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Abstract

We consider the maximum entropy extention of a partially speci-
fied autocovariance sequence of a periodically correlated process. The
sequence may be specified on a non-contiguous set. We give a method
which solves the problem completely—it gives the positive definite
solution when it exists and reports that it does not exist otherwise.
The method is numerically reliable even when the solution is “almost”
semidefinite. It also works when only positive semidefinite extention(s)
exist.

1 Introduction

The maximum entropy principle provides an appealing framework for the
specification of complete models from partial information. In some sense,
models chosen by this principle do not impose more restrictions than neces-
sary to accomodate the available information.
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The maximum entropy method was introduced to stationary time series
by Burg in the influential works [4], [5]. Given a contiguous set of autocovari-
ances for lags 0, . . . , p, the maximum entropy solution is an autoregressive
process of order p with those autocovariances. In this case the problem is lin-
ear and the solution can be obtained by solving the Yule-Walker equations
with the Levinson-Durbin algorithm. This result holds in the multivari-
ate case as well. If the lags are not contiguous the problem is, in general,
non-linear but the solution is still an autoregression of order equal to the
maximum specified lag.

Lambert-Lacroix [10] generalised this result to periodically correlated pro-
cesses (pc-processes) — given a contiguous set of autocovariances, the maxi-
mum entropy solution is a periodic autoregression process but for one or more
seasons the order of the autoregression equations may not coincide with the
maximal lags of the given autocovariances. This is in stark contrast with
the stationary case. Maximum entropy estimation based on sample partial
autocorrelations was studied in [9].

For univariate stationary processes, the particular case of non-contiguous
lags when autocovariances are given on a lattice was studied by Politis [12]
and the case of general gaps by Rozario and Papoulis [14].

Maximisation of the entropy rate of a process is closely related but differ-
ent from the maximisation of the entropy of a random vector. The maximum
entropy problem for a random vector may be cast as a maximisation of a de-
terminant and there is a large body of literature on matrix completion for
determinant maximisation, see Johnson [8] for a survey. The maximisation
of the entropy rate of a process may be related to limits of ratios of determi-
nants. We use such techniques in some of our proofs.

In this paper we give a method which solves the maximum entropy prob-
lem for any given set of autocovariances of a periodically correlated process.
The method gives the solution, if it exists, and reports that no solution exists
otherwise.

The paper is organised as follows. Section 2 presents some basic results
about pc-processes. Section 3 discusses the periodic autoregression model
and its parameterisations. Section 4 introduces the periodic autocovariance
problem, the main subject of this paper. Our method is presented in Sec-
tion 5 and its properties and further details are given in Section 6. An
implementation of the method is available as the R package [2]. Periodic
Levinson-Durbin recursions for the calculation of the entropy, its derivative
and Hessian, needed for numerical optimisation, can be found in [3].

We denote by N the set of the non-negative integers. We work mostly
with double indexed sequences. For simplicity, we use in the sequel the non-
standard term “sequence” instead of “double sequence”. If two sequences,
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say a and b, are defined over non-overlapping sets of indices, then a∪b stands
for the merged sequence.

2 Periodically correlated processes

A zero-mean process {Xt, t ∈ N \ { 0 }} is periodically correlated of period T
if its autocovariance function R(u, v) = E

{
XuXv

}
is T -periodic, i.e.

R(u+ T, v + T ) = R(u, v) for all (u, v) ∈ N2 (1)

(see [6]). The matrix Rt = {R(i, j)}i,j=1,...,t is the covariance matrix of the

random vector [X1, . . . , Xt]
T . Hence, Rt is positive semidefinite (p.s.d.) for

every t ∈ N\{0}. If Rt is positive definite (p.d.) for every t, then the process
is said to be not locally deterministic. Otherwise Rt is singular for some t
and the process is locally deterministic.

It is convenient to think about the autocovariances in terms of the seasons
t = 1, . . . , T and the lags k ∈ N. Each pair (u, v) ∈ N2 may be represented as
(u, v) = (mT + t,mT + t−k) for some t ∈ { 1, . . . , T }, m ∈ N, and integer k.
From Equation (1) it follows that R(mT + t,mT + t − k) does not depend
on m. So, we may introduce the notation

Rt(k) = R(mT + t,mT + t− k), t ∈ { 1, . . . , T } , m ∈ N, k—integer.

Moreover, it is sufficient to consider pairs (u, v) with u ≥ v since R(u, v) =
R(v, u). For such pairs k is non-negative. If t is one of the seasons, 1, . . . , T ,
and k is a non-negative integer lag, then (t, k) will be called a season-lag pair.

The T functions R1(·), . . . , RT (·), considered as functions on N, com-
pletely parameterise the second order structure of the pc-process in the
sense that for each (u, v) there is exactly one season-lag pair (t, k) such
that R(u, v) = Rt(k) when u ≥ v and R(u, v) = Rt(k) when u < v. In
other words, the doubly indexed sequence {Rt(k)}, t ∈ { 1, . . . , T }, k ∈ N,
enumerates the autocovariances in a non-redundant way.

An equivalent parameterisation is given by the partial autocorrelations
(pacf) {βt(k)}, t = 1, . . . , T , k ∈ N (see [10] for details).

Let {Xt} be a pc-process and let vt(k) be the variance of the prediction
error of Xt in terms of the k previous values Xt−1, . . . , Xt−k. Then for any
given t ∈ { 1, . . . , T } the sequence {vmT+t(mT + t− 1)}∞m=1 is convergent as
m → ∞ since it is monotonically decreasing and bounded from below by 0.
Let

σ2
t = lim

m→∞
vmT+t(mT + t− 1), t = 1, . . . , T. (2)
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An expression for σ2
t in terms of the partial autocorrelations is (see [10])

σ2
t = Rt(0)

∞∏
n=1

(1− |βt(n)|2), t = 1, . . . , T.

