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Abstract. Several approaches have been developed for the spectral analysis of
nonstationary processes in the literature. Otherwise, it has been shown recently that, as
in the stationary case, the partial autocorrelation function characterizes, like the
autocovariance function, the second-order properties of the process. Our main result is
the introduction of a new time-dependent power spectrum clearly related to this function.
At each time, this spectrum describes a stationary situation in which the present is
correlated with the past in the same way as our nonstationary process at this time. The
properties of this spectrum are analysed. In particular, it is defined for all nonstationary
processes and is in a one-to-one correspondence with the autocovariance function.
Unfortunately, no spectral representation of the process is actually associated with it. This
spectrum is also compared with two similar other spectra. Some examples of theoretical
spectra and an estimated spectrum are considered for illustration.

Keywords. Nonstationary processes; discrete time; second-order properties; partial
autocorrelation; time-dependent spectrum.

1. INTRODUCTION

The power spectrum is a well-known concept for a stationary process. Indeed, the
autocovariance function (ACF) Rðt; sÞ, which is a function of ðt � sÞ only, is
nonnegative definite (n.n.d). Hence, a spectral measure can be associated with it
by the Fourier transform. For nonstationary processes, several attempts to define
a spectrum have been developed. Priestley (1965) considers the particular class of
oscillatory processes. Such a process may be seen as the result of passing a
stationary process through a time-varying filter. So, for a time instant, its
evolutionary power spectrum may be interpreted as the classical spectrum of the
stationary process which would have been obtained if the filter was fixed. This
interpretation, interesting from a physical point of view, leads to slightly different
approaches starting directly from the time-domain decomposition of the process.
This is the case for the spectrum of Mélard (1978) or the one of Grenier (1984); see
also Grenier (1987). Indeed, the former is based on the Wold–Cramér decom-
position of the process while the latter is related to an ARMA representation. We
also observe another approach in Martin and Flandrin (1985) who establish a
Wigner–Ville analysis in the field of the harmonizable processes.
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The main objective of this paper is to describe the covariance structure of a
discrete-time random process. The evolutive instantaneous spectrum introduced
here is directly related to the partial autocorrelation function (PACF) bð�; �Þ.
Although the partial correlation notion was introduced many years ago by Yule
(1907), the parameterization of a stationary time series given by the PACF is
relatively recent (Ramsey, 1974). This result is also observed by Burg (1975), in
the signal processing field, where the partial autocorrelation coefficients are called
reflection coefficients. In fact, this one-to-one correspondence is a classical result
in orthogonal polynomial theory when the spectral measure has an infinite set of
growth points (Geronimus, 1960). In particular, that provides the direct
correspondence between the PACF and the spectral measure. Recently, the
one-to-one correspondence between the ACF and PACF has been extended to the
non-stationary situation (Dégerine and Lambert, 1996; Dégerine and Lambert-
Lacroix, 2002). As in the stationary case, the advantage of the PACF is that it is
subject to very simple constraints in comparison with the ACF which must be
n.n.d. The idea developed here, to extend the spectrum concept to the
nonstationary case, is based on the following remark. For a fixed t in Z, the
function of only one variable,

RtðkÞ ¼ Rðt; t � kÞ kP0

is not necessarily n.n.d. As a consequence, no spectral measure can be associated
with Rtð�Þ by the Fourier transform. On the other hand

btðkÞ ¼ bðt; t � kÞ kP0

is always the PACF of a stationary process. So the evolutive instantaneous
spectrum is simply defined as the set of measure fdFtðkÞ; t 2 Zg, where dFtðkÞ is the
spectral measure associated with btð�Þ. Our approach agrees with the framework
of Loynes (1968) on the spectrum concept for nonstationary processes. The
evolutive instantaneous spectrum is comparable to those of Mélard and Grenier
although these latters are more directly related to the time-domain description of
the process rather than to its second-order properties.

The remainder of the paper is organized as follows. Section 2 is devoted to
the evolutive instantaneous spectrum. This new spectrum is analysed through the
desirable properties of Loynes. In Section 3, the comparison is made with the
spectra of Mélard and Grenier. Examples, as the sampled Brownian motion and
linear ‘chirps’, together with the estimated spectrum of an autoregressive process
are considered in Section 4 for illustration. Conclusions and further comments on
this spectrum are given in Section 5. The paper ends with Section 6 where some
proofs can be found.

2. EVOLUTIVE INSTANTANEOUS SPECTRUM PROPERTIES

In the first subsection, we review some results on the PACF investigated in
Dégerine and Lambert-Lacroix (2002); see also Dégerine and Lambert (1996).
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The evolutive instantaneous spectrum is presented in the second subsection and its
analysis through Loynes recommendations is given in the last one.

2.1. Partial autocorrelation function

Let X ð�Þ ¼ fX ðtÞ; t 2 Zg be a scalar complex-valued nonstationary process with
zero mean. In this paper, we are concerned only with the second-order
properties of the process X ð�Þ. Then it is convenient to use a geometrical
approach by considering the Hilbert space M ¼ �LLfX ðtÞ; t 2 Zg with the
hermitian product hU ; V i ¼ EfU �VV g. So the ACF of X ð�Þ, denoted by Rð�; �Þ, is
defined by

Rðt; sÞ ¼ hX ðtÞ;X ðsÞi ðt; sÞ 2 Z2

This function satisfies the hermitian symmetry Rðs; tÞ ¼ Rðt; sÞ. Furthermore, it is
n.n.d., that is for all sOt,

Rs;t ¼ fRðsþ i; sþ jÞgi;j¼0;...;t�s

is n.n.d. as the covariance matrix of the random vector ½X ðsÞ; . . . ;X ðtÞ�T. We
consider the decomposition

DR ¼ IðDRÞ þ BðDRÞ

of the set DR of n.n.d. functions, where the interior IðDRÞ consists of all
positive definite (p.d.) functions (all the matrices Rs;t are p.d.), while the
boundary BðDRÞ consists of all n.n.d. functions for which some matrix Rs;t is
singular. In this case, the corresponding process X ð�Þ will be said locally
deterministic since for some sOt, the components X ðsÞ; . . . ;X ðtÞ are almost
surely linearly dependent. In the opposite case, the process X ð�Þ will be said not
locally deterministic.

