∞ such that for any j, k and any N large enough

P (#δjk ≥ mN ) < pjkN
−2, if pjk <

mN

2N
; (25)

P (#δjk < mN ) < pjkN
−2, if pjk ≥

2mN

N
, (26)

where mN = ρ lnN .

Proof : The inequalities (25) and (26) are simple bounds on the tails of the binomial distribution,
and can be obtained when using the inequalities in (Shorack & Wellner 1986).

Lemma 5 Let ρ ≥ 1. We have for any 0 ≤ j ≤ j1 and k:

1) for any µ ≥ max(1, µ0(s, L, ψ, κ)),

P (|ξjk| > µ

√
lnN
N

) ≤ N−1. (27)

2) There is ρ = ρ(ψ) such that if pjk ≥ ρ lnN
2N then

P

(∣∣∣∣∣ 1
N

N∑
i=1

ψ2
jk(Xi)− Eψ2

jk(X1)

∣∣∣∣∣ > 2jν2pjk
8

)
≤ pjkN

−2. (28)

3) Moreover, if ρ lnN
2N ≤ pjk ≤ ν2

2‖ψ‖2∞
then

σ2
jk ≥

2jν2pjk
2N

, (29)
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and for any λ ≥ λ0 = λ0(ψ) and γjk = λ
√

lnNσjk,

P (|ξjk| >
γjk
4

) ≤ pjkN
−2. (30)

Proof : We use the Bernstein inequality:

P (|ξjk| > µ

√
lnN
N

) ≤ 2 exp

− µ2 lnN
N

2σ2
jk + 2

3
‖ψjk‖∞

N µ
√

lnN
N


≤ 2 exp

− µ2 lnN

2L
1
s+1 + 2

3‖ψ‖∞
√
κµ

 (by (23))

≤ 2 exp

− µ lnN

4 max(L
1
s+1 , 1

3‖ψ‖∞
√
κ)

 (when µ ≥ 1)

≤ 2N
− µ

4 max(L
1
s+1 , 13 ‖ψ‖∞

√
κ) ,

what finishes the proof of 1).
Next note that

Eψ4
jk(X1) =

∫
ψ4
jk(x)f(x)dx ≤ ‖ψjk‖4

∞

∫
δjk

f(x)dx ≤ 22j‖ψ‖4
∞pjk.

Then by the Bernstein inequality:

P

(∣∣∣∣∣ 1
N

N∑
i=1

ψ2
jk(Xi)− Eψ2

jk(X1)

∣∣∣∣∣ > c

)
< 2 exp

(
− c2N

2Eψ4
jk(X1) + 2

3c‖ψ
2
jk‖∞

)

≤ 2 exp

(
− c2N

22j+1‖ψ‖4
∞pjk + 2

3c2
j‖ψ‖2

∞

)
.

When choosing c = 2jν2pjk
8 , we obtain

P

(∣∣∣∣∣ 1
N

N∑
i=1

ψ2
jk(Xi)− Eψ2

jk(X1)

∣∣∣∣∣ > 2jν2pjk
8

)
< 2 exp

(
−

22j−6ν4p2
jkN

22j+1‖ψ‖4
∞pjk + 1

322j−2ν2pjk‖ψ‖2
∞

)

≤ 2 exp

(
− ν4pjkN

27‖ψ‖4
∞ + 24

3 ν
2‖ψ‖2

∞

)
≤ 2 exp(−CpjkN).

On the other hand, we have a simple bound for βjk:

|βjk| ≤ ‖ψjk‖∞
∫
δjk

f(x)dx = 2j/2‖ψ‖∞pjk.

Recall that the absolute value of of the blocky analysis wavelet ψ(x) and φ(x) is bounded from
below on its support. The relation in (4) along with the definition of φ imply that

Eψ2
jk(X1) =

∫
δjk

ψ2
jk(x)f(x)dx ≥ 2jν2pjk and Eφ2

k(X1) =
∫
δk

φ2
k(x)f(x)dx = pk.
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Then if pjk ≤ ν2

2‖ψ‖∞ ,

σ2
jk ≥

1
N

(2jν2pjk − 2j‖ψ‖2
∞p

2
jk) ≥

2jν2pjk
2N

.