It can be shown [7, p. 119] that for a Gaussian not locally deterministic
pc-process X the entropy rate is equal to

h(X) =
1

2
log(2πe) +

1

2T

T∑
t=1

log σ2
t .

If σ2
t is equal to 0 for some t, then the entropy is defined to be −∞.
Since we are considering only second order properties and the first term

is a constant, we can define the entropy rate of a process with autocovariance
sequence R by

h(R) =
1

T

T∑
t=1

log σ2
t . (3)

3 Periodic autoregression

A periodically correlated process {Xt} is said to be a periodic autoregression
(PAR) process if its dynamics are described by the equation

Xt −
pt∑
i=1

φt,iXt−i = εt, t ∈ N, (4)

where {εt} is a periodic white noise sequence with Var{εt} = σ2
t . The model

orders, pt, and the parameters, φt,i and σ2
t , are periodic with period T , in the

sense that pt+T = pt, φt+T,i = φt,i and σ2
t+T = σ2

t for all t and i. For conve-
nience we define φt,i = 0 for i > pt. The extended notation PAR(p1,. . . ,pT )
is used to emphasise the model order and normally implies that φt,pt 6= 0 for
t ∈ { 1, . . . , T }. If φt,pt may be zero for some t in { 1, . . . , T }, then we use
the notation PAR(≤ p1,. . . ,≤ pT ). We assume also that the model is causal,
i.e. εt is uncorrelated with Xs when t > s.

The standard parameterisation of the PAR(p1,. . . ,pT ) model is:

{φt,k, σ2
t , t ∈ { 1, . . . , T } , k ∈ { 1, . . . , pt } } . (5)

The periodic Levinson-Durbin algorithm (see [10]) computes, among other
things, the standard parameters of a PAR(p1,. . . ,pT ) model from the first
few autocovariances,

{Rt(k), t ∈ { 1, . . . , T } , k ∈ { 0, 1, . . . , pt } } . (6)
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Hence, the autocovariances listed in Equation (6) are an alternative set of
parameters for the PAR(p1,. . . ,pT ) model.

Yet another parameterisation of the PAR(p1,. . . ,pT ) model is given by
the partial autocorrelations (see [10])

{ βt(k), t ∈ { 1, . . . , T } , k ∈ { 0, 1, . . . , pt } } .

Similarly to the stationary case, the periodic partial autocorrelation coeffi-
cient βt(k) of a PAR(p1,. . . ,pT ) process is zero when k > pt.

The autocovariances and the standard parameters of a PAR(p1,. . . ,pT )
process are related by the periodic Yule-Walker equations [11],

Rt(k) =

pt∑
i=1

φt,iRt(k − i) + δkσ
2
t , t = 1, . . . , T, k ∈ N, (7)

where δk = 1 if k = 0 and δk = 0 otherwise.
If a periodically correlated process is PAR(p1,. . . ,pT ), then vt(k) = vt(pt) =

σ2
t for k ≥ pt (see [10]), i.e. the limits in Equation (2) are reached at finite

lags. This is consistent with the notation used for the variance of the periodic
white noise sequence in Equation (4).

4 The periodic autocovariance extension prob-

lem

A periodic autocovariance sequence is completely specified if its values are
given for all season-lag pairs, i.e. for all (t, k) such that t ∈ { 1, . . . , T } and
k ∈ N. Let I be a set of season-lag pairs and K = {Rt(k)}(t,k)∈I be a sequence
defined on I. Let Γ be the set of all periodic autocovariance sequences whose
values coincide with Rt(k) for (t, k) ∈ I (Γ may be empty). Each element of
Γ is a completion (or extension) of K. The maximum entropy extension is
the one whose entropy rate is maximal in Γ.

ME(K,I) problem. Given a set I of season-lag pairs and a sequence K
defined on I, find the completion of K whose entropy rate is maximal or
show that such a completion does not exist.

The maximum entropy solution of the ME(K,I) problem is a periodic
autocovariance function which will be denoted by γME(K) and its entropy
by hME(K).

Let τ(t) = { k | (t, k) ∈ I } for t = 1, . . . , T . In the context of the comple-
tion problem, τ(t) is the set of those non-negative lags, k, for which Rt(k) is
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fixed. With this notation we may rewrite I and K equivalently as

I = { (t, k) | t ∈ { 1, . . . , T } , k ∈ τ(t) } ,
K = {Rt(k), t ∈ { 1, . . . , T } , k ∈ τ(t) } .

We will assume that the lag zero autocovariances are given for all seasons,
i.e. (t, 0) ∈ I for t ∈ { 1, . . . , T }, or, equivalently, 0 ∈ τ(t) for t ∈ { 1, . . . , T }.
Without this restriction the completion problem has no solution since the
entropy rate may be made arbitrarily large by setting the non-specified vari-
ances to large values. We assume also that the set I is finite. Then for
each t ∈ { 1, . . . , T }, τ(t) is a subset of the set { 0, 1, . . . ,max τ(t) }, where
max τ(t) is the maximal element of τ(t).

Obviously, the completion problem ME(K,I) has no solution if the set Γ
is empty. It can be shown [1] that if Γ contains at least one positive definite
sequence, then a positive definite solution exists and is unique. In this case we
say that K is p.d.-completable. The remaining possibility is that Γ contains
only positive semi-definite sequences, all with entropy equal to −∞. We will
take the view that any member of Γ is a (p.s.d.) solution in this case and say
that K is p.s.d.-completable. K is completable if it is either p.d. or p.s.d.-
completable. Finally, we say that K is p.d.-PAR(p1, . . . , pT ) completable if
it has a p.d. PAR completion of order (p1, . . . , pT ), or less.

The completion problem requires the specification of values for the in-
finitely many season-lag pairs that are not in I. We will show that the com-
pletion may be accomplished by working on an extention Ec(I) of I defined
as follows.