The ðt � sÞth-order forward partial innovation �f ðt; sÞ is the linear prediction
error of X ðtÞ by its nearest past of length t � s. Putting

�f ðt; tÞ ¼ X ðtÞ and rf 2ðt; sÞ ¼ k�f ðt; sÞk2

the associated normalized innovation is defined, for sOt, by

gf ðt; sÞ ¼ �f ðt; sÞ
rf ðt; sÞ

with the convention 0�1 ¼ 0. Notice that this convention is necessary in the
locally deterministic case when X ðtÞ 2 Mðs; t � 1Þ ¼ LfX ðsÞ; . . . ;X ðt � 1Þg. The
backward innovations, obtained by reversing the time index, are denoted with b,
�bðs; tÞ and gbðs; tÞ ¼ �bðs; tÞ=rbðs; tÞ for sOt. The PACF bð�; �Þ describes, for all
ðt; sÞ of Z2, the partial correlation coefficient between X ðtÞ and X ðsÞ in the set
fX ðsÞ; . . . ;X ðtÞg. With the previous notations, we have
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bðt; sÞ ¼
hgf ðt; sþ 1Þ; gbðs; t � 1Þi if s < t

kX ðtÞk2 if s ¼ t

hgbðt; s� 1Þ; gf ðs; t þ 1Þi if s > t

8><
>:

Putting bðt; tÞ ¼ varfX ðtÞg instead of 1, the function bð�; �Þ, likely to the ACF
Rð�; �Þ, characterizes the second-order properties of X ð�Þ. The advantage of this
function is to be easily identifiable. For t 6¼ s, its magnitude is less than 1, with
equality to 1 corresponding to a linear relationships. Indeed, for s < t, jbðt; sÞj ¼ 1
if and only if s is the largest integer such that X ðtÞ belongs to the set Mðs; t � 1Þ.
By convention, the partial correlation is then put to 0 everywhere it is undefined,
i.e. for the points ðt; s� kÞ and ðt þ k; sÞ, kP1. In the same way, we have

bðt; t � kÞ ¼ bðt þ k; tÞ ¼ 0 for kP0

when a variable X ðtÞ is equal to zero almost surely. More precisely, the PACF
bð�; �Þ is in the set Db defined by these conditions:

(i) bðs; tÞ ¼ bðs; tÞ with bðt; tÞP0 and jbðt; sÞjO1; ðt; sÞ 2 Z2

(ii) bðt; tÞ ¼ 0 ) bðt; sÞ ¼ 0; s 2 Z

(iii) jbðt; sÞj ¼ 1; s < t ) bðt; s� kÞ ¼ bðt þ k; sÞ ¼ 0; kP1

We also consider the decomposition

Db ¼ IðDbÞ þ BðDbÞ

where BðDbÞ consists of all bð�; �Þ 2 Db for which (ii) or (iii) is effectively used.
Thus bð�; �Þ 2 IðDbÞ when, for all t 2 Z, it satisfies bðt; tÞ > 0 and jbðt; sÞj < 1 for
s 6¼ t.

As it has been shown in Dégerine and Lambert-Lacroix (2002), the set Db is the
PACF variation domain. That is, any function of Db is a nonstationary (or
stationary) process PACF. This result has been established using an algorithm
which allows to construct a process with any prescribed PACF in Db. In
particular, that implies the surjectivity of the application Rð�; �Þ �! bð�; �Þ onto the
set Db. The injectivity of this application is obtained by extending the Levinson–
Durbin algorithm to the general nonstationary situation. Furthermore, IðDbÞ
corresponds to the not locally deterministic case while BðDbÞ consists of PACF of
the locally deterministic processes.

2.2. Evolutive instantaneous spectrum definition

The spectral measure dF ðkÞ of a stationary process X ð�Þ is related to the ACF Rð�Þ,
where RðkÞ ¼ Rðt; t � kÞ, by the Fourier transform. We have Rð�kÞ ¼ RðkÞ and
Rð�Þ is a n.n.d. function. The PACF bð�Þ, where bðkÞ ¼ bðt; t � kÞ, satisfies
bð�kÞ ¼ bðkÞ but is subject only to one of these two constraints ðbð0Þ > 0Þ:
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(i) jbðkÞj < 1; k 2 Zþ

(ii) jbðkÞj < 1; 1Ok < d; jbðdÞj ¼ 1; bðkÞ ¼ 0; k > d

Starting from bð�Þ, the Levinson–Durbin algorithm gives Rð�Þ, and dF ðkÞ can be
obtained by the inverse Fourier transform. When the PACF satisfies the claim
(i) above, or equivalently the spectral measure has an infinite set of growth
points, the direct correspondence between bð�Þ and dF ðkÞ is provided by the
orthogonal polynomials theory (Geronimus, 1960). Let us introduce the space
L2f½�p; p�; dF g of complex-valued functions square integrable with respect to
the measure dF . Then with the hermitian product

h/;widF ¼
Z p

�p
/ðkÞwðkÞdF ðkÞ

this set is the Hilbert space �LLfeink; n 2 Zg. The Gram-Schmidt orthogonalization
process of the set feink; n 2 Ng in the space L2f½�p; p�; dF g defines a system of
orthogonal polynomials fuf

nðeinkÞ; n 2 Ng called Szegö polynomials. On the
other hand, the space L2f½�p; p�; dF g is isometric to M by the application
Ifeinkg ¼ X ðnÞ. We have �f ðn; 0Þ ¼ Ifuf

nðeikÞg and hence

uf
nðzÞ ¼

Xn
k¼0

aðn; kÞzn�k n 2 N

In the backward sense, we obtain �bð0; nÞ ¼ Ifub
nðeikÞg, where ub

n is the reciprocal
polynomial of uf

n :

ub
nðzÞ ¼

Xn
k¼0

aðn; kÞ zk ¼ znuf
n

1

z

� �

So the orthogonal system fuf
n ; n 2 Ng is characterized in terms of bð�Þ by the

recurrence formulae

uf
0ðzÞ ¼ ub

0ðzÞ ¼ 1

uf
nðzÞ ¼ zuf

n�1ðzÞ � bðnÞub
n�1ðzÞ

ub
nðzÞ ¼ zub

n�1ðzÞ � bðnÞzuf
n�1ðzÞ n 2 N�

In this way, the coefficients bðnÞ; nP1 are related to dF , the ½�p; p� measure with
respect to dF giving the variance bð0Þ. The inverse correspondence is based on the
transform which associates to the measure dF the Caratheodory function:

GðzÞ ¼
Z p

�p

eik þ z
eik � z

dF ðkÞ jzj < 1

For any k where the function F is continuous, we have

F ðkÞ ¼ lim
r!1�

Z k

�p
RfGðreihÞgdh
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where RfGðzÞg is the real part of GðzÞ. On the other hand, the Caratheodory
function is related to bð�Þ by

GðzÞ ¼ bð0Þ lim
n!þ1

wb
nðzÞ

ub
nðzÞ

jzj < 1

where fwf
nðeinkÞ; n 2 Ng are the polynomials associated to the sequence

f�bðnÞ; n 2 N�g. In the singular case, where the PACF satisfies the claim (ii),
the space L2f½�p; p�; dF g is of dimension d. The recurrence formulae lead to
ðd þ 1Þ orthogonal polynomials funðeinkÞ; n ¼ 0; . . . ; dg with kudð�Þk ¼ 0. The
support of dF is given by the roots of udð�Þ and the mass distribution is obtained
by algebraic relations.

For a nonstationary process X ð�Þ, our goal is to describe, at each time t, the
correlations between X ðtÞ and its past fX ðsÞ; sOtg in some stationary way.
Immediately, we want to consider

qtðkÞ ¼
Rðt; t � kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rðt; tÞRðt � k; t � kÞ
p kP1

but the n.n.d. property of qtð�Þ is generally not satisfied. We overcome this
difficulty by using the PACF. Indeed, in the above approach, the correlation
between X ðtÞ and X ðt � kÞ can be replaced by the partial correlation between
these same variables.

DEFINITION 1. Let bð�; �Þ be the PACF of a process X ð�Þ. The evolutive
instantaneous spectrum of X ð�Þ is defined as the set of measures fdFtðkÞ; t 2 Zg on
½�p; p� where, for any fixed t, dFtðkÞ is the spectral measure associated with the
PACF btð�Þ given by

btðkÞ ¼ btð�kÞ ¼ bðt; t � kÞ kP0

It is easy to see that the functions btð�Þ, so associated to any element of Db, are
effectively a set of PACF of second-order stationary processes. At each time t,
dFtðkÞ is the spectral measure of some stationary process Ytð�Þ, with the same
variance as X ðtÞ, such that the partial correlation between YtðtÞ and YtðsÞ is
identical to the one between X ðtÞ and X ðsÞ for all s < t. Notice that this spectrum
is associated to the process in a causal fashion, since dFtðkÞ depends only on the
second-order properties of fX ðsÞ; sOtg. When bð�; �Þ 2 BðDbÞ, there exists some
relationships between the measures associated with the spectrum. For example,
jbðt; sÞj ¼ 1 implies bðu; sÞ ¼ 0, u > t, and hence some constraints on dFu. These
links between the different measures are not easy to describe because we are
unable to characterize the set of measures associated with a PACF which presents
one or several zeros. On the other hand, in the not locally deterministic case,
dFtðkÞ does not depend on the structure of the past fX ðsÞ; s < tg, hence the
instantaneous character of the spectrum, since btð�Þ can take any values satisfying
btð0Þ > 0 and jbtðkÞj < 1; kP1. So the spectrum consists of any set of measures
fdFt; t 2 Zg having an infinite set of growth points.
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Clearly, different PACF give rise to different evolutive instantaneous spectra.
As a consequence, our spectrum allows to determine the PACF of the process and
hence its second-order properties.

In the rest of this paper, when one considers several processes, their attributes
(innovation, PACF,. . .) will be indexed by the letter representing them.

2.3. Evolutive instantaneous spectrum properties

Loynes (1968) proposes two lists of desirable properties for a time-depend-
ent spectrum. The former (from A1 to A8) is rather of physical nature,
while the latter (from B1 to B12) is rather of mathematical nature. The
evolutive instantaneous spectrum is analysed through these recommendations.
Each of its resulting properties will be followed by its Loynes’s classification
references.

The first property is a simple consequence of the spectrum definition.

PROPERTY 1. The evolutive instantaneous spectrum is a real positive function of
time and of ‘frequency’ (Loynes: A1, B1, B8).

Rigorously, our spectrum is defined by a family of measures. When these
measures are absolutely continuous with respect to Lebesgue one’s, the spectrum
consists of the set of corresponding densities fftðkÞ ¼ dFtðkÞ=dk; t 2 Zg. In
particular, that happens when btð�Þ belongs to ‘1, said

Pþ1
k¼0 jbtðkÞj < þ1.

According to the one-to-one correspondence between bð�; �Þ and Rð�; �Þ, the
remark following the spectrum definition leads to the next result.

PROPERTY 2. The relationship between the evolutive instantaneous spectrum and
the ACF Rð�; �Þ is one-to-one (Loynes: A4, B4).

The equality varfX ðtÞg ¼ btð0Þ ¼
R p
�p dFtðkÞ gives:

PROPERTY 3. The evolutive instantaneous spectrum describes the distribution of
energy over frequency (Loynes: A2).

For fixed t, the measure dFt is the Fourier transform of the ACF of the
stationary process which admits btð�Þ as PACF.

PROPERTY 4. The evolutive instantaneous spectrum is the Fourier transform of
some ‘apparently meaningful quantity’ (Loynes: A8).

