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Abstract

To simulate Gaussian fields poses serious numerical problems: storage and computing
time. The midpoint displacement method is often used for simulating the fractional
Brownian fields because it is fast. We propose an effective and fast method, valid not only
for fractional Brownian fields, but for any Gaussian fields. First, our method is compared
with midpoint for fractional Brownian fields. Second, the performance of our method is
illustrated by simulating several Gaussian fields. The software FieldSim is an R package
developed in R and C and that implements the procedures on which this paper focuses.
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1. Introduction

Rough phenomena arise in various fields (Frisch and Parisi 1985; Leland, Taqqu, Willinger,
and Wilson 1994; Mandelbrot 1975; Peitgen and Saupe 1988; Pentland 1984): texture simula-
tions and image processing, natural scenes (clouds, mountains) simulations, fluid mechanics,
financial mathematics, ethernet traffic . . . From a mathematical point of view, roughness is
often measured by the Hölder index H. The lower H, the more rough the phenomenon,
whereas H greater than 1 corresponds to smooth phenomenon. There is a real need to have
models for rough phenomena. The fractional Brownian motions, in short FBM, introduced
by Kolmogorov (1940) and further developed by Mandelbrot and Ness (1968), play a key role.
FBM have then be extended in many directions: higher dimensions, anisotropy, multifrac-
tionality (Ayache, Léger, and Pontier 2002; Ayache and Lévy-Vehel 2000; Benassi, Bertrand,
Cohen, and Istas 2000; Benassi, Cohen, and Istas 1998; Benassi, Jaffard, and Roux 1997;
Bonami and Estrade 2004; Herbin 2006; Kamont 1996; Peltier and Levy-Véhel 1996).

The simulation of fractional Gaussian processes is not difficult in one dimension (e.g. the
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surveys of Bardet, Lang, Oppenheim, Philippe, and Taqqu (2003); Coeurjolly (2000)). Let us
recall the numerical complexity of some classical methods : the Cholesky method has a com-
plexity of O(N3), where N is the size of the simulated sample path, Levinson’s a complexity
of O(N2 log N) and Wood and Chan’s a complexity of O(N log N). These complexities do
not pose problems in dimension one, but become problematic in higher dimensions. These
methods are indeed no longer tractable: these algorithms are time and memory expensive.
Since its introduction by Lévy (1965) for Brownian motion, the random midpoint displace-
ment method has been intensively used for generating fractional Brownian field (Fournier,
Fussel, and Carpenter 1982; Peitgen and Saupe 1988; Voss 1985). This method is a rough
approximation and is very fast.

Our approach is based on exact simulation plus a fast step, that is an improvement of the
midpoint method. Let us be more precise. The aim is to simulate a Gaussian field over a fine
grid. We first simulate the field in an exact way on a rough grid via the Cholesky method.
We then propose a refinement of the midpoint method. The field is simulated, using a set of
neighbors, and not only the nearest neighbors. This requires a computation of local weighting
coefficients. This is a major difference with the midpoint method. For midpoint, these local
coefficients are fixed to 1/4. For our method, these local coefficients are exactly determined
from the second-order structure. Contrary to the midpoint method, this allows us to simulate
fields with arbitrary covariance as well rough as smooth.

One then needs to compare our methods called fieldsim with the midpoint method. Since the
real aim is to simulate rough phenomenon, we estimate the Hölder index H of the simulation.
The closer the estimation of H is, the better the simulation is. Our conclusion is the following.
First, on fractional Brownian fields, fieldsim is slightly better than midpoint. Since the
midpoint method is faster, this means that midpoint simulator is nevertheless relevant for
fractional Brownian fields. Note that the Hölder index is only one criterion that can be used
to assess the accuracy of the simulation. The procedure fieldsim produces fields with the
desired Hölder index. But we do not focus on the difference between the simulated field
covariance and the specified one. Second, we illustrate the good performances of our method
by simulating several Gaussian fields, for which midpoint is no longer applicable.

The paper proceeds as follows. In the second section, we present our procedure fieldsim.
Then we compare with the midpoint method. In the third section, we present our method
on many examples. We recall in the appendix some classical results on the estimation of the
Hölder index and our R package. Tables and figures are postponed at the end of the paper.

2. Method

After introducing some notations, we present the both steps of the procedure fieldsim:
accurate and refined steps. Then we recall the random midpoint displacement method which
is comparable with the procedure proposed here. We underline the drawbacks of this approach
compared with ours.