Now the bound in (30) follows from the Bernstein inequality:

P

(
|ξjk| >

λ
√

lnNσjk
4

)
≤ 2 exp

− λ2 lnNσ2
jk

16(2σ2
jk + 1

6
‖ψjk‖∞

N λ
√

lnNσjk)


≤ 2 exp

− λ2 lnNpjkν2/2

16‖ψ‖2
∞(2pjk + 1

6λ
√

lnNpjk
N )


≤ 2 exp

− ν2pjkλ
2 lnN

64‖ψ‖2
∞(pjk + 1

12λ
√

ρ lnN
N


≤ 2 exp

− ν2λ2 lnN
64‖ψ‖2

∞(1 + 1
12

λ√
ρ)

 ≤ 2 exp

(
−ν

2λ lnN
64‖ψ‖2

∞

)
= 2N

− ν2λ

64‖ψ‖2∞ .

When using Lemma 5 we obtain the following proposition.

Proposition 1 There exists ρ <∞ such that

1) if j and k are such that pjk ≥ ρ lnN
2N then,

P

γ̂jk > λ‖ψ‖∞

√
2j+1pjk lnN

N

 ≤ pjkN
−1. (31)

2) Moreover, if ρ lnN
2N ≤ pjk ≤ ν2

2‖ψ‖2∞
then for N large enough

P (|γ̂jk − γjk| ≥
1
2
γjk) ≤ 2pjkN−2 (32)

P (|ξjk| ≥
γ̂jk
2

) ≤ 2pjkN−2 (33)

Proof : When using simple bounds

σ̂2
jk ≤

1
N2

N∑
i=1

ψ2
jk(Xi)

and Eψ2
jk(X1) ≤ 2j‖ψ‖2

∞pjk, we obtain

P

γ̂jk > λ‖ψ‖∞

√
2j+1pjk lnN

N

 = P

(
σ̂2
jk >

‖ψ‖2
∞2j+1pjk
N

)
≤ P

(
1
N

N∑
i=1

ψ2
jk(Xi) > ‖ψ‖2

∞2j+1pjk

)

≤ P

(
1
N

N∑
i=1

ψ2
jk(Xi)− Eψ2

jk(X1) > ‖ψ‖2
∞2jpjk

)
.
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However, for ρ large enough and pjk ≥ ρ lnN
N , the latter probability is bounded by pjkN−1 due to

(28).
Let us show 2). Let define the following set

A1
jk =

{
|ξjk| ≤

γjk
4

}
,

A2
jk =

{∣∣∣∣∣ 1
N

N∑
i=1

ψ2
jk(Xi)− Eψ2

jk(X1)

∣∣∣∣∣ ≤ Nσ2
jk

4

}
,

Bjk = A1
jk ∩A2

jk.

Then from (30), P (A1
jk) ≥ 1 − pjkN

−2, and the bound in (28) with σ2
jk ≥

2jν2pjk
2N , implies that

P (A2
jk) ≥ 1− pjkN

−2. So that P (Bjk) ≥ 1− 2pjkN−2. On the other hand, we have

|y2
jk − β2

jk| ≤ |ξjk|(2|βjk|+ |ξjk|) ≤
γjk
4

(2|βjk|+
γjk
4

) on A1
jk.

Furthermore, |βjk| ≤ 2j/2pjk‖ψ‖∞ and σjk > 2j/2ν
√

pjk
2N by (29). Thus |βjk| ≤ σjk‖ψ‖∞

√
2pjkN

ν ,
and

|y2
jk − β2

jk| ≤
γ2
jk

16

(
1 +

8‖ψ‖∞
√

2pjkN
νλ
√

lnN

)
on A1

jk.