The process X ð�Þ is stationary to the second order if and only if bðt; sÞ depends
only on ðt � sÞ. In this case btð�Þ, which does no longer depend on t, is the PACF
of X ð�Þ.
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PROPERTY 5. The evolutive instantaneous spectrum reduces to the ordinary
spectrum if X ð�Þ is, in fact, stationary (Loynes: A5, B5).

Loynes wished that if the process is composed of a succession of stationary
parts, then the spectrum is also composed of the corresponding succession of
stationary spectra (Loynes; A6, B6). Nevertheless, he points out that it is
impossible to realize this exactly. On the other hand, one should obtain the
spectra in an approximate way. For a stationary process X ð�Þ, of PACF bð�Þ, we
denote by ARðOnÞ the autoregressive model of order less than or equal to n
associated with fbð0Þ; . . . ; bðnÞg and its spectral measure is denoted by dFn. It is
well-known that autoregressive spectral estimation provides good accuracy. In
particular, dFn coincides with dF when X ð�Þ is linearly singular of order d with
dOn or autoregressive of order p with pOn.

PROPOSITION 1. Let X ð�Þ be a process composed of a succession of stationary
parts,

X ðtÞ ¼ X ð1ÞðtÞ if tO0
X ð2ÞðtÞ if t > 0



where X ð1Þð�Þ and X ð2Þð�Þ are two uncorrelated stationary processes. Then we have

dF X
t ¼ dF ð1ÞðtÞ if tO0

dF ð2Þ
t�1ðtÞ if t > 0



where dF ð1Þ is the spectral measure of X ð1Þð�Þ and dF ð2Þ
t , is the one of the ARðOtÞ

model associated with X ð2Þð�Þ.
The proof of this proposition appears in Section 6.

The following properties concern elementary transformations on the process
X ð�Þ.

PROPERTY 6. If h is a fixed integer, and Y ð�Þ is defined by shifting X ð�Þ in time by
h, Y ðtÞ ¼ X ðt þ hÞ, then (Loynes: B10),

dF Y
t ðkÞ ¼ dF X

tþhðkÞ

This result follows from the equality

bY ðt; t � kÞ ¼ bX ðt þ h; t þ h� kÞ

The proofs of the two following properties appear in Section 6.

PROPERTY 7. If k0 is any real number and a new process Y ð�Þ is defined by

Y ðtÞ ¼ X ðtÞe�ik0t

then (Loynes: B9),
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dF Y
t ðkÞ ¼ dF X

t ðk þ k0Þ

PROPERTY 8. (Loynes: B11 c and d)

(i) If Y ðtÞ ¼ X ðtÞ; t 2 Z; then dF Y
t ðkÞ ¼ dF X

t ð�kÞ; t 2 Z:
(ii) If X ðtÞ 2 R; t 2 Z; then dF X

t ðkÞ ¼ dF X
t ð�kÞ; t 2 Z.

The claims (a) and (b) of property B11 considered by Loynes concern the time
reversal. Here, they are generally false. According to the point (i) of Property 8,
they can be written in the alternative forms

(a) 8t 2 Z; Y ðtÞ ¼ X ð�tÞ ) 8t 2 Z; dF Y
t ðkÞ ¼ dF X

�tðkÞ
(b) 8t 2 Z; Y ðtÞ ¼ X ð�tÞ ) 8t 2 Z; dF Y

t ðkÞ ¼ dF X
�tð�kÞ

The definition of Y ð�Þ in (a) corresponds in terms of PACF to bY
t ðkÞ ¼ bX

�tþkðkÞ for
all t 2 Z and kP0. Moreover, the condition dF Y

t ðkÞ ¼ dF X
�tðkÞ is equivalent to

bY
t ðkÞ ¼ bX

�tðkÞ; kP0. So these properties will be true if and only if bX
t ðkÞ ¼ bX

tþkðkÞ
for all t 2 Z and all kP0. In particular, this result arises in the stationary case.

Finally, we comment on two important properties which cannot agree exactly
with our spectrum.

(i) The spectrum is a linear transform of the ACF (Loynes: B2).
(ii) The spectrum transforms reasonably when X ð�Þ is transformed linearly

(Loynes: A3, B3).

These properties concern operations on X ð�Þ which are simply expressed on Rð�; �Þ.
For example, it relates to the sum of two uncorrelated random processes in the
case (i), or a process passing through a time varying filter in the case (ii). Using
simple examples, we observe that the effects on the evolutive instantaneous
spectrum are immediately very complicated. That comes from the fact that the
correspondence between Rð�; �Þ and bð�; �Þ is highly nonlinear, and it is also the case
between bð�; �Þ and dFtðkÞ. Nevertheless, recall that these correspondences are one-
to-one, so the transformed spectrum is always computable.

To end this study, we have to mention that the spectrum depends continuously
on the covariance (Loynes: B12) and consider the problem of its estimation
(Loynes: A7, B7). For the first claim, it is not clear, as noticed by Loynes, how
continuity should be understood. Nevertheless, the one-to-one correspondence
between Rð�; �Þ and bð�; �Þ, given by the extended Levinson–Durbin algorithm,
uses only very simple algebraic relations. It is also the case between btð�Þ and Rtð�Þ
(not Rðt; t � �ÞÞ for each time t. Finally dFtð�Þ is related to Rtð�Þ by the usual
Fourier transform. So, all tools are clearly available to study any kind of
continuity.

Concerning estimation, the problem is meaningful uniquely for some particular
classes of processes insofar as we observe only one record, even of infinite length.

385EVOLUTIVE INSTANTANEOUS SPECTRUM PARTIAL AUTOCORRELATION FUNCTION

� Blackwell Publishers Ltd 2002



Without spectral representation associated with our spectrum, and taking into
account its definition in terms of second-order characteristics in the time domain,
a natural estimation is given by the autoregressive spectral estimator, computed
on a sliding window, or by any spectral estimator used in the stationary case. An
illustration for an AR(1) process with time-dependent coefficient is given in
Section 4.