Definition 1. Let I be a set of season-lag pairs. The smallest constrained
season-lag set containing I is a set, Ec(I), of season-lag pairs,

Ec(I) = { (t, k) | t = 1, . . . , T, k = 0, . . . , pt } , (8)

where (p1, . . . , pT ) are the smallest non-negative integers satisfying the con-
straints p1 ≤ pT + 1 and pt ≤ pt−1 + 1 for t = 2, . . . , T , and such that
Ec(I) ⊇ I.

In particular, pt ≥ max τ(t) and pt may be larger than max τ(t) for one
or more ts. For example, let T = 2 and I = { (1, 0), (2, 0), (2, 2) }. Then
p1 = 1, p2 = 2, and Ec(I) = { (1, 0), (1, 1), (2, 0), (2, 1), (2, 2) }. So, in this
case Ec(I) 6= I. Note that max τ(1) = 0 < p1.

The constraints on (p1, . . . , pT ) in the definition of Ec(I) ensure that
τ(t) is a subset of { 0, 1, . . . , pt } for each t ∈ { 1, . . . , T }. Let τ c(t) =
{ 0, 1, . . . , pt } \ τ(t) be the complement of τ(t) in the set { 0, 1, . . . , pt }.
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It is natural to refer to the elements of Ec(I) \ I as gaps since these are
season-lag pairs with no prespecified values in K.

The importance of the set Ec(I) was discovered by Lambert-Lacroix [10]
who introduced it (using somewhat different notation) and showed that if
I = Ec(I), then the maximum entropy solution is a PAR(≤ p1,. . . ,≤ pT )
model. The problem ME(K,I) is linear in this case and the solution can
be obtained by setting all partial autocorrelations for larger lags to zero and
using periodic Levinson-Durbin recursions to obtain the autocovariances [10].
The following theorem summarises some results from [10] to which we refer
later. For more general settings with linear solutions see [1].

Theorem 1. Let p1, . . . , pT be non-negative integers satisfying the constraints
p1 ≤ pT + 1 and pt ≤ pt−1 + 1 for t = 2, . . . , T . Let R = {Rt(k), (t, k) ∈ I }
be a sequence defined on the set

I = { (t, k) | t ∈ { 1, . . . , T } , k ∈ { 0, 1, . . . , pt } } .

Then the following claims hold:

1. I = Ec(I).

2. The periodic Levinson-Durbin algorithm determines whether R is p.d.-
completable or not.

3. If R is p.d.-completable, then

(a) R is p.d.-PAR(p1, . . . , pT ) completable;

(b) The entropy of the p.d.-PAR(p1, . . . , pT ) completion of R is strictly
greater than the entropy of any other completion of R;

(c) The p.d.-PAR(p1, . . . , pT ) completion is a PAR(≤ p1,. . . ,≤ pT )
model whose standard parameters can be computed with the peri-
odic Levinson-Durbin algorithm.

We loosely refer to the case considered by Theorem 1 as the contiguous
case since for each t ∈ { 1, . . . , T } the set I contains all season-lag pairs (t, k)
from the contiguous set k = 0, 1, . . . , pt. Note however that for the equality
I = Ec(I) we need also the condition on the pts.

If I 6= Ec(I), then the completion problem is in general non-linear but, as
we discuss in the following sections, the solution is still a PAR(≤ p1,. . . ,≤ pT )
process. It is therefore sufficient to complete the missing values Rt(k) for
t = 1, . . . , T , k ∈ τ c(t), and obtain the remaining autocovariances with the
periodic Levinson-Durbin algorithm. We propose a procedure that gives (a
numerical approximation to) the solution, if it exists, and reports that no
solution exists otherwise.
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5 The method

To put the results in context we give here a description of the proposed
method and its main properties. Further details and justification of the
claims in this section are provided in the following sections.

The solution of the ME(K,I) problem is the acf of a PAR(≤ p1,. . . ,≤ pT )
model, where p1, . . . , pT satisfy the constraints given in Definition 1. This
model is determined uniquely from the autocovariances on the set Ec(I). In
particular, the entropy of the PAR model may be determined from these
autocovariances. The entropy may be considered as a function on the gaps
(t, k) ∈ Ec(I)\I since the autocovariances are fixed for (t, k) ∈ I. It is there-
fore sufficient to work on the gaps Ec(I) \ I. The following sections establish
that this function has some very desirable properties for numerical optimisa-
tion when a p.d. completion exists. The problematic task is to find an initial
value or show that the problem has no solution. We do not attack this task
directly. Instead, we solve a sequence of modified problems constructed so
that they have p.d. solutions and the solution of each one serves as the initial
value for the next one. The initial value for the first problem is arbitrary.
The most important property of this procedure is probably that when a p.d.
completion for K exists it solves the original problem (and therefore can be
terminated) after a finite number of steps.

The modified problems are obtained by adding sufficiently large constants
to the lag zero autocovariances. Indeed, a sequence which admits a p.d.
completion can be obtained by the addition of a sufficiently large constant
to the lag zero autocovariances, see Theorem 2. More precisely, let c be any
real number and Kc = {Rc

t(k), (t, k) ∈ I } be a modification of K obtained
by adding a constant, c, to Rt(0) for t = 1, . . . , T , i.e.

Rc
t (k) =

{
Rt(0) + c for k = 0,

Rt(k) for k 6= 0 and k ∈ τ(t).
(9)

The modified problems are ME(Kci ,I) for suitably chosen ci’s.
Our method consists of the following steps.

(1) Determination of PAR order Determine the set Ec(I) (see Equa-
tion (8)), i.e. find p1, . . . , pT satisfying the constraints of Definition 1. The
maximum entropy solution, if it exists, is a PAR(≤ p1,. . . ,≤ pT ) process
which is uniquely determined by its autocovariances for season-lag pairs in
Ec(I). It is therefore sufficient to find values for the autocovariances for the
gaps (t, k) ∈ Ec(I) \ I.
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(2) Initialisation Fill the gaps (t, k) ∈ Ec(I) \ I with arbitrary values
wc0t (k), e.g. zeroes, and let wc0 = {wc0t (k)}(t,k)∈Ec(I)\I . Set c0 = ∞ and
n = 0.