Then on Bjk

|σ̂jk − σjk| ≤
|σ̂2
jk − σ2

jk|
σjk

≤ 1
Nσjk

(∣∣∣∣∣ 1
N

N∑
i=1

ψjk(Xi)− Eψ2
jk(X1)

∣∣∣∣∣+ ∣∣∣y2
jk − β2

jk

∣∣∣)

≤ σjk
4

+
σjkλ

2 lnN
16N

(
1 +

8‖ψ‖∞
√

2pjkN
νλ
√

lnN

)
≤ σjk

2

for N large enough. This establishes the inequality (32). Moreover,

{|ξjk| >
γ̂jk
2
} ⊆ {|ξjk| >

γjk
4
} ∪ {γ̂jk <

γjk
2
}

and the bound (33) is an immediate consequence of Lemma 5.

Lemma 6 Let β̂jk be defined as in (7). Then there is C <∞ and any µ > 0

|β̂jk − βjk| ≤ C

|ξjk|+ µ

√
lnN
N

+ |βjk|1γ̂jk>µ
√

lnN
N

(34)

and

|β̂jk − βjk|p ≤ C

[
|ξjk|p1

|ξjk|>
γ̂jk
2

+ min(|βjk|, γjk)p
]

+ |βjk|p1γ̂jk> 3
2
γjk
. (35)
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Proof : We have by virtue of Lemma 2 of (Delyon & Juditsky 1996):

|β̂jk − βjk|p ≤ |3ξjk|1
|ξjk|>

γ̂jk
2

+ min(|βjk|,
3
2
γ̂jk)p. (36)

This implies, in particular, that

|β̂jk − βjk| ≤ |3ξjk|+ 3/2µ

√
lnN
N

1
γ̂jk≤µ

√
lnN
N

+ |βjk|1γ̂jk>µ
√

lnN
N

.

On the other hand, we have from (36):

|β̂jk − βjk|p ≤ |3ξjk|p1
|ξjk|>

γ̂jk
2

+ min(|βjk|,
9
4
γjk)p1γ̂jk≤ 3

2
γjk

+ |βjk|p1γ̂jk> 3
2
γjk

≤ C

[
|ξjk|p1

|ξjk|>
γ̂jk
2

+ min(|βjk|, γjk)p
]

+ |βjk|p1γ̂jk> 3
2
γjk
.

We return now to the proof of Theorem 4.

5.6 Proof of the theorem

Note that that from (13) we have the following bound for the estimation error:

‖f̂N − f‖p ≤
∞∑
j=0

2j(
1
2
− 1
p
)‖β̂j· − βj·‖p + ‖z· − α·‖p ≡ rN . (37)

Our objective here is to use the relations (9) and (11) to bound rN . To this end we decompose
rN as follows:

rN ≤
∞∑

j=j1+1

2j(
1
2
− 1
p
)‖βj·‖p +

j1∑
j=0

2j(
1
2
− 1
p
)‖β̂j· − βj·‖p + ‖z· − α·‖p

=
∞∑

j=j1+1

2j(
1
2
− 1
p
)‖β·j‖p

+
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1#δjk<mN

)1/p

+
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1#δjk≥mN

)1/p

+

(∑
k

|zk − αk|p1#δk<mN

)1/p

+

(∑
k

|zk − αk|p1#δk≥mN

)1/p

≤
∞∑

j=j1+1

2j(
1
2
− 1
p
)‖β·j‖p
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+
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|βjk|p1#δjk<mN 1
pjk>

2mN
N

)1/p

+
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|βjk|p1#δjk<mN 1
pjk≤

2mN
N

)1/p

+
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1#δjk≥mN 1pjk<mN
2N

)1/p

+
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1#δjk≥mN 1pjk≥mN
2N

)1/p

+

(∑
k

|zk − αk|p1#δk<mN

)1/p

+

(∑
k

|zk − αk|p1#δk≥mN 1pk≤mN
2N

)1/p

+

(∑
k

|zk − αk|p1#δk≥mN 1pk>mN
2N

)1/p

=
8∑
i=1

r
(i)
N . (38)

The principal term in the above expansion is r(5)
N . Our objective at first is to provide the bounds

for the rest of the terms in the sum. Note that the bounds below are valid when N is large enough:

Lemma 7 r
(1)
N ≤ CL1−1/p

(
lnN
N

)s(1−1/p)
.