3. TWO SIMILAR SPECTRA

In this section, we consider the spectrum of Mélard (1978) and the one of Grenier
(1984) which are the closer ones to the evolutive instantaneous spectrum. After
presenting them, the comparison with our spectrum is made through the Loynes’s
properties.

3.1. The evolutive spectrum

The evolutive spectrum proposed by Mélard (1978) is based on the Wold–
Cramér decomposition (Cramér, 1961). Notice that this spectrum also has been
introduced by Tjøstheim (1976), but in a different way. Let us consider a purely
nondeterministic process X ð�Þ. Then its Wold–Cramér decomposition is given
by

X ðtÞ ¼
Xþ1

j¼0

hðt; t � jÞgðt � jÞ ð1Þ

where gð�Þ is the normalized innovation process. Then the process X ð�Þ admits a
representation of the form

X ðtÞ ¼
Z p

�p
wtðkÞdnðkÞ

where

wtðkÞ ¼ ð2pÞ�1=2
Xþ1

j¼0

hðt; t � jÞeikðt�jÞ

and nð�Þ has uncorrelated increments with EfjdnðkÞj2g ¼ dk. This representation
is the analogous of the spectral representation of the stationary case and the ACF
admits the one given by

Rðt; sÞ ¼
Z p

�p
wtðkÞwsðkÞdk

So, the evolutive spectrum ftðkÞ is defined as
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ftðkÞ ¼ jwtðkÞj
2 ¼ 1

2p

Xþ1

j¼0

hðt; t � jÞeikj
�����

�����
2

Notice that the evolutive instantaneous spectrum is directly defined from the
PACF. Unfortunately, no spectral representation of X ð�Þ is actually associated
with it. In Mélard (1978), the author analyses his spectrum through the desirable
properties of Loynes. It presents, as a whole, the same properties as our spectrum.
However, we record basic differences. Concerning the linear transformation
(Loynes: A3), Mélard obtains an approximate result, but in a very particular
situation. We already pointed out the difficulty of this problem in Section 2. This
difficulty is also apparently related to the problem of the process spectral
representation. Relating to the advantages presented by our spectrum, one can
notice that it is defined for any nonstationary process whereas the Mélard’s one
only exists for the class of purely nondeterministic processes.

A fundamental difference between these two definitions is that the evolutive
spectrum of Mélard is no longer in one-to-one correspondence with the ACF.
Hence, contrarily to the stationary case, this spectrum no longer constitutes
another parameterization of the second-order properties of the process. In fact,
the same evolutive spectrum can be associated with two processes having different
second-order properties. This point is illustrated in Mélard (1978) by the
following example. Given a white noise �ð�Þ with variance 1, let us generate a
process X ð�Þ,

X ðtÞ ¼ �ðtÞ � 0:5�ðt � 1Þ if t 6¼ 1
0:5�ð1Þ � �ð0Þ if t ¼ 1



Then �ð�Þ is the normalized innovation process. Therefore, the evolutive
spectrum of X ð�Þ is given by the spectral density of the stationary process
Y ðtÞ ¼ �ðtÞ � 0:5�ðt � 1Þ, while their covariances are different. An unfortunate
consequence, which has not been pointed out by the author, is that an evolutive
spectrum unchanging with t time does not necessarily imply the process under
study to be stationary. Recall that the correspondence between the class of the
evolutive instantaneous spectra and the class of ACF is one-to-one. In particular,
an evolutive instantaneous spectrum unchanging with t time corresponds to the
stationarity of the process under study since, in this case, the function btð�Þ does
not depend on time. Notice that, in the previous example, for t < 1, our spectrum
is given by the one of the stationary process Y ð�Þ. Otherwise, it depends on time
and coincides again with the one of Y ð�Þ only as t goes to infinity.

Finally, the last remark about this spectrum concerns the nonstationary
processes of the form

X ðtÞ ¼ X ð1ÞðtÞ if tO0
X ð2ÞðtÞ if t > 0



where both X ð1Þð�Þ and X ð2Þð�Þ are stationary but with different ACF. As our
spectrum, ftð�Þ corresponds to the spectral density of the first process for tO0.
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When the both processes have the same normalized innovation gð�Þ, we obtain the
spectral density of the second process for t > 0. This is no longer true for our
spectrum. Now, let us assume that the both processes are uncorrelated. A result
similar to Proposition 1 does not exist for the evolutive spectrum of Mélard.
Furthermore, if X ð2Þð�Þ is autoregressive of order p, then ftð�Þ corresponds to its
spectral measure only for an infinite time. Recall that this time is finite and equal
to p þ 1 for our spectrum.

3.2. The rational spectrum

Following the evolutive spectrum of Mélard, Grenier (1984) – see also Grenier
(1987) – wished a spectrum more adapted to the previous case of the succession of
stationary parts. For this, he proposes a more instantaneous spectrum based on
the existence of the ARMA representation. So, let X ð�Þ be a purely nondeter-
ministic process which admits the ARMAðp; qÞ representation

Xp
j¼0

ajðt � jÞX ðt � jÞ ¼
Xq
j¼0

bjðt � jÞgðt � jÞ ð2Þ

where gð�Þ is the normalized innovation process. So, for each fixed t, the rational
spectrum qðt; kÞ is defined as the spectral density of the ‘stationary’ process which
admits the ARMA representation (2), namely

qðt; kÞ ¼ 1

2p

Pq
j¼0 bjðt � jÞe�ijk

��� ���2
Pp

j¼0 ajðt � jÞe�ijk
��� ���2

Notice that the word stationary above is written in inverted commas because, for
a fixed t, the parameters ajðt � jÞ; j ¼ 1; . . . ; p and bjðt � jÞ; j ¼ 0; . . . ; q, are not
necessarily those of a stationary ARMA model (as will be seen in the next
section).

Using very simple examples, it is easy to see that the rational spectrum is
different from ours. Now, we propose to compare them through the desirable
properties of Loynes.