(3) Iteration (repeat while necessary)

(i) Set n = n+ 1 and check if the completion obtained at step n−1 as the
solution of the ME(Kcn−1 ,Ec(I)) problem may be used as initial value
for the unmodified ME(K,I) problem, i.e. if the sequence Rinit obtained
by merging K and wcn−1 provides a completion of K. The sequence
Rinit can be written more formally as Rinit = {Rinit

t (k)}(t,k)∈Ec(I), where

Rinit
t (k) =

{
Rt(k) for (t, k) ∈ I,

w
cn−1

t (k) for (t, k) ∈ Ec(I) \ I.

Alternatively,

Rinit = K ∪ wcn−1

= {Rt(k), (t, k) ∈ I } ∪ {wcn−1

t (k), (t, k) ∈ Ec(I) \ I }

(ii) If the answer in (i) is yes, then set cn = 0. Otherwise set cn to a value
in the interval (0, cn−1) such that the modified Rinit

Rinit = Kcn ∪ wcn−1

= {Rcn
t (k), (t, k) ∈ I } ∪ {wcn−1

t (k), (t, k) ∈ Ec(I) \ I }

provides a completion of Kcn (see the remarks below).

(iii) Solve the ME(Kcn ,Ec(I)) problem using Rinit as initial value. This
gives the gap “fillers” wcn = {wcnt (k) | (t, k) ∈ Ec(I) \ I }.

The theory developed in the following sections shows that the procedure
outlined above may be turned into an algorithm with excellent properties.
Its main features are summarised in the following remarks.

Remark 1. If cn = 0 for some n, then K∪wcn provides the maximum entropy
completion of K, i.e. the solution of the ME(K,I) problem.

Remark 2. If K is p.d.-completable, then cn is guaranteed to become 0 after
a finite number of iterations of step (3). Together with Remark 1 this means
that if the maximum entropy p.d. completion exists, then it will be found in
a finite number of repetitions of step (3).
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Remark 3. The solution of the modified problem ME(Kcn ,Ec(I)) at any iter-
ation n ≥ 1 gives an excellent initial value for the following iteration, n+ 1.

Remark 4. The sequence cn is monotonically decreasing.

Remark 5. If the solution is semi-definite, then cn monotonically decreases
to 0.

Remark 6. If the ME(K,I) problem has no solution, then cn decreases mono-
tonically to a positive limit.

Remark 7. If a p.d. solution of the ME(K,I) problem exists, then there exists
a positive constant δ such that at each step cn can be reduced by at least δ.
This ensures that after a finite number of iterations it will be possible to set
cn = 0. It is possible, at each iteration, to determine the smallest admissible
value of cn for step (3ii). A simple heuristic rule is sufficient however since we
always check first that cn = 0 is admissible. Moreover, zero often becomes an
admissible value for cn after the first iteration and in numerical experiments
with the wildest choices of the starting value, wc0 , and c0, the value cn = 0
becomes admissible after only a few steps (when a p.d. solution exists, of
course).

Remark 8. It is not necessary to determine c0 optimally. If it is larger than
necessary, then at the next step it will be possible to reduce it more.

Remark 9. The method works very well numerically and, in particular, when
the maximum entropy solution is “almost” p.s.d. or even exactly p.s.d., al-
though the latter case is not likely to happen except for artificial examples.

Remark 10. For stationary processes, the idea to maximise the entropy of
a modified autocovariance sequence was employed by Rozario and Papoulis
[14]. They assumed from the outset that a p.d. solution exists and did not
notice the finite number of iterations property. Thus, our treatment is not
only a generalisation of the method to the periodic case but it also solves the
problem completely by detecting when a solution does not exist or is only
p.s.d..

6 Properties and details

6.1 Determination of the PAR order

The values of p1, . . . , pT and the set Ec(I) can be determined from I by
ensuring that the constraints of Definition 1 are satisfied. To achieve this, set
initially pi to the maximum element of τ(i), for i = 1, . . . , T , and let s be such
that ps = max(p1, . . . , pT ). For convenience, extend p1, . . . , pT periodically,
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so that p0 ≡ pT , p−1 ≡ pT−1, and so on. Then set ps−i = max(ps−i+1 − 1,
ps−i) for i = 1, . . . , T −1 (in this order) to ensure that the p’s are as required.

6.2 Maximisation of the entropy rate

In this section we give details about Step 3(iii) of the method described in
Section 5. At this step we maximise the entropy rate of a sequence which is
known to be p.d.-completable starting with an initial completion determined
at Steps 3(i–ii).

Let Kc be a sequence defined on the season-lag set I and let γ0 be a p.d.
sequence whose restriction to I coincides with Kc. Let Ec(I) and p1, . . . , pT
be as defined in Definition 1. In this section we consider the solution of the
ME(Kc,I) problem given the initial solution γ0.

Let ΓcPAR be the set of all p.d.-PAR(≤ p1,. . . ,≤ pT ) completions of Kc.
Let γ ∈ Γc be any completion of Kc. Consider the restriction of γ on Ec(I).
The season-lag set Ec(I) is a contiguous set of the form

Ec(I) = { (t, k) | t = 1, . . . , T, k = 0, . . . , pt } ,

where p1, . . . , pT satisfy the constraints in Definition 1. From part 2. of
Theorem 1 it follows that there exists a unique PAR(≤ p1,. . . ,≤ pT ) acf,
γPAR, which coincides with γ on Ec(I) and whose entropy, h(γPAR), is strictly
larger than that of any other sequence which coincides with γ on Ec(I). So
for any γ in Γc, one can associate a completion γPAR in ΓcPAR such that

h(γ) ≤ h(γPAR),

with equality if and only if γ = γPAR. Hence, we have the following lemma.