2.1. Notations

Let d be a positive integer and X(·) =
{
X(M),M ∈ Rd

}
, be a real valued non stationary

field with zero mean and second order moments. In this paper we are only concerned with
the second order properties of the field X(·). It is convenient to use a geometrical approach
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by considering the following Hilbert space M, with the inner product 〈U, V 〉 = E {UV } =
Cov {U, V }. The elements of M are the linear combinations, with real coefficients, of elements
of
{
X(M),M ∈ Rd

}
and their limits for mean square convergence. So the covariance function

R(·, ·) is defined by:

R(M,M ′) =
〈
X(M), X(M ′)

〉
= Cov

{
X(M), X(M ′)

}
, (M,M ′) ∈ Rd.

This function is nonnegative definite (n.n.d.), that is for all n ≥ 1, for all real scalars λ1, . . . , λn,
and for all M1, . . . ,Mn ∈ Rd,

n∑
i,j=1

λiλjR(M i,M j) ≥ 0.

Conversely, for any n.n.d. function R(·, ·), there exists an unique centered Gaussian field of
second order structure given by R(·, ·).

2.2. The procedure fieldsim

Accurate simulation step

Let us recall that the goal of this paper is to give a procedure that yields discretization of
sample path of the Gaussian field associated with any n.n.d. function R(·, ·). In the sequel,
we denote by X(·) this sample path. Here we present the accurate simulation part of our
procedure. Given a (regular) space discretization {M i, i ∈ I} of size nI , the problem consists
in giving a sample of a centered Gaussian vector of size nI : (X(M i))i∈I of covariance matrix
R given by Ri,j = R(M i,M j), i, j ∈ I. There exist many approaches to do that. We chose the
procedure given by Dégerine and Lambert-Lacroix (2003) (see Theorem 2). This algorithm
is based on Cholesky decomposition of the matrix R in the sequential manner.

Refined simulation step

We need to introduce some additional notations. Let XXI
(M), denote the orthogonal projec-

tion of X(M) on the closed linear subspace XI = sp{X(M i), i ∈ I}, i.e. the linear predictor
of X(M) given X(M i), i ∈ I. The partial innovation X(M)−XXI

(M) is denoted by εXI
(M).

Since εXI
(M) is uncorrelated with any variables of the space XI , we can obtain “accurate”

simulation of X(M) by XXI
(M)+

√
V ar(εXI

(M))U where U is a centered and reduced Gaus-
sian variable independent of X(M i), i ∈ I. Notice that the coefficients weighting the variables
X(M i), i ∈ I in XXI

(M) and the variance of the partial innovation may be determined from
the second order structure of the sequence X(M i), i ∈ I, X(M) (see Dégerine and Lambert-
Lacroix (2003) for details). The drawback of this approach is when the simulated sequence
size increases, we have to stock more and more quantities (filters of several partial innovation
and associated variances) and to do more and more calculus. Even if that can be done in
the case d = 1, it becomes numerically unfeasible when d ≥ 2. To overcome this problem, a
natural approach consists in replacing in the previous procedure the indexes set I by a set
of indexes of neighbors of M . We denote by NM this set. Notice that XXNM

(M) is the best
linear combination of variables of XNM

approximating X(M) in the sense that the variance
of X(M)−XXNM

(M) is minimum. If we have to use only some variables of the set XNM
in

order to obtain simulation of X(M), the best way is to use XXNM
(M) +

√
V ar(εXNM

(M))U.
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Let us remark that such a simulated process does not admit anymore R(·, ·) as a covariance
function, but a covariance function that is a good approximation of R(·, ·).

2.3. Comparison with the random midpoint displacement method

The midpoint displacement method was developed for fractional Brownian field (see Fournier
et al. (1982); Peitgen and Saupe (1988); Voss (1985)). For example in the scalar case (d = 1),
the covariance of a standard fractional Brownian motion is given by

R(t, s) =
1
2
{|t|2H + |s|2H − |t− s|2H},

with t and s in [0, 1]. The parameter H, which is usually called Hurst parameter, is a real
in (0, 1]. For H = 1/2, we obtain the Brownian motion (with R(t, s) = inf(t, s)). In the case
d > 1, the absolute values in the definition of the covariance function below, are replaced by
the Euclidean norm over Rd.