Proof : Indeed, the relation (10) implies that ‖βj·‖∞ ≤ L2−j(s+
1
2
). Moreover, from (9) we

conclude that for some C <∞,
2−j/2‖βj·‖1 ≤ C.

Now

r
(1)
N =

∞∑
j=j1+1

2j(
1
2
− 1
p
)‖β·j‖p

≤
∞∑

j=j1+1

2j(
1
2
− 1
p
)‖βj·‖

p−1
p

∞ ‖βj·‖
1
p

1

≤ CL
1− 1

p

∞∑
j=j1+1

2j(
1
2
− 1
p
)2−j(s+

1
2
)(1− 1

p
)2

j
2p

≤ CL
1− 1

p

∞∑
j=j1+1

2−js(1−
1
p
) ≤ C ′L

1− 1
p 2−j1s(1−

1
p
)
.

Lemma 8 Er
(2)
N ≤ C

N .

Proof : Note that for any p ≥ 1, ‖βj·‖p ≤ ‖βj·‖1. Thus

Er
(2)
N ≤

j1∑
j=0

2j(
1
2
− 1
p
)
E

(∑
k

|βjk|1#δjk<mN 1
pjk>

2mN
N

)
.
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Due to the inequality (26) of Lemma 4 we get the bound:

Er
(2)
N ≤

j1∑
j=0

2j(
1
2
− 1
p
)
∑
k

|βjk|P (#δjk < mN ) 1
pjk>

2mN
N

≤ C
j1∑
j=0

2j(1−
1
p
) max

k
P (#δjk < mN ) 1

pjk>
2mN
N

(as 2−j/2‖βj·‖1 ≤ C)

≤ C

(
N

lnN

)1− 1
p

N−2 ≤ C

N
.

Lemma 9 Er
(3)
N ≤ CL

1− 1
p

s+1

(
lnN
N

) s(1− 1
p )

s+1 .

Proof : We split the sum r
(3)
N into two parts: when 0 ≤ j ≤ j0 we use the bound |βjk| ≤

2j/2‖ψ‖∞pjk. When j > j0 we bound |βjk|∞ with CL2−j(s+1/2) (cf. (11)). Then

Er
(3)
N ≤

j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|βjk|p1pjk≤ 2mN
N

)1/p

≤ C
j0∑
j=0

2j(
1
2
− 1
p
)

(∑
k

2jp/2ppjk1pjk≤ 2mN
N

)1/p

+ C
j1∑

j=j0+1

2j(
1
2
− 1
p
)‖βj·‖

1− 1
p

∞

(∑
k

|βjk|
)1/p

≤ C ′
j0∑
j=0

2j(1−
1
p
)

(∑
k

2jp/2
(

2mN

N

)p−1

pjk

)1/p

+ C
j1∑

j=j0+1

2j(
1
2
− 1
p
)
L

1− 1
p 2−j(s+

1
2
)(1− 1

p
)2

1
2p

≤ C ′′
[
2j0(1− 1

p
)
(

2mN

N

)1− 1
p

+ L
1− 1

p 2−j0s(1−
1
p
)

]
(by (24)).

Finally, when when choosing j0 such that(
N

lnN

) 1
s+1

L
1
s+1 ≤ 2j0 < 2

(
N

lnN

) 1
s+1

L
1
s+1 ,

we obtain the statement of the lemma.

Lemma 10 Er
(4)
N ≤ CL

1− 1
p

s+1

(
lnN
N

) s(1− 1
p )

s+1 .