Lemma 1. The maximum entropy solution of the ME(Kc,I) problem is a
PAR(≤ p1,. . . ,≤ pT ) acf, i.e.

argmax
γ∈Γc

h(γ) = argmax
γ∈Γc

PAR

h(γ).

Note that p1, . . . , pT are associated with the set Ec(I) which contains I
but, in general, is larger.

Consider the problem ME(Kc∪ω,Ec(I)) , where ω is an admissible filling
of the gaps Ec(I) \ I. The sequence Kc ∪ ω is given on the constrained set
Ec(I) which satisfies the requirements of Theorem 1. Hence, for any given
ω, the solution to the ME(Kc ∪ ω,Ec(I)) problem is a PAR acf which may
be obtained using the PLD algorithm.
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Let hME(Kc ∪ ω) be the entropy rate of the solution of the ME(Kc ∪
ω,Ec(I)) problem. The function hME(Kc∪ω) may be considered as a function
of the gaps only, since Kc is fixed. So, we will write simply hME(ω). To solve
the ME(Kc,I) problem we need to maximise hME(ω) over all admissible ωs.
This maximisation is greatly facilitated by the fact that hME(ω) is very well
behaved—it is strictly concave on the set of the admissible fillings of the
gaps, and it is continuous and smooth. We discuss these properties below.

Any convex linear combination of admissible gap fillings is admissible.
For reference, we formulate this as a lemma, see Appendix A.1 for the proof.

Lemma 2. The set of the admissible gap fillings is convex.

The following result (and its proof) is valid under more general conditions
but we formulate it in a form sufficient for our purposes.

Lemma 3. Let the process {Vt} be defined by the equation

Vt = θXt + (1− θ)Yt,

where {Xt} and {Yt} are processes with acf K1 and K2, respectively, and θ
is a random variable taking values 1 and 0 with probability α and β, respec-
tively, and independent of {Xt} and {Yt}. Let X̂t =

∑t−1
i=1 α

X
t,iXt−i be the

best linear predictor of Xt given Xt−1, . . . , X1 and let σ2
t,X be the variance of

the corresponding prediction error. Define similarly σ2
t,Y , αYt,i and σ2

t,V , αVt,i.
Then

1. The autocovariance function of Vt is equal to αK1 + βK2.

2. σ2
t,V ≥ ασ2

t,X+βσ2
t,Y for each t > 1, with equality if and only if αXt,i = αYt,i

for i = 1, . . . , t− 1.

3. log(σ2
t,V ) ≥ α log(σ2

t,X) + β log(σ2
t,Y ), with equality if and only if αXt,i =

αYt,i for i = 1, . . ., and σ2
t,X = σ2

t,Y .

Note that for equality in part (3) of the lemma it is not sufficient to
require that σ2

t,X = σ2
t,Y , the prediction coefficients should also be the same.

The following corollary is used to show the concavity of hME(ω).

Corollary 1. In the notation of Lemma 3, let X and Y be PAR(≤ p1,. . . ,≤
pT ) processes. Then for any t0 greater than max(p1, . . . , pT ) we have

t0+T∑
t=t0+1

log(σ2
t,V ) ≥ α

t0+T∑
t=t0+1

log(σ2
t,X) + β

t0+T∑
t=t0+1

log(σ2
t,Y )

with equality if and only if the autocovariance functions of X and Y are the
same.

12



Lemma 4. hME(ω) is strictly concave.

It follows that hME(ω) is continuous since it is a concave function de-
fined on an open set (see e.g. [13, p. 93, Theorem D]). From the periodic
Yule-Walker equations we can also see that its first and second order par-
tial derivatives (as well as higher order ones) exist. Together with concavity
the existence of the first order partial derivatives implies differentiability of
hME(ω) (see [13, p. 101, Theorem D]). We also may conclude that the Hessian
matrix of hME(ω) is positive definite (see [13, p. 103, Theorem F]).

The above results suggest that methods based on first and second deriva-
tives, such as gradient methods and Newton-Raphson’s method, should be
sufficiently efficient for maximisation of hME(ω). The entropy is a very com-
plicated function of the gaps and it is hardly possible to write down useful ex-
pressions for its derivatives for a general pattern of the gaps. So, we develop
recursions for the first and second order derivatives based on the periodic
Levinson-Durbin algorithm. Details are given in [3].

6.3 The modified ME problems

The essence of Step 3 of our method (see Section 5) is that instead of search-
ing for a completion of K to be used as an initial value for numerical max-
imisation of the entropy for the ME(K,I) problem, we deal with the simple
problem of finding a modification, Kc, of K for which a given initial value
is a completion, and solve the modified problem ME(Kc,I). When this pro-
cess is iterated, the modification needed becomes smaller and smaller. The
properties of the resulting procedure and further details are discussed in this
section.

The following theorem is the backbone of our method. Its proof is given
in Appendix A.4.

Theorem 2. Let c be any real number and Kc = {Rc
t(k), (t, k) ∈ I } be

a modification of K obtained by adding c to Rt(0) for t = 1, . . . , T (see
Equation (9)). Then there is a constant ω such that Kc is p.d.-completable
for c > ω, Kc is not completable for c < ω, and Kc is p.s.d.-completable for
c = ω.

Of course, if K is p.d.-completable, then ω < 0. If K is p.d.-completable,
then Kc is completable for any c > 0 and hME(Kc) > hME(K). Note that
the inequality is strict.

For any fixed sequence K, hME(Kc) can be viewed as a function of c,
defined over (ω,∞), where ω is defined as in Theorem 2. The following
lemma shows that hME(Kc) is a well behaved function.
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Lemma 5. hME(Kc) is strictly concave and continuous as a function of c.