This procedure is based on use of a recursive subdivision approach. For example in the scalar
case, the procedure begins by assigning the null value to X(0) and to X(1). That means
that one simulates more or less the bridge associated with X. To fairly compare the both
approaches, we will generate X(1) as a standard Gaussian variable instead of X(1) = 0. Then
the segment [0, 1] is divided in half to obtain one new grid point. The process at this new
point is simulated as average of its two neighbors X(0) and X(1) plus a Gaussian variable
with zero mean and appropriate variance. Subdivision continues to a desired level of recursion
and the procedure is repeated for each new sub-grid. Precisely, for the iteration n = 1, 2, . . .,
the process at the new grid points 2n−j , j = 2k + 1, 0 ≤ k ≤ n−1

2 , is given by

X(2n−j) =
1
2
{X(2n−j+1) + X(2n−j−1)}+

√
(1− 22H−2)

22nH
U.

Notice that (1 − 22H−2)/22nH is the variance of the variables W (2n−j) − 1
2{W (2n−j+1) +

W (2n−j−1)}, where W (·) is a fractional Brownian motion of Hurst parameter H.

When d = 2, one can use for example rectangular ground plane or triangular surfaces. For the
first case, the procedure begins by assigning the null values to each of the four corners of the
rectangular ground plane. Similarly to the scalar case, we generate some standard Gaussian
variables for the three corners. Then the original boundaries of the ground plane are divided
in half to obtain five new grid points. Simulations at these new grid positions are obtained as
field averages at the two nearest neighbors of these points plus random value as for the scalar
case. For the center point, one can use the field average at the four corners. The procedure
is repeated for each new sub-grid. For the second case, two equilateral triangles are used, set
side by side to form a parallelogram. At each level of recursion, the triangles are subdivided
into successively smaller triangular surfaces.

The first difference between this approach and ours concerns the initialization since the pro-
cedure proposed here begins with accurate simulation step. Furthermore, the coefficients
weighting the field at the two (resp. four) M neighbors in XXI

(M) (where I is consti-
tuted of the M neighbors) are generally not equal to 1/2 (resp. 1/4). Precisely, in the case
d = 1 and H = 1/2, let us consider t, s and u such that 0 < s < u < t ≤ 1. We obtain
XX{s,t}(u) = 1/2(X(s) + X(t)) and εX{s,t}(u) = εXI

(u) for any I that contains s and t and
does not contain any points in ]s, t[. So we need only two neighbors in order to simulate the
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process at u. On the other hand, if s = 0 then XX{s,t}(u) = uX(t). If we take in our procedure
only the point 0 and 1 for the accurate step and use after two neighbors in the refined step,
we obtain a procedure to simulate the process in a accurate way. That is not the case for
the random midpoint displacement method. Indeed each time the zero point is concerned as
neighbor of u, the coefficient weighted the process at the neighbor on the left-hand side is
equal to 1/2 instead of u. Otherwise when d 6= 1 or H 6= 1/2, the coefficients used in the
projection depend on the position and are not equal to 1/2 (resp. 1/4) when two (resp. four)
neighbors are concerned. So the random midpoint displacement method does not use all the
information contained in the neighbors. However, the both approaches to simulate fractional
Brownian fields (see Section 3.1) leads to comparable results; but the procedure fieldsim
can be applied for any Gaussian random field, provided that its covariance function is known.

3. Numerical results

In this section, we illustrate the method proposed here through simulations for several classes
of fields.

3.1. Fractional Brownian fields

The standard fractional Brownian fields are defined through their covariance function (e.g.
Samorodnitsky and Taqqu (1994)):

R(M,M ′) =
1
2
{
‖M‖2H + ‖M ′‖2H − ‖M −M ′‖2H

}
,

where the Hurst parameter H is real in (0, 1]. The case H = 1 is degenerated and will be
omitted in the following. For various size of sample (N + 1)2 (N = 64, 128, 256 and 512)
and various values of H (H = 0.1, 0.3, 0.5, 0.7 and 0.9), we generate 100 paths of fractional
Brownian fields, discretized uniformly on [0, 1]2. We use the both procedures midpoint and
fieldsim. For all the simulations generated by fieldsim, we have chosen in the accurate
simulation step, a regular space discretization of size 25 and in the refined simulation step a
number of neighbors equal to 8. Figure 1 summarizes typical paths for N = 64, H = 0.1,
0.5 and 0.9. The lower H, the more irregular is the field. For each path, the parameter H is
estimated via the generalized quadratic variations introduced in Istas and Lang (1997). We
denote by ĤN this estimator. Some Boxplots (see Figure 2) illustrate the results. In order to
explore the quality of these both simulation methods, we propose to use the same approach
as in Coeurjolly (2000) consisting in testing the value of H. Precisely, we have the following
asymptotic normality result:

N
d
2 (ĤN −H) D−→ N (0, γ2

H),

where the convergence is in distribution and γ2
H is some constant. Some details such as the

expression of ĤN and the one of γ2
H are given in the Appendix. Table 1 gives the constant

γ2
H for different values of H.
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Figure 1: Typical paths of fractional Brownian fields (for N = 64, H = 0.1 (top), 0.5 (middle)
and 0.9 (bottom)) simulated by midpoint or fieldsim.
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H 0.1 0.3 0.5 0.7 0.9
γ2

H 17.91 16.82 15.66 14.45 13.20

Table 1: Constant γ2
H for different values of H.