Recall that Grenier has introduced his spectrum so as to improve the one of
Mélard relating to the succession of stationary parts. The rational spectrum seems
to be better adapted to this request among the three spectra. Indeed, when the
stationary parts have the same innovation process, this spectrum is exactly
composed of the succession of the correspondent spectral densities. On the other
hand, if the stationary processes are uncorrelated, the same result holds except over
adaptation zones of duration equal to maxðp; qþ 1Þ. Notice that this last property
remains valid for our spectrum in the autoregressive case, and otherwise, it consists
of the autoregressive approximations of the spectral measures (see Proposition 1).

Unfortunately, this improvement for the rational spectrum is achieved with the
loss of Property A2 of Loynes, requiring the spectrum to describe the distribution
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of energy over frequency. As a matter of fact, let us consider the example given in
Grenier (1984); see also Grenier (1987). Let X ð�Þ be a process which admits a
representation of the form (2) with q ¼ 0:

X ðtÞ þ a1ðt � 1ÞX ðt � 1Þ ¼ gðtÞ

a1ðtÞ ¼
�a if t < 0 or t > T
�1

a if t 2 ½0; T �


where a is a real constant satisfying jaj < 1. Then the variance of X ðtÞ is

varfX ðtÞg ¼

1

1� a2
tO0

a2ða�2ðtþ1Þ þ a�2t � 1Þ
1� a2

1OtOT þ 1
1þ a2ðt�T�1Þða�2ðTþ1Þ þ a�2T � a2 � 1Þ

1� a2
tPT þ 2

8>>>>>>><
>>>>>>>:

It follows that the variance of the process depends on time over the two intervals
½1; T þ 1� and ½T þ 2;þ1½. As a consequence, it cannot be equal to

R p
�p qðt; kÞdk

since this last quantity is unchanging over these intervals.
Otherwise, the answers related to this spectrum to the other requirements of

Loynes are essentially similar to the one of Mélard. The remarks about it are like
those about the evolutive spectrum pointed out in subsection 3.1. In particular,
the correspondence between the class of rational spectra and that of ACF is still
not one-to-one.

3.3. Remark

Priestley and Tong (1969) have extended the original definition of oscillatory
spectrum to the multivariate case. This has been done also for the evolutive
spectrum by Mélard and Herteleer-De Schutter (1989) and, from multivariate
ARMA theory, the case of the rational spectrum is straightforward. The PACF of
a stationary multivariate process has been introduced by Dégerine (1990). The
extension to the nonstationary case can be done without difficulties for regular
processes and the definition of the evolutive instantaneous spectrum follows
immediately. Unfortunately, this spectrum depends on the chosen PACF which is
not uniquely defined in the multivariate case. So, a careful study of this problem is
beyond the scope of this paper.

4. SOME ILLUSTRATIONS

Here some examples illustrate the behaviour of the evolutive instantaneous
spectrum. It will be compared with the spectrum of Mélard and the one of
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Grenier when possible. Indeed, recall that both these spectra are not always
defined.

4.1. The uniformly modulated process

One interesting example of nonstationarity is given by the uniformly modulated
processes. These processes have been studied by Herbst (1963). They are defined
by

Y ðtÞ ¼ cðtÞX ðtÞ t 2 Z

where X ð�Þ is a stationary process with zero mean and spectrum dF X ðkÞ and
cð�Þ is a real positive function. For this particular processes class, the
evolutive instantaneous spectrum behaves well as the one of Priestley (1965),
namely

dF Y
t ðkÞ ¼ c2ðtÞdF X ðkÞ

In effect, the PACF of Y ð�Þ is equal to that of X ð�Þ at any point ðt; sÞ where s 6¼ t,
and the variances satisfy bY

t ð0Þ ¼ c2ðtÞbX ð0Þ.
Considering the purely not deterministic processes, the same result is obtained

for the spectrum of Mélard, since the coefficients of the Wold–Cramér
decomposition of Y ð�Þ are given by hY ðt; t � jÞ ¼ cðtÞhX ðjÞ. On the other hand,
this is no longer true for the rational spectrum. Suppose that the process X ð�Þ
admits an ARMAðp; qÞ representation with parameters aj; j ¼ 0; . . . ; p and
bj; j ¼ 0; . . . ; q, and that the function cð�Þ does not vanish. Then the rational
spectrum is given by

qðt; kÞ ¼
r2
�

2p
Pq

j¼0 bje
�ikj

��� ���2
Pp

j¼0
1

cðt�jÞ aje
�ikj

��� ���2 ¼ c2ðtÞ
r2
�

2p
Pq

j¼0 bje
�ikj

��� ���2
Pp

j¼0
cðtÞ

cðt�jÞ aje
�ikj

��� ���2 a0 ¼ b0 ¼ 1

The second expression of qðt; kÞ above shows clearly that the property is not
satisfied.

4.2. The sampled Brownian motion

Let Y ð�Þ ¼ Y ðtÞ; t 2 Rþf g be a standard Brownian motion. Such a process is zero
mean and its second-order properties are characterized by

E Y ðtÞY ðsÞf g ¼ infðt; sÞ

In particular, it vanishes almost surely at 0 time. We consider the sampled process
X ð�Þ obtained in the following way
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X ðtÞ ¼
0 p:s: if tO0

Y ðthÞ otherwise

(

which h is a real strictly positive constant. The ACF of X ð�Þ satisfies Rðt; sÞ ¼
supð0; h infðt; sÞÞ. The random walk defined by

Pt
k¼0 �ðkÞ if t > 0, otherwise equal

to zero, where �ð�Þ is a white noise with variance h, has the same ACF as X ð�Þ. So,
the latter admits the autoregressive representation