The following property is intuitively clear but the “strict” claim is some-
what delicate.

Lemma 6. hME(Kc) is strictly increasing as a function of c.

The above properties provide the basis for optimisation w.r.t. c. Let γc,ME

be the acf associated to the entropy rate hME(Kc). The following result shows
that γcn,ME → γc0,ME when cn → c0. In particular, this property gives an
explanation as to why the solution, γc,ME

n , obtained at step n is a good initial
value for maximisation at step n+ 1.

Lemma 7. γc,ME is continuous as a function of c defined on (ω,∞).

Theorem 2 shows, in particular, that by trying larger and larger cs we
eventually will find a p.d.-completable Kc which can be used at the first
iteration of our method. At the nth iteration of step (3) of our method we
need to modify the completion from the preceding iteration if it cannot be
used directly as initial value for our original problem. Moreover, we wish to
modify with a smaller c. In general, we wish cn → 0. We show below that
the cns can be chosen to be monotonically decreasing. Moreover, when a p.d.
completion exists, there is a universal positive constant d∗ such that cn can
be always chosen so that cn < cn−1 − d∗. The constant is universal in the
sense that it does not depend on the previous cs. So, after finite number of
iterations the value cn = 0 will become admissible.

Let γc,ME be the maximum entropy p.d. completion of Kc. Then for
sufficiently large δ the sequence {γt(k)}(t,k)∈I defined by

γt(k) =


Rt(0) + δ + a for k = 0, t = 1, . . . , T ,

Rt(k) for k 6= 0 and (t, k) ∈ I,

γc,ME
t (k) k ∈ τ c(t),

(10)

is p.d.-PAR(p1, . . . , pT ) completable for any a > 0. Let q(c) be the infimum of
the δ’s for which this is the case. It is clear that q(c) ≤ c. Then dc = c−q(c) is
the largest value that can be subtracted from the lag zero autocovariances of
Kc keeping at least the p.s.d. property. However, if it turns out that q(c) = c,
then this would mean that γc,ME is not a completion for any c0 smaller than
c and therefore cannot be used as initial value for any mep problem with
smaller c. This would be a problem for the maximisation procedure.

Lemma 10 in Appendix A.9 show that q(c) < c (strict inequality). Hence,
it is always possible to use the mep solution for some value of c as an initial
value for a mep problem with smaller c.
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Let d∗ = infc≥max(0,ω) dc, where ω is the one defined in Theorem 2. The
constant d∗ is a universal lower bound on the possible reduction of cn at
Step (3) of our method. From the discussion so far we know that d∗ ≥ 0.
The following theorem shows that the inequality is strict, see Appendix A.9
for the proof.

Theorem 3. If K is p.d.-completable, then d∗ > 0.

Theorem 3 shows that at iteration n of Step (3) of the method cn−1 can
be reduced by at least, say, d∗/2 by setting cn = cn−1 − d∗/2. Therefore,
after a final number of iterations the value 0 will become admissible value
for cn, i.e. Rinit specified at Step (3i) will provide a completion of K to
be used as initial value for the unmodified ME(K,I) problem and after the
maximisation step (3iii) the algorithm will terminate.

Informally, the positiveness of d∗ means that the iterations of step (3) of
the method may use a monotonically decreasing sequence of cs and they will
never get stuck at a particular value of c. This property is due to the fact
that we are solving a maximum entropy problem at each step and would not
hold if we did not do that.

A Proofs of theorems and lemmas

A.1 Proof of Lemma 2

We need to show that any convex linear combination of admissible gap fillings
is also admissible gap filling. Indeed, let w(1) and w(2) be two admissible gap
fillings. Then K1 = K ∪ w(1) and K2 = K ∪ w(2) are positive definite.

Let w() = αw(1) + βw(2), where α + β = 1 and α, β ≥ 0. Obviously,
K3 = K ∪ w() = α(K ∪ w(1)) + β(K ∪ w(2)). It remains to show that
K3 is autocovariance sequence. Indeed, let {Xt} be a process with acf K1,
{Yt} a process with acf K2, and θ a random variable taking values 1 and 0
with probability α and β, respectively, and independent of {Xt} and {Yt}.
Consider the process {Vt} defined by the equation

Vt = θXt + (1− θ)Yt.

The autocovariance function of Vt is equal to α(K ∪ w(1)) + β(K ∪ w(2)).
Hence w() is admissible.
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A.2 Proof of Lemma 3

Parts (1) and (2) are obtained as follows.

Rv(t, k) = E(θXt + (1− θ)Yt)(θXt−k + (1− θ)Yt−k)
= E(θ2XtXt−k + (1− θ)2YtYt−k)

= E(θ2)E(XtXt−k) + E(1− θ)2E(YtYt−k)

= αRX(t, k) + βRY (t, k) (proving part 1).

σ2
t,V = Var(Vt − V̂t)

= E(Vt − V̂t)2

= E(E((Vt − V̂t)2|θ))
= αE((Vt − V̂t)2|θ = 1) + βE((Vt − V̂t)2|θ = 0)

≥ αE((Vt −
∑
i

αXt,iVt−i)
2|θ = 1) + βE((Vt −

∑
i

αYt,iVt−i)
2|θ = 0)

= ασ2
t,X + βσ2

t,Y .

The inequality above will be strict unless αVt,i = αXt,i = αYt,i for all i, as claimed
in part 2.

(3) Taking natural logarithms on both sides of the inequality in part (2)
of the lemma we get

log(σ2
t,V ) ≥ log

(
ασ2

t,X + βσ2
t,Y

)
. (11)

On the other hand, the generalised inequality between the arithmetic and
geometric means gives

ασ2
t,X + βσ2

t,Y ≥ exp(α log(σ2
t,X) + β log(σ2

t,Y )),

where the inequality is strict unless σ2
t,X = σ2

t,Y . Taking logarithms from
both sides gives

log(ασ2
t,X + βσ2

t,Y ) ≥ α log(σ2
t,X) + β log(σ2

t,Y ). (12)

From Equations (11) and (12) we get the required inequality. The in-
equality becomes equality if and only if equality holds in both equations,
which in turn happens if and only if both conditions in part (3) are met.