We use this property to extract an efficient method to compare the both procedures. For
different values of H and N , we first simulate 100 paths of a fractional Brownian field. For
the ith path, we compute the estimation of the Hurst parameter denoted by ĥi

N . Then the
percentage test success is estimated by

SH =
1

100

100∑
i=1

1ĥi
N∈]H−u0.05

γH
N

,H+u0.05
γH
N

[,

where u0.05 ≈ 1.96 is the 95th percentile of the standard Gaussian distribution. The results
are given in Table 2.

H 0.1 0.3 0.5 0.7 0.9
midpoint
N = 64 91% 91% 91% 90% 87%
N = 128 89% 89% 87% 85% 84%
N = 256 95% 95% 94% 93% 92%
N = 512 90% 85% 84% 83% 83%
fieldsim
N = 64 86% 89% 89% 89% 90%
N = 128 86% 88% 91% 89% 89%
N = 256 93% 96% 94% 94% 95%
N = 512 88% 88% 87% 87% 88%

Table 2: Percentage test success for midpoint and fieldsim.

The both methods work well since the level 95% is almost always reached. One can notice
that fieldsim is slightly better than midpoint. However, considering the computing times
(see Table 3), it seems preferable to use midpoint to simulate fractional Brownian fields.

N 64 128 256 512
midpoint 1.20 4.93 19.35 76.32
fieldsim 23.83 105.89 426.47 1673.85

Table 3: Mean CPU time for midpoint and fieldsim.

3.2. Multifractional Brownian fields
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Figure 2: Boxplots of estimators of H for different values of H and N for 100 paths simulated
by midpoint or fieldsim.
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Figure 3: Typical paths of multifractional Brownian fields (on the right) for N = 64 and
Hurst functions (on the left) for H(t) = 0.5 (top), H(t) = 0.5 + 0.4t1 (middle) and H(t) =
0.7 + 0.2 sin(2πt1) (bottom) simulated by fieldsim.
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The standard multifractional Brownian fields are defined through their covariance function
(see (Peltier and Levy-Véhel 1996; Benassi et al. 1997)):

R(M,M ′) = D(M,M ′)
{
‖M‖H(M)+H(M ′) + ‖M ′‖H(M)+H(M ′) − ‖M −M ′‖H(M)+H(M ′)

}
,

where

D(M,M ′) =
C
(

H(M)+H(M ′)
2

)2

2C (H(M))C (H(M ′))
,

and

C(h) =

(
π

d+1
2 Γ

(
h + 1

2

)
h sin (πh) Γ (2h) Γ

(
h + d

2

)) 1
2

and the Hurst parameter is a continuous function H : Rd −→ (0, 1).
Different paths for size sample N = 652 and Hurst function H0(M) = 0.5, H1(M) = 0.5 +
0.4M1 et H2(M) = 0.7 + 0.2 sin(6πM1), where M = (M1,M2) ∈ [0, 1]2, are summarized in
Figure 3. When the function H(M) is constant as for H0(M), one recognizes the fractional
Brownian fields described in Section 3.1. To compare with precedent section, CPU times
for fields of 1025 × 1025 points are around 1400 for fractional Brownian Fields and 3200 for
multifractional Brownian Fields.
In order to illustrate the quality of fieldsim, we propose to estimate from different sample
paths, the function H(M) over a regular grid of [0, 1]2 and to compare it with H(M). To do
this, we use the procedure described in Lacaux (2004) based on localized quadratic variations.
We first simulate 100 paths of size 2572 for the both functions H1(M) and H2(M). Here we
have chosen in the accurate simulation step, a regular space discretization of size 9 and in the
refined simulation step a number of neighbors equal to 4. The functions H1(M) and H2(M)
are estimated on a regular space discretization of size 632 using a bandwidth equal to 0.125 for
H1(M) and 0.078 for H2(M). In Figure 4, we plot the average (over the 100 paths) estimated
Hurst function for the both functions H1(M) and H2(M). One can see that fieldsim works
well.