X ðtÞ � X ðt � 1Þ ¼ �ðtÞ

where �ð�Þ is the innovation process of variance r2
� ðtÞ ¼ h for t > 0, and 0

otherwise. Then the PACF btð�Þ of the process is equal to zero beyond 1. Using
the generalized Levinson–Durbin Algorithm (Dégerine and Lambert-Lacroix,
1996), the first coefficients are given by

btð0Þ ¼ supð0; htÞ

btð1Þ ¼
Rðt; t � 1Þ

½Rðt � 1; t � 1ÞRðt; tÞ�
1
2

¼
ffiffiffiffiffiffiffiffiffiffi
t � 1

t

r

if t > 0, and 0 otherwise. So, the evolutive instantaneous spectrum of X ð�Þ is equal
to zero for tO0. For t > 0, it is equal to the spectral measure of the stationary
AR(1) model with parameters

atð1Þ ¼ �btð1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffi
t � 1

t

r

r2
�;t ¼ 1� jbtð1Þj2

h i
btð0Þ ¼ r2

� ðtÞ ¼ h

namely

dFtðkÞ ¼
h
2p

1�
ffiffiffiffiffiffiffiffiffiffi
t � 1

t

r
e�ik

�����
�����
�2

dk

Notice that, as t goes to infinity, the pole at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � 1Þ=t

p
converges to 1. Then the

corresponding normalized spectral measure, which no longer depends on h,
converges to the Dirac measure at k ¼ 0 with a spectral density going uniformly to
zero over any compact which does not contain 0.

The process X ð�Þ is purely nondeterministic and its Wold–Cramér decompo-
sition is given by

X ðtÞ ¼
Xt�1

j¼0

h
1
2gðt � jÞ
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if t > 0, and 0 otherwise. The evolutive spectrum is equal to 0 for tO0 and for
t > 0,

ftðkÞ ¼
h
2p

Xt�1

j¼0

e�ikj

�����
�����
2

¼
h
2p

1� e�ikt
�� ��2
1� e�ikj j2

if k 6¼ 0

ht2

2p
if k ¼ 0

8>>><
>>>:

This is the spectral density of a moving average of order t � 1 for which all roots
lie uniformly on the unit circle: z ¼ e2ikp=t, k ¼ 1; . . . ; t � 1 (Figure 1). When t goes
to infinity, the normalized spectrum converges to the Dirac measure at k ¼ 0, like
our spectrum, but with a very irregular spectral density. For this particular
example, the ACF Rtð�Þ associated to ftðkÞ is given by the covariances between
X ðtÞ and its past: RtðkÞ ¼ Rðt; t � kÞ, kP0 and RtðkÞ ¼ ðt � kÞh if 0Ok < t; 0 if
kPt. This is no longer true in terms of autocorrelation. That shows that the
spectrum associated with Rtð�Þ, when defined, can be very different from the
evolutive instantaneous spectrum related to btð�Þ.

For t strictly positive, the process X ð�Þ admits the representation ARMAð0; 1Þ
of the form (2) with a1ðtÞ ¼ �1 and b0ðtÞ ¼ h1=2. So the rational spectrum, equal
to zero for tO0, is given by

qðt; kÞ ¼ h
2p

1� e�ik
�� ���2

t > 0

FIGURE 1. Plot of the rational spectrum, the evolutive spectrum and the evolutive instantaneous
spectrum with t ¼ 30, k 2 ½�p;p�, h ¼ 1. Here qðt; kÞ (dashed line) and dFtðkÞ=dk (dotted line) seem to

be identical (dashdot line).
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This example illustrates two failings of the rational spectrum: it does not depend
on time while the process is not stationary and, furthermore, it does not provide
the variance of X ðtÞ since this ‘spectral density’ is not integrable. As t goes to
infinity, it corresponds to the limit of the spectral density of the evolutive
instantaneous spectrum (without normalization). The behaviour of these three
spectra is illustrated by the Figure 2.

4.3. Linear chirps

We consider the process

ZðtÞ ¼ ei½m0t
2þk0tþU� t 2 Z

where m0 and k0 are real constants and U is uniformly distributed on � � p; p�. In
the complex plane, ZðtÞ describes the evolution of the position of a mobile on the
circle. The hazard U indicates its position at 0 time and the rotational speed is
equal to 2m0t þ k0. That linear variation should be expresses by the spectrum if it is
a good representation of the instantaneous frequency. Notice that the process Zð�Þ
is deterministic with

ZðtÞ ¼ ei½m0ð2t�1Þþk0�Zðt � 1Þ

So ftðkÞ and qðt; kÞ are not defined for this example.
According to Property 7, the effect of the constant k0 implies, on the

spectrum, a shift in frequency by k0 mod 2p belonging to � � p; p�. On the other
hand, we can take m0 in � � p=2; p=2�. For k0 ¼ 0, the ACF of Zð�Þ satisfies
Rðt; sÞ ¼ eim0ðt

2�s2Þ, hence it follows that btð0Þ ¼ 1 and btð1Þ ¼ eim0ð2t�1Þ. Since the
magnitude of the latter coefficient is equal to 1, the function btð�Þ vanishes
beyond 1. So, the spectral measure dFt reduces to the Dirac measure at
the frequency of � � p; p� equal to m0ð2t � 1Þmod 2p. Then, the support of the
evolutive instantaneous spectrum of Zð�Þ is on lines with slope 2m0 mod 2p in
the set Z�� � p; p�. Figure 3 represents this spectrum in the time–frequency
plane.

4.4. An estimated spectrum

We consider the process

X ðtÞ ¼ 0 p:s: if t < 0
atX ðt � 1Þ þ btgðtÞ otherwise



where

at ¼ 1� exp
�t
100

� �
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bt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 exp

�t
100

� �
� exp

�2t
100

� �s

and gðtÞ; t ¼ 0; 1; . . ., are i.i.d. Gaussian random variables with EgðtÞ ¼ 0 and
EgðtÞ2 ¼ 1.

FIGURE 2. Three-dimensional plot of (a) the evolutive spectrum and (b) the evolutive instantaneous
spectrum, with t 2 ½0; . . . ; 30�, k 2 ½�0:8; 0:8�, h ¼ 1.
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The first coefficients of the corresponding PACF are given by btð0Þ ¼ 1,
btð1Þ ¼ at for t ¼ 0; 1; . . . So, the evolutive instantaneous spectrum of X ð�Þ is
composed of the corresponding succession of AR(1) model spectra (Figure 4).