Proof : We first remark that |β̂jk − βjk| ≤ |ξjk|+ |βjk| and

|β̂jk − βjk|p ≤ 2p−1(|ξjk|p + |βjk|p)

Thus

r
(4)
N ≤ C

j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|ξjk|p1#δjk≥mN 1pjk<mN
2N

)1/p

+ C
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|βjk|p1pjk<mN
2N

)1/p

. (39)
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We have already obtained a bound for the second term in the right-hand side of (39) in Lemma 9:

j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|βjk|p1pjk<mN
2N

)1/p

≤ CL
1− 1

p
s+1

(
lnN
N

) s(1− 1
p )

s+1

.

Recall that by (23)

E|ξjk|2 = σ2
jk ≤ ‖ψ‖2

2

2jpjk
N

.

We can estimate the first term in the right-hand side of (39) as follows:

E
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|ξjk|p1#δjk≥mN , pjk<
mN
2N

)1/p

≤
j1∑
j=0

2j(
1
2
− 1
p
)
∑
k

E
(
|ξjk|1#δjk≥mN , pjk<

mN
2N

)

≤
j1∑
j=0

2j(
1
2
− 1
p
)
∑
k

(E|ξjk|2)1/2P 1/2 (#δjk ≥ mN ) 1pjk<mN
2N

≤ C
j1∑
j=0

2j(1−
1
p
)
∑
k

p
1/2
jk

N
P 1/2 (#δjk ≥ mN ) 1pjk<mN

2N

≤ C
j1∑
j=0

2j(1−
1
p
)
N−2

∑
k

pjk ≤ C

(
N

lnN

)1− 1
p

N−2 ≤ CN−1.

Lemma 11 r
(6)
N ≤ C

(
lnN
N

)1− 1
p and r(7)

N ≤ CN−1.

Proof : The proof is analogous to that of Lemmas 8 and 9.

Lemma 12 Er
(8)
N ≤ Cmax(N1/p−1, N−1/2).

Proof : When p ≥ 2,

Er
(8)
N = E

(∑
k

|zk − αk|p1#δk≥mN 1
pk>

2mN
N

)1/p

≤ E

(∑
k

|zk − αk|2
)1/2

≤
(∑

k

pk
N

)1/2

≤ CN−1/2.

When 1 ≤ p < 2 we use the bound

Er
(8)
N ≤

[∑
k

E|zk − αk|p1pk> 2mN
N

]1/p

≤
[∑
k

(
pk
N

)p/2
1
pk>

2mN
N

]1/p

≤ CN−1/2

[∑
k

pk

(
N

mN

)1−p/2
]1/p

≤ C ′N
1
p
−1
m

1
2
− 1
p

N ≤ C ′N
1
p
−1
.
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We finally come to the principal term of the error decomposition (38):

r
(5)
N =

j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1#δjk≥mN 1pjk≥mN
2N

)1/p

.

We split it again:

r
(5)
N =

j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1#δjk≥mN 1pjk≥mN
2N

[
1
pjk≤ ν2

2‖ψ‖2∞

+ 1
pjk>

ν2

2‖ψ‖2∞

])1/p

≤
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1pjk> ν2

2‖ψ‖2∞

)1/p

+
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

|β̂jk − βjk|p1mN
2N

≤pjk≤ ν2

2‖ψ‖2∞

)1/p

. (40)

To bound the second term in the right-hand side of (40) we use the inequality (35) of Lemma 6,

|β̂jk − βjk|p ≤ C

[
|ξjk|p1

|ξjk|>
γ̂jk
2

+ min(|βjk|, γjk)p
]

+ |βjk|p1γ̂jk> 3
2
γjk
,

to obtain

Er
(5)
N ≤

j1∑
j=0

2j(
1
2
− 1
p
)
E

(∑
k

|β̂jk − βjk|p1pjk> ν2

2‖ψ‖2∞

)1/p

+C
j1∑
j=0

2j(
1
2
− 1
p
)
E

(∑
k

|ξjk|p1
|ξjk|>

γ̂jk
2

1mN
2N

≤pjk≤ ν2

2‖ψ‖2∞

) 1
p

+C
j1∑
j=0

2j(
1
2
− 1
p
)