3.3. Two parameters fractional Brownian fields

The standard bi-fractional Brownian fields are defined through their covariance function (see
Houdré and Villa (2003)):

R(M,M ′) =
1
2

{(
‖M‖2H + ‖M ′‖2H

)K − ‖M −M ′‖2HK
}

,

where the Hurst parameter H is real in (0, 1) and K in (0, 1]. For K = 1 the corresponding
process is a standard fractional Brownian field of Hurst parameter H, but, when K < 1,
increments of the process start to be non stationary but remain locally self-similar of order
HK.
Different paths for size sample N = 64 and parameters H = 0.5, K = 1 and H = 0.9,
K = 0.55 are plotted on Figure 5.
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Figure 4: True Hurst function (on left) and average estimated Hurst function with localized
quadratic variations method (on right) for multifractional Brownian fields with H(t) = 0.5 +
0.4t1 (on top) and H(t) = 0.7 + 0.2 sin(2πt1) (on bottom).
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Figure 5: Typical paths of two parameters fractional Brownian fields (on top, for N = 64,
H = 0.5, K = 1 (left) and H = 0.9, K = 0.55 (right)), fractional Brownian sheets (in the
middle, for N = 64, H1 = 0.5 and H2 = 0.5 (left) and H1 = 0.9, H2 = 0.55 (right)) and
hyperbolic fractional Brownian field (on bottom left for H = 0.1 and right for H = 0.1 on
[−1

2 , 1
2 ]2) simulated by fieldsim.
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3.4. Fractional Brownian sheets

The standard fractional Brownian sheets are defined through their covariance function (see
Kamont (1996)):

R(M,M ′) =
1
2d

d∏
i=1

{
|Mi|2Hi + |M ′

i |2Hi − |Mi −M
′
i |2Hi

}
,

where M = (M1,M2, . . . ,Md), M
′
=
(
M

′
1,M

′
2, . . . ,M

′
d

)
are in Rd and H = (H1,H2, . . . ,Hd)

stands for the multivariate Hurst index in Rd, 0 < Hi < 1.

Fractional Brownian sheets do not have stationary increments but have stationary increments
with respect to each variable. Therefore they are anisotropic fields but they are self-similar
of index

∏d
i=1 Hi. Typical paths of corresponding fields of parameters H1 = 0.5, H2 = 0.5

and H1 = 0.5, H2 = 0.9 are also plotted on Figure 5.

3.5. Space-Time deformed fractional Brownian fields

The space-time fractional Brownian fields are defined through their covariance function (see
Bégyn (2006)):

R(M,M ′) =
σ(M)σ(M ′)

2
{
‖τ(M)‖2H + ‖τ(M ′)‖2H − ‖τ(M)− τ(M ′)‖2H

}
,

where the Hurst parameter H is real in (0, 1), σ : Rd −→ R∗ is a Σ–Hölder continuous
function of order Σ > H and τ : Rd −→ Rd is a continuously differentiable function such that
∇τ(M) 6= 0 for all M ∈ Rd.
Path of corresponding field with d = 2, for H = 0.7 and of functional parameters σ(M) =
e−(M1+M2), τ(M) =

(
e

M1
H , e

M2
H

)
is finally plotted on Figure 6.

3.6. Hyperbolic fractional Brownian fields

Let Dd = {M ∈ Rd, ‖M‖ < 1}, where ‖.‖ is the usual Euclidean norm. For M,M ′ ∈ D,
define

δ(M,M ′) = 2
‖MM ′‖

(1− ‖M‖2)(1− ‖M ′‖2)
,

and

ρ(M,M ′) = arccosh(1 + δ(M,M ′)).

The metric space (Dd, ρ) is a model of hyperbolic space (e.g. Helgason (1962)). When d = 2,
(D2, ρ) is the Poincaré’s disk. The Hyperbolic fractional Brownian field (in short HFBF) is
the centered Gaussian field with covariance function

R(M,M ′) =
1
2
(ρ2H(O,M) + ρ2H(O,M ′)− ρ2H(M,M ′)),

where O is the origin of Rd. The HFBM exists if and only if 0 < H ≤ 1/2 (Istas (2005)).
Paths of HFBF, with d = 2, H = 0.3 and H = 0.5 are plotted in Figures 5 and 6.
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Figure 6: 256×256 – Fractional Brownian fields (on top, for H = 0.5 on the left and H = 0.7
on the right), multifractional Brownian field (middle left for H(t) = 0.5 + 0.4t1), fractional
Brownian sheet (middle right for H1 = 0.5, H2 = 0.9), space-time deformed Brownian field
(bottom left with σ(t) = e−(t1+t2) and τ = e