A.3 Proof of Lemma 4

Indeed, let w(1) and w(2) be two different gap fillings and ω = αw(1) + βw(2),
where α and β are positive with α + β = 1. Then by Lemma 1 hME(w(1))
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and hME(w(2)) correspond to PAR completions. From Corollary 1 we obtain
that

1

T

t0+T∑
t=t0+1

log(σ2
t,ω) > α

1

T

t0+T∑
t=t0+1

log(σ2
t,w(1)) + β

1

T

t0+T∑
t=t0+1

log(σ2
t,w(2)),

where the inequality is strict since the two autocovariance sequences are
different. For sufficiently large t0 the two sums on the right-hand side are
equal to T times hME(w(1)) and hME(w(2)), respectively (see Equation (3)).
So, for large t0,

1

T

t0+T∑
t=t0+1

log(σ2
t,ω) > αhME(w(1)) + βhME(w(2)),

The left-hand side is smaller or equal to hME(ω) since ω is a completion.
Hence,

hME(ω) > αhME(w(1)) + βhME(w(2)),

as required for strict concavity.

A.4 Proof of Theorem 2

If Kc1 is p.d.-completable, then Kc2 is p.d.-completable for any c2 > c1.
Indeed, suppose that Kc1 is p.d.-completable and c2 is any number greater
than c1. Let γc1 be any completion of Kc1 . Let {Xt} be a process with acf
γc1 . Let {ut} be white noise with mean 0 and variance c2 − c1. Define a
process {Yt} by Yt = Xt+ut. The autocovariance function of {Yt} is positive
definite and is given by the equation{

Rt(0) + c1 + (c2 − c1) for k = 0,

γc1t (k) for k 6= 0.

So, the autocovariance function of {Yt} is a positive definite completion of
Kc2 . Hence, Kc2 is p.d.-completable.

A similar argument can be used to show that ifKc1 is not p.d.-completable,
then Kc2 is not p.d.-completable for any c2 < c1. The set of c’s for which Kc

is p.d.-completable is bounded from below since the lag 0 autocovariances,
Rt(0) + c, must be positive.

Let ω = infc { c | Kc is p.d.-completable }. Then trivially Kc is not com-
pletable for c < ω. If we assume that there is a c > ω such that Kc is not
completable, then using the definition of ω as an infimum we can find c1 such
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that ω < c1 < c and Kc1 is p.d.-completable. But then Kc must be p.d.-
completable too since c > c1, a contradiction. Hence, Kc is p.d.-completable
for c > ω.

To prove the last claim of the theorem, i.e. that Kc is p.s.d.-completable
for c = ω, first note that Kω is at least p.s.d. since a p.s.d. completion can
be obtained as a limit of a convergent sequence of p.d. completions. Assume
that Kω is p.d.-completable and let γ be a p.d. completion of Kω. Since
the entropy rate is continuous with respect to R(t, 0) on the set of positive
definite completions we can find sufficiently small ε such that the sequence
{rt(k)}

rt(k) =

{
γt(0)− ε for k = 0,

γt(k) for k 6= 0.

is p.d.. But γt(0) − ε = Rt(0) + ω − ε and hence {rk} is a p.d. completion
for Kω−ε. This contradicts the choice of ω. So, Kω is not p.d..

A.5 Proof of Lemma 5

First let us remark that for α+β = 1, α, β ∈ [0, 1], αKc1 +βKc2 = Kαc1+βc2 .
So for c1, c2 ∈ (ω,∞), Lemma 4 leads to

αhME(Kc1) + βhME(Kc2) < hME(αKc1 + βKc2) = hME(Kαc1+βc2).

That is the function that associates hME(Kc) to c is strictly concave. As a
consequence, this function is also continuous at any point in (ω,∞).

A.6 Proof of Lemma 6

We use the following lemma in the proof of Lemma 6.

Lemma 8. Let {Xt} and {Ut}, t ∈ Z, be two uncorrelated processes (possibly
non-stationary), i.e. EXtUs = 0 for all t 6= s. Let also Yt = Xt + Ut. Then

σ2
Y,t ≥ σ2

X,t + σ2
U,t, t ∈ Z,

where σ2
Y,t, σ

2
X,t, and σ2

U,t are the variances of the innovation processes of
{Yt}, {Xt}, and {Ut}, respectively.

Proof of Lemma 8. Let MZ(t) be the closed linear subspace sp{Zs, s < t}
associated to any process {Zt}. Here it is convenient to use a geometrical
approach by considering the inner product 〈U, V 〉 = E {UV } = Cov {U, V }.
The norm associated with this inner product is defined by ‖U‖2 = V ar(U).
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We denote by PM(Zt) the orthogonal projection (for this inner product) of
the variable Zt on the space M.

Since any element ofMY (t) is a linear combination of Xs +Us, s < t, we
have

MY (t) ⊂MX(t)⊕MU(t),

and

‖Yt − PMX(t)⊕MU (t)(Yt)‖2 = inf
v∈MX(t)⊕MU (t)

‖Yt − v‖2

≤ inf
v∈MY (t)

‖Yt − v‖2

≤ σ2
Y,t. (13)

Furthermore, since {Xt} and {Ut} uncorrelated processes and the spaces
MX(t) and MU(t) are orthogonal, we obtain

PMX(t)⊕MU (t)(Yt) = PMX(t)(Yt) + PMU (t)(Yt)

= PMX(t)(Xt) + PMU (t)(Ut).

This leads to

‖Yt − PMX(t)⊕MU (t)(Yt)‖2 = ‖Xt − PMX(t)(Xt)‖2 + ‖Ut − PMU (t)(Ut)‖2,

= σ2
X,t + σ2

U,t,

and the inequality (13) gives the result.