(∑
k

min(|βjk|, γjk)p1pjk≥mN
2N

) 1
p

+
j1∑
j=0

2j(
1
2
− 1
p
)
E

(∑
k

|βjk|1γ̂jk> 3
2
γjk

1mN
2N

≤pjk≤ ν2

2‖ψ‖2∞

) 1
p

=
4∑
i=1

δ
(i)
N (41)

We start with a bound on δ(1)
N .

Lemma 13 δ
(1)
N ≤ C

√
lnN
N .

Proof : First remark that as pjk ≤ C‖f‖∞2−j for some C <∞ which depends only on the wavelet
ψ, the inequality pjk > ν2

2‖ψ‖2∞
implies that

2j ≤ C‖f‖∞
pjk

≤ C ′ ‖f‖2
∞‖ψ‖∞
ν2

≤ C ′′. (42)
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Moreover, for evident reasons, there is C (which only depends on the wavelet ψ) such that for any
j,
∑
k pjk ≤ C and the number of bins such that pjk > ν2

2‖ψ‖2∞
cannot exceed C ′ = 2C‖ψ‖2∞

ν2 at each
level j. Now let j′ be the maximal j which satisfies (42). Then for 0 ≤ j ≤ j′ and any k,

E|ξjk|2 ≤
Eψ2

jk(X1)
N

≤ ‖ψjk‖2
∞

N
≤ C

N
.

Due to the bound (31) of Proposition 1, we have for some µ <∞

P (γ̂jk > µ

√
lnN
N

) ≤ N−1.

When using the estimation (34) of Lemma 6 we obtain:

δ
(1)
N ≤

j′∑
j=0

2j(
1
2
− 1
p
)
∑
k

E|β̂jk − βjk|1pjk> ν2

2‖ψ‖2∞

≤ C
j′∑
j=0

∑
k

E|ξjk|+ µ

√
lnN
N

+ |βjk|P

γ̂jk > µ

√
lnN
N

 1
pjk>

ν2

2‖ψ‖2∞

≤ C ′(N−1/2 + µ

√
lnN
N

+N−1) ≤ C ′′

√
lnN
N

.

Lemma 14 δ
(2)
N ≤ CN−1.

Proof : We have the bound:

δ
(2)
N ≤ C

j1∑
j=0

2j(
1
2
− 1
p
)
∑
k

E

[
|ξjk|1

|ξjk|>
γ̂jk
2

1mN
2N

≤pjk≤ ν2

2‖ψ‖2∞

]

≤ C
j1∑
j=0

2j(
1
2
− 1
p
)
∑
k

(Eξ2jk)
1/2P 1/2(|ξjk| >

γ̂jk
2

)1mN
2N

≤pjk≤ ν2

2‖ψ‖2∞

≤ C ′
j1∑
j=0

2j(
1
2
− 1
p
)
∑
k

2j/2p1/2
jk

N
p
1/2
jk N

−1 by (33)

≤ C ′′ 2
j1/2

N2
≤ C(3)N−1.

Lemma 15 δ
(4)
N ≤ CN−1.
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Proof : Using the result 2) of Proposition 1 we get

δ
(4)
N ≤ C

j1∑
j=0

2j(
1
2
− 1
p
)
∑
k

|βjk|P (γ̂jk >
3
2
γjk)1mN

2N
≤pjk≤ ν2

2‖ψ‖2∞

≤ C
j1∑
j=0

2j(1−
1
p
) max

k
P (γ̂jk >

3
2
γjk)1mN

2N
≤pjk≤ ν2

2‖ψ‖2∞

≤ C ′
j1∑
j=0

2j(1−
1
p
)
pjkN

−2 by (32)

≤ C ′′N−1.