1
H

t) and hyperbolic fractional Brownian fields
(bottom right for H = 0.1 on

[
−1

2 , 1
2

]2) simulated by fieldsim.
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4. Appendix

4.1. Asymptotically normality of the Hurst parameter estimator

Let X(·) be a fractional Brownian field with Hurst parameter H. Let us suppose that one
has a sample path of this process over the grid (k, l)T /N, k, l = 0, . . . , N. We consider the
generalized variations based on the discrete second derivatives,

VN (X) =
N−1∑
k=1

N−1∑
l=1

 1∑
i=−1

1∑
j=−1

aiajX

( k+i
N

l+j
N

)2

,

where a−1 = a1 = 1 and a0 = −2. The associated estimator of the Hurst parameter is defined
by (see Istas and Lang (1997)),

ĤN =
1
2

log2

(
VN/2(X)
VN (X)

)
+ 1.

Without restriction, one can consider only even N, so ĤN is well defined. It can be shown
(see Biermé (2005)) that

N(ĤN −H) D−→ N (0, γ2
H),

where the convergence is in distribution. The constant γ2
H is given by:

γ2
H =

1
(C1 log 2)2

(
5
4
C2 − 2−2H+1C3

)
,

where C1, C2 and C3 are positive constants given by

lim
N→+∞

N2H−2E (VN (X)) = C1, lim
N→+∞

N4H−2V ar (VN (X)) = C2,

and
lim

N→+∞
N4H−2Cov

(
VN (X), VN/2(X)

)
= C3.

Constants C1, C2 and C3 are computed in Biermé (2005) in a general setting. Let us give
them in our case in a more tractable way:

C1 = −1
2
u0

0, (1)

C2 =
1
2

(
(u0

0)
2 + 4

∞∑
l=1

∞∑
k=0

(uk
l )

2

)
, (2)

C3 =
1
8

(
(ũ0

0)
2 +

∞∑
l=1

∞∑
k=0

{
(ũk

l )
2 + (ũk

−l)
2 + (ũ−k

l )2 + (ũ−k
−l )

2
})

, (3)
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where

uk
l =

1∑
i,j,i′,j′=−1

ai′,j′

i,j

(
(k + i− i′)2 + (l + j − j′)2

)H
,

ũk
l =

1∑
i,j,i′,j′=−1

ai′,j′

i,j

(
(k + 2i− i′)2 + (l + 2j − j′)2

)H
,

where ai′,j′

i,j = aiajai′aj′ . Indeed, we have

E (VN (X)) =
1∑

i,j,i′,j′=−1

ai′,j′

i,j E

(
X

( k+i
N

l+j
N

)
X

(
k+i′

N
l+j′

N

))
,

=
1
2
N−2H

1∑
i,j,i′,j′=−1

ai′,j′

i,j

(∥∥∥∥ k + i
l + j

∥∥∥∥2H

+
∥∥∥∥ k + i′

l + j′

∥∥∥∥2H

−
∥∥∥∥ i− i′

j − j′

∥∥∥∥2H
)

.

Since
∑1

i=−1 ai = 0,

E (VN (X)) = −1
2
(N − 1)2N−2H

1∑
i=−1

1∑
j=−1

1∑
i′=−1

1∑
j′=−1

∥∥∥∥ i− i′

j − j′

∥∥∥∥2H

,

that leads to the expression (1) for C1.

Concerning the relationship for C2, let us recall that for any centered Gaussian variables X
and Y , we have,

E(X2Y 2)− E(X2)E(Y 2) = 2(E(XY ))2.

That leads to

V ar (VN (X)) = 2
N−1∑

k,l,k′,l′=1

E


 1∑

i,j=−1

aiajX

( k+i
N

l+j
N

)
 1∑

i′,j′=−1

ai′aj′X

(
k′+i′

N
l′+j′

N

)


2

=
1
2
N−4H

N−1∑
k,l,k′,l′=1

(ũk−k′

l−l′ )2,

because of
∑1

i=−1 ai = 0. Changing variables k − k′ into k” and l − l′ into l” provides,

V ar (VN (X)) =
1
2
N−4H(N − 1)2

(
(u0

0)
2 + 4

∞∑
l”=1

∞∑
k”=0

(
1− l”

N − 1

)(
1− k”

N − 1

)
(uk”

l” )2
)

,

what leads to the result provided that the sequence of terms (uk
l )

2 converges. To prove that,
we can express uk

l as follows,

uk
l = (k2 + l2)H

1∑
i,j,i′,j′=−1

ai′,j′

i,j

(
1 + εi′,j′

i,j (k, l)
)H

,
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where

εi′,j′

i,j (k, l) =
(i− i′)2

k2 + l2
+

(j − j′)2

k2 + l2
+

2(i− i′)k
k2 + l2

+
2(j − j′)l
k2 + l2

.