Proof of Lemma 6. Let c1 and c2 be two reals in (ω,∞) such that c1 < c2.
Recall that γc1,ME is the acf associated with the entropy rate hME(Kc1). Let
{Xt} be a process with acf γc1,ME. Let {Ut} be a white noise uncorrelated
with {Xt}, with mean 0 and variance σ2

U,t = c2 − c1 > 0. Let us define a
process {Yt} by Yt = Xt +Ut. Then the acf γc2 of {Yt} is p.d.and is given by

γc2t (k) =

{
Rt(0) + c1 + (c2 − c1) for k = 0,

γc1,ME
t (k) for k 6= 0.

So γc2 is a p.d. completion of Kc2 and its entropy rate, h(γc2), does not
exceed the maximum possible, i.e.

h(γc2) ≤ hME(Kc2). (14)

Note that h(γc2) is also the entropy rate of the process {Yt}. Furthermore,
Lemma 8 shows that

σ2
Y,t ≥ σ2

X,t + σ2
U,t, t = 1, . . . T.
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But the variance, σ2
U,t, of {Ut} is strictly positive. Hence,

σ2
Y,t > σ2

X,t, t = 1, . . . T.

Together with Equation (3) this shows that

h(γc2) > h(γc1,ME) = hME(Kc1).

The last inequality together with Equation (14) gives hME(Kc1) < hME(Kc2),
as required.

A.7 Proof of Lemma 7

For any i the sequence γci,ME is the acf of a PAR(≤ p1,. . . ,≤ pT ) (see Sec-
tion 6.2). Also, the coefficients γci,ME

t (k) = Rt(k) are fixed when (t, k) ∈ I.
So, it is sufficient to consider γci,ME

t (k) for (t, k) ∈ Ec(I) \ I only. Below we
use the fact that the set Ec(I) \ I is finite.

Let {ci} be any sequence that converges to c ∈ (ω,∞). Then the se-
quence {ci} is bounded and γci,ME

t (0) = Rt(0) + ci. Since γci,ME
t (0) ≤

maxt∈{1,...,T}Rt(0)+maxi ci ≡M , it follows that γci,ME
t (k) is bounded as well.

Therefore |γci,ME
t (k)| ≤ γci,ME

t (0) ≤ M for all t, k and ci. If we now assume
that γci,ME

t (k) does not converge to γc,ME
t (k) for (t, k) ∈ Ec(I) \ I, then there

exist subsequences converging to different limits. However, the entropies of
these (different) limiting sequences should be the same since hME(Kci) con-
verges to hME(Kc) by the continuity claim in Lemma 5. Thus we would have
several sequences having the maximum entropy rate in Kc, a contradiction
with the uniqueness (see Lemma 4 and [13, p. 123, Theorem A]).

A.8 Two technical lemmas

Lemma 9. Let γ be a positive definite periodic acf of a PAR(p1,. . . ,pT )
model. There exists a constant ε such that any sequence r defined for t =
1, . . . , T , k = 0, 1, . . . , pt, and satisfying |rt(k)−γt(k)| < ε is p.d.-PAR(p1, . . . , pT )
completable.

Proof of Lemma 9. γ is p.d.-PAR(p1, . . . , pT ) completable if and only if the
corresponding prediction error variances are positive. The latter depend
continuously on γ as can be seen from the periodic Yule-Walker equations
and the PLD algorithm. Therefore small changes in the autocovariances will
leave the prediction error variances positive, i.e. the changed autocovariance
sequence will be p.d.-PAR(p1, . . . , pT ) completable. Standard reasoning then
leads to the claim of the lemma.
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We will not necessarily get a p.d. sequence if we replace γc,ME
t (k) on the

last line of Equation (10) by the maximum entropy solution for another c.
But the p.d. property holds in a neighbourhood of c as Lemma 10 shows.

Lemma 10. For each c there exists a neighbourhood (c−ε0, c+ε0) such that
the function {

Rt(0) + q(c) + a for k = 0,

Rt(k) for k 6= 0 and (t, k) ∈ I,

is p.d.-PAR(p1, . . . , pT ) completable for any ε such that |ε| < ε0.

Proof of Lemma 10. This is a corollary of Lemma 9.

A.9 Proof of Theorem 3

We will prove the claim by contradiction. Assume that d∗ = 0 and note
that we consider c’s over a finite interval. Hence, there exists a convergent
sequence {ck} such that dk → 0. Let c∗ = limk→∞ ck. Let γck,ME be the ME
autocovariance sequence corresponding to ck. Lemma 7 shows that γck,ME →
γc

∗,ME. Let δ = (c∗ − q(c∗))/2 where q(·) is as defined above corresponding
to γc

∗,ME. Then
Rt(0) + q(c∗) + δ for k = 0,

Rt(k) for k 6= 0 and (t, k) ∈ I,

γc
∗,ME
t (k) k ∈ τ c(t)

(15)

is p.d.-PAR(p1, . . . , pT ) completable. By Lemma 9 for sufficiently large k
Rt(0) + q(c∗) + δ for k = 0,

Rt(k) for k 6= 0 and (t, k) ∈ I,

γck,ME
t (k) k ∈ τ c(t)

(16)

is also p.d.-PAR(p1, . . . , pT ) completable.
On the other hand, ck → c∗ and dk = ck − q(ck) → 0. Hence q(ck) >

q(c∗) + δ for sufficiently large k.
So, q(c∗) + δ is smaller than q(ck) and

Rt(0) + q(c∗) + δ for k = 0,

Rt(k) for k 6= 0 and (t, k) ∈ I,

γck,ME
t (k) k ∈ τ c(t)

(17)

is p.d.-PAR(p1, . . . , pT ) completable, a contradiction with the definition of q().
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