Lemma 16 δ
(3)
N ≤ C



L
p−1
p(s+1)

(
lnN
N

) s
2s+1 for p > 2 + 1

s ,

L
1

2s+1 lnN
(

lnN
N

) s
2s+1 for p = 2 + 1

s ,

L
p−1
p(s+1)

(
lnN
N

) s(p−1)
p(s+1) for p < 2 + 1

s .

Proof : Consider the case 2 ≤ p <∞. Let j′ and j′′ satisfy

L
1
s+1

(
N

lnN

) 1
2s+1

≤ 2j
′

< 2L
1
s+1

(
N

lnN

) 1
2s+1

,

L
1
s+1

(
N

lnN

) 1
s+1

≤ 2j
′′

< 2L
1
s+1

(
N

lnN

) 1
s+1

,

Since min(|βjk|, γjk) ≤ |βjk|qγ1−q
jk for any 0 ≤ q ≤ 1, we have

δ
(3)
N ≤

j′∑
j=0

2j(
1
2
− 1
p
)

(∑
k

γpjk

) 1
p

+
j′′∑

j=j′+1

2j(
1
2
− 1
p
)

(∑
k

|βjk|p−2γ2
jk

) 1
p

+
j1∑

j=j′′+1

2j(
1
2
− 1
p
)

(∑
k

|βjk|p−1|βjk|
) 1
p

≤ C
j′∑
j=0

2j(
1
2
− 1
p
)

∑
k

 lnNL
1
s+1

N

p−2

lnN2jpjk
N


1
p

+C
j′′∑

j=j′+1

2j(
1
2
− 1
p
)

(
‖βj·‖p−2

∞
∑
k

lnN2jpjk
N

) 1
p

+C
∞∑

j=j′′+1

2j(
1
2
− 1
p
)
(
‖βj·‖p−1

∞ ‖βj·‖1

)1/p

≤ C ′
j′∑
j=0

2j(
1
2
− 1
p
)

√
lnN
N

L
p−1

2p(s+1) 2j/p

+C ′
j′′∑

j=j′+1

2j(
1
2
− 1
p
)
(
L2−j(s+

1
2
)
)(1− 2

p
)
2j/p

(
lnN
N

) 1
p
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+C ′
∞∑

j=j′′+1

2j(
1
2
− 1
p
)
(
L2−j(s+

1
2
)
)(1− 1

p
)
2
j
2p

≤ C ′′

2
j′
2

√
lnN
N

L
p−1

2(s+1) + L
1− 2

p

(
lnN
N

) 1
p

j′′∑
j=j′+1

2−j(s−
2s+1
p

) + L
1− 1

p 2−j
′′s(1− 1

p
)

 .
When p > 2s+1

s , the second term of the above decomposition can be estimated as follows:

j′′∑
j=j′+1

2−j(s−
2s+1
p

) ≤ C2−j
′(s− 2s+1

p
)
,

and when 2 ≤ p < 2s+1
s ,

j′′∑
j=j′+1

2−j(s−
2s+1
p

) ≤ C2−j
′′(s− 2s+1

p
)
.

When substituting the values for 2j
′
and 2j

′′
we obtain in these two cases

δ
(3)
N ≤ CL

p−1
p(s+1)

[(
lnN
N

) s
2s+1

+
(

lnN
N

) s
s+1

]
.

If p = 2s+ 1, an extra logarithmic factor appears in the sum

j′′∑
j=j′+1

2−j(s−
2s+1
p

) = j′′ − j′ ≤ C lnN,

and

δ
(3)
N ≤ C lnNL

1−2
p

(
lnN
N

) 1
p

≤ C ′ lnNL
1

2s+1

(
lnN
N

) s
2s+1

.

Finally, when substituting the results of Lemmas 7-16 into (38) we obtain the statement of the
theorem.

The proof in the case 1 ≤ p ≤ 2 is analogous to that of the case 1 ≤ p ≤ 2 of Theorem 2.
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