Since
∑1

i=−1 ai =
∑1

i=−1 iai = 0,

1∑
i,j,i′,j′=−1

ai′,j′

i,j (i− i′)n(j − j′)m = 0, n,m < 4,

and using Taylor’s expansion of the function f(x) = (1 + x)H up to order 4, we obtain

uk
l = 4(k2 + l2)H−4

1∑
i,j,i′,j′=−1

ai′,j′

i,j f (4)(θi′,j′

i,j (k, l))(i− i′)4(j − j′)4,

where θi′,j′

i,j ∈ [0, εi′,j′

i,j (k, l)]. On the other hand, for large enough values of k or l, |εi′,j′

i,j (k, l)|
can be bounded by 1 and then there exists some constant C such that (uk

l )
2 ≤ C(k2+ l2)2H−8.

Since H ∈ (0, 1], the series of terms (k2 + l2)2H−8 (consequently (uk
l )

2) converges.
The expression given for C3 is obtained in a similar way.

4.2. Using FieldSim

Implementation of FieldSim

FieldSim is a set of R functions that allows performing simulations of Gaussian Fractional
Fields with known covariance function. Three classes of functions are implemented:

• Simulation functions midpoint and fieldsim that perform simulations of the path
of the process. Procedure fieldsim uses Levinson-Durbin algorithm, thanks to the
covariance function and the number of accurate and refined steps of the algorithm,
parameters set by the user. C2D function has been implemented for the covariance
function of multifractional Brownian Fields.

• Estimation functions: quadvar yields estimation of the Hurst parameter of a fractional
Brownian field using the quadratic variations method Istas and Lang (1997). locquad-
var performs estimation of the multifractional function at a given point for a multi-
fractional Brownian field using the procedure described in Lacaux (2004). H.test gives
results relating to the test presented at Subsection 3.1.

• C subroutine vf performs the tasks that are consuming because of the number of loops.
gamma2 and quadvaraux are other internal functions.

The R environment is the only user interface. Function fieldsim calls the C subroutine vf
whose result is returned to R.
In order to make it easier for the reader not used to R language, we detail the call to functions
and the commands used to produce graphical outputs.

Fractional Brownian Fields

To simulate Fractional Brownian Fields (see Section 3.1), one needs to specify the Hurst
parameter 0 < H < 1 and the covariance function R(M,M ′). For instance,
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R> set.seed(626)

R> R <- function(x, H = 0.9) {

+ 1/2*((x[1]^2 + x[2]^2)^H + (x[3]^2 + x[4]^2)^H -

+ ((x[1] - x[3])^2 + (x[2] - x[4])^2)^H)

+ }

R> FBF09 <- fieldsim(R, Elevel = 2, Rlevel = 4, nbNeighbor = 8)

simulates the corresponding process, with Elevel accurate simulation steps and Rlevel re-
fined simulation steps with nbneighbor neighbors. That corresponds to a sample path of size
(2Elevel+Rlevel + 1)2 with a grid of size (2Elevel + 1)2 for the accurate simulation steps.

The result of the function fieldsim is a R Object of class list. It contains the following
elements:

• vectors Zrow, Zcol of x and y coordinates and matrix Z of the simulated path of the
process;

• real time that gives the CPU time.

Thus to produce the graph on the Figure 1, one have to call the function persp as

R> x <- FBF09$Zrow

R> y <- FBF09$Zcol

R> z <- FBF09$Z

R> persp(x, y, z, phi = 30, theta = 110, shade = 0.1, axes = FALSE)

Other illustrations can be done (Figure 6 for fractional and multifractional Brownian Fields),
for instance clouds representation.

R> library(RColorBrewer)

R> colramp <- colorRampPalette(brewer.pal(9, "Blues"))

R> image(z, col = colramp(128))

To estimate the Hurst index in the Fractional Brownian case, one uses the implemented
estimation function quadvar as

R> quadvar(Z = FBF09$Z)

[1] 0.828395

One can now compare quadratic variations estimation with the true value of H. To do this,
one can use the procedure H.test in the following way

R> H.test(Z = FBF09$Z, H = 0.9, alternative = "two.sided", conf.level = 0.95)

Multifractional Brownian Fields

To simulate Multifractional Brownian Fields, one needs to specify the function H(M), M ∈
R2, and the covariance function R(M,M ′). Function C(H), H ∈ (0, 1[, (see Section 3.2) have
been implemented and can be called by C2D. For instance,
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R> F <- function(y){0.4*y + 0.5}