FIGURE 3. Time-frequency plot of the evolutive instantaneous spectrum with m0 ¼ p=20, k0 ¼ 0.

FIGURE 4. Three-dimensional plot of the evolutive instantaneous spectrum with t 2 ½50; . . . ; 250�,
k 2 ½�p;p�.
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Notice that the rational spectrum and our spectrum are the same (since
1� a2t ¼ b2t Þ. Concerning the evolutive spectrum, it is given by

ftðkÞ ¼
1

2p

Xt

j¼0

hðt; t � jÞe�ikj

�����
�����
2

with

hðt; t � jÞ ¼ bt�j

Yj�1

k¼0

at�k

Y�1

k¼0

¼ 1

However, no differences appear when drawing these three spectra. Due to the
nature of these spectra, a natural estimation can be obtained by some spectral
estimator of the stationary case, computed on a sliding window. Artificial
realizations of the process were constructed and estimates of dFtðkÞ=dk were
obtained for t ¼ 50; 55; . . . ; 250, with a window bandwidth h ¼ 50. For such t, the
spectrum is estimated by the power spectral density using Welch’s method
averaged, modifies periodogram method (standard psd function of Matlab signal
processing toolbox). Figure 5 shows the spectrum estimated from one realization.
We have noticed a large variance but the average behaviour of this estimator
seems to be good (Figure 6).

FIGURE 5. Three-dimensional plot of the evolutive instantaneous spectrum estimate obtained from one
realization, t 2 ½50; . . . ; 250�, k 2 ½�p;p�.
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5. CONCLUDING REMARKS

In this paper, a new time-varying power spectrum, called evolutive instantaneous
spectrum, has been naturally associated with the parameterization given by the
PACF. This spectrum has been analysed through the desirable properties of
Loynes, compared with two similar spectra and illustrated by some examples. We
have observed that it is defined for any nonstationary process and is in a one-to-
one correspondence with the ACF. Unfortunately, we cannot hope, when the
process is transformed linearly, that the resulting spectrum is a simple transform
of the prior one although it is always computable. Moreover, no spectral
representation for the process is actually associated with this spectrum and this
problem remains still open. Without such a representation, it would seem difficult
to give some physical meaning to this spectrum.

6. PROOFS

PROOF OF PROPOSITION 1. For tO0, we have bX
t ð�Þ ¼ bð1Þð�Þ and, for t > 0,

bX
t ðnÞ ¼

bð2ÞðnÞ if 0On < t

0 if nPt

(

FIGURE 6. Three-dimensional plot of the mean of the estimated evolutive instantaneous spectrum
obtained from 1000 realizations, t 2 ½50; . . . ; 250�, k 2 ½�p; p�.
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These equalities are obvious when tO0 or 0On < t. For nPt > 0, it is easy to
show that �fX ðt; t � nþ 1Þ ¼ �fX ð1Þ ðt; 1Þ and �bX ðt � n; t � 1Þ ¼ �bX ð2Þ ðt � n; 0Þ. These
relationships leads to the result since these variables are uncorrelated.

PROOF of PROPERTY 7. The relationships

�fY ðt; t � nþ 1Þ ¼ e�ik0t�fX ðt; t � nþ 1Þ
�bY ðt � n; t � 1Þ ¼ e�ik0ðt�nÞ�bX ðt � n; t � 1Þ

nP1;

show that bY
t ðnÞ ¼ e�ik0nbX

t ðnÞ, nP0. We obtain recursively the relationships
between the associated Szegö polynomials and also the equality of their norms:

uYf
n ðeiðk�k0ÞÞ ¼ e�ik0nuXf

n ðeikÞ
uYb
n ðeiðk�k0ÞÞ ¼ uXb

n ðeikÞ nP0

rf
Y ðnÞ ¼ rf

X ðnÞ

8<
:

Here to simplify the notation, the index t is omitted. The norms equality leads toZ p

�p
uXf
n ðeikÞuXf

m ðeikÞdF X
t ðkÞ ¼

Z p

�p
uYf
n ðeikÞuYf

m ðeikÞdF Y
t ðkÞ

¼ rf 2
X ðnÞ if n ¼ m

0 otherwise



According to the relationships between the polynomials, we haveZ p

�p
uXf
n ðeikÞuXf

m ðeikÞdF X
t ðkÞ ¼

Z p

�p
eik0ðn�mÞuYf

n ðeiðk�k0ÞÞuYf
m ðeiðk�k0ÞÞdF X

t ðkÞ

¼
Z p�k0

�p�k0

uYf
n ðeikÞuYf

m ðeikÞdF X
t ðk þ k0Þ

¼
Z p

�p
uYf
n ðeikÞuYf

m ðeikÞdF Y
t ðkÞ

In the above expressions, the term eik0ðn�mÞ is deleted because the integral vanishes
when m is different from n. The result comes from the latter equality considered
for all ðm; nÞ.

PROOF OF PROPERTY 8. When Y ð�Þ ¼ X ð�Þ, we have bY
t ð�Þ ¼ bX

t ð�Þ. The
relationships between the polynomials are obtained recursively and the norms
are equal:

uYf
n ðzÞ ¼ uXf

n ðzÞ
uYb
n ðzÞ ¼ uXb

n ðzÞ nO0

rf
Y ðnÞ ¼ rf

X ðnÞ

8><
>:

Using the norms equality, the measure characterization leads to
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Z p

�p
uXf
n ðeikÞuXf

m ðeikÞdF X
t ð�kÞ ¼

Z p

�p
uYf
n ðeikÞuYf

m ðeikÞdF Y
t ðkÞ

for all ðn;mÞ. That proves the first assertion. As a consequence, the second holds.
Notice that we can immediately obtain this latter result by pointing out that bX

t ð�Þ
is real and hence dF X

t is symmetrical.
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