R> R<-function(x, Fun = F){

+ H1 <- Fun(x[1])

+ H2 <- Fun(x[3])

+ alpha <- 1/2*(H1 + H2)

+ C2D(alpha)^2/(2*C2D(H1)*C2D(H2))*((x[1]^2 + x[2]^2)^alpha +

+ (x[3]^2 + x[4]^2)^alpha - ((x[1] - x[3])^2 + (x[2] - x[4])^2)^alpha)

+ }

R> MBFaff <- fieldsim(R, Elevel = 1, Rlevel = 7, nbNeighbor = 4)

simulates the corresponding path.
Thus to produce the graph such as Figure 3, one calls the function persp as

R> x <- MBFaff$Zrow

R> y <- MBFaff$Zcol

R> z <- MBFaff$Z

R> persp(x, y, z, phi = 30, theta = 110, shade = 0.1, axes = FALSE)

To estimate the function H(M) at the point M = (0.5, 0.5)T , one uses the following command

R> locquadvar(MBFaff$Z, t = c(0.5,0.5), h = 0.125)

Two Parameters Fractional Brownian Fields

To simulate Two Parameters Fractional Brownian Fields (see Figure 5), one needs to specify
the parameters 0 < H < 1, 0 < K ≤ 1 and the covariance function (see Section 3.3). For
instance,

R> R <- function(x, H = 0.5, K = 1){

+ 1/2^K*(((x[1]^2 + x[2]^2)^H + (x[3]^2 + x[4]^2)^H)^K -

+ ((x[1] - x[3])^2 + (x[2] - x[4])^2)^(H*K))

+ }

R> 2pFBF <- fieldsim(R, Elevel = 1, Rlevel = 5, nbNeighbor = 4)

Fractional Brownian Sheets

To simulate Fractional Brownian Sheet (see Figure 5), one indicates the multivariate Hurst
index H = (H1,H2) ∈ (0, 1)2 and the covariance function (see Section 3.4). For instance,

R> R <- function(x, H1 = 0.9, H2 = 0.5){

+ 1/4*( abs(x[1])^(2*H1) + abs(x[3])^(2*H1) - abs(x[1] - x[3])^(2*H1))

+ *(abs(x[2])^(2*H2) + abs(x[4])^(2*H2) - abs(x[2] - x[4])^(2*H2))

+ }

R> FBS <- fieldsim(R, Elevel = 1, Rlevel = 5, nbNeighbor = 4)

Space-Time deformed Fractional Brownian Fields

To simulate Space-time deformed Fractional Brownian Fields (see Figure 5), one has to specify
the Hurst parameter 0 < H < 1, functional parameters τ and σ and the covariance function
(see Section 3.5). For instance
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R> tau <- function(y, H = 0.7){exp(y/H)}

R> R <- function(x, Fun = tau, H = 0.7){

+ 1/2*((Fun(x[1])^2 + Fun(x[2])^2)^H

+ + (Fun(x[3])^2 + Fun(x[4])^2)^H

+ - ((Fun(x[1]) - Fun(x[3]))^2

+ + (Fun(x[2]) - Fun(x[4]))^2)^H)

+ }

R> res <- fieldsim(R, Elevel = 1, Rlevel = 5, nbNeighbor = 4)

Hyperbolic fractional Brownian Fields

To simulate Hyperbolic fractional Brownian Fields (see Figure 6) on [−1
2 , 1

2 ], one has to specify
the Hurst parameter 0 < H ≤ 1

2 and the specific covariance function (see Section 3.6). For
instance

R> R <- function(x, H = 0.1){

+ 1/2*(acosh(1 + 2*((x[1] - 1/2)^2 + (x[2] - 1/2)^2)/

+ (1 - ((x[1] - 1/2)^2 + (x[2] - 1/2)^2)))^(2*H) +

+ acosh(1 + 2*((x[3] - 1/2)^2 + (x[4] - 1/2)^2)/

+ (1 - ((x[3] - 1/2)^2 + (x[4] - 1/2)^2)))^(2*H) -

+ acosh(1 + 2*(((x[1] - x[3])^2 + (x[2] - x[4])^2)/

+ ((1 - ((x[1] - 1/2)^2 + (x[2] - 1/2)^2))*(1 -

+ ((x[3] - 1/2)^2 + (x[4] - 1/2)^2)))))^(2*H))

+ }

R> hyper <- fieldsim(R, Elevel = 1, Rlevel = 5)
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