
Noname manuscript No.
(will be inserted by the editor)

Penalized estimation in additive varying coefficient
models using grouped regularization

A. Antoniadis · I. Gijbels · S.
Lambert-Lacroix

Received: date / Accepted: date

Abstract Additive varying coefficient models are a natural extension of mul-
tiple linear regression models, allowing the regression coefficients to be func-
tions of other variables. Therefore these models are more flexible to model
more complex dependencies in data structures. In this paper we consider the
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cent years several grouped regularization methods have been proposed and in
this paper we present these under one unified framework in this varying coeffi-
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vestigate the finite-sample performance of these methods, in a comparative
study, and illustrate them on real data examples.
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1 Introduction

In a classical linear regression model the influence of covariates X(1), · · · , X(p)

on a response variable Y is modelled via

Y = β0 + β1X
(1) + · · ·+ βpX

(p) + ε,

where ε denotes the error term in the regression model. A useful extension of
this classical linear regression model is functional (varying) coefficient models,
where model parameters (such as βj , j = 0, · · · , p) may change with the value
of other variables (factors). To formalize the functional coefficient, paramet-
ric representations such as finite order polynomials or Fourier expansions, or
otherwise nonparametric approaches can be employed.

In the varying coefficient model of [21], the regression function depends
linearly on some regressors, with coefficients considered as smooth functions
of other predictor variables, called tuning variables. A special type of varying
coefficient model is called the functional coefficient model by [11] (see also [18]).
There, all tuning variables are the same and univariate. Such models have been
used for longitudinal data where subjects are often measured repeatedly over
a given period of time, so that the measurements within each subject are
possibly correlated with each other (see [39,37]).

While many procedures have been developed in the literature for estimating
the varying coefficients, the problem of variable selection for such models has
rarely been addressed. Recently, [31] have studied the problem of variable se-
lection for partial linear varying coefficient models, where the parametric com-
ponents are identified via the Smoothed Clipped Absolute Deviation (scad)
procedure of [15] but the varying coefficients are selected via the generalized
likelihood ratio test of [17]. Their approach can be viewed as a combination of
shrinkage and hypotheses testing methods. In [2] the authors use an extension
of the nonnegative garrote selection method to select variables in a varying
coefficient model. That paper also discusses a selection method that is equiv-
alent to a grouped lasso regularization method, discussed in our review of
methods.

In this paper we present in a unifying framework several regularized esti-
mation procedures for variable selection in nonparametric varying coefficient
models using basis function approximations and grouped type of penalties.
We focus on a varying coefficient model used in the context of longitudinal
data. Such data arise in many scientific studies, where measurements possi-
bly change over time t, leading to a response variable Y (t) and covariates
X(1)(t), · · · , X(p)(t). It is then of interest to study the association between the
covariates and the responses and to examine how the association varies with
time. A simple and useful model for studying the association between Y (t)
and the covariates

(
X(1)(t), · · · , X(p)(t)

)
is then the linear model

Y (t) = β0(t) + β1(t)X(1)(t) + · · ·+ βp(t)X
(p)(t) + ε(t), (1.1)
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where ε(t) is a zero-mean correlated stochastic process that cannot be ex-
plained by the covariates. Such a model has been considered in [18] as a func-
tional linear model for longitudinal data. Model (1.1) is also a specific model
within a class of functional linear models introduced by [38] in a somewhat dif-
ferent context. For the varying coefficient models, smoothing spline and kernel
methods are proposed in [21]. In [22], smoothing spline and kernel methods
were studied whereas in [10] the smoothing spline method was considered for
functional analysis-of-variance (ANOVA) models which are special cases of
functional linear models. Although the spline method has better performance
than the kernel method due to its introduction of multiple smoothing param-
eters [22], its computation is very intensive even for a longitudinal data set of
moderate size, not to mention the difficulty of selecting the multiple smoothing
parameters which involves high dimensional optimization problems. For some
longitudinal data sets with special structure [18] proposed two-step procedures
that overcome the inflexibility of traditional spline and kernel methods.

Model (1.1) is also the same as the one used by [24] but where a global
smoothing procedure is developed for estimating the parameters using a ba-
sis function approximation for the varying coefficients functions in a repeated
measurements longitudinal data model. It is also the model studied by [47]
where the varying coefficients functions are estimated by some locally kernel
weighted least squares procedures. Model (1.1) further includes many other
useful models proposed in the literature, as will be discussed in the next sec-
tion.

In this paper we study the variable selection problem in the context of
model (1.1). We use the method of basis expansion to estimate the smooth
functions βj(·) and discuss various grouped regularization methods for vari-
able selection, including grouped lasso regularization, grouped scad regu-
larization, grouped Bridge regularization and grouped cosso regularization.
Using results of [33], we show that the grouped lasso regularization method
is variable selection consistent and also estimation consistent, but not simulta-
neously, in asymptotic sense, even when the dimensionality p increases much
faster than the sample size. For the other methods we also briefly discuss
available asymptotic results on variable selection and estimation consistency
available in the literature. For each grouped regularization selection method
we comment on the available algorithms for solving the specific optimization
problem.

The paper is organized as follows. In Section 2 we introduce the model-
ing framework with the necessary notations. In Sections 3–6 we discuss four
grouped regularization methods, of which the finite-sample performances are
investigated via a simulation study in Section 7. In the same section the use
of the grouped regularization techniques on some real data is illustrated.
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2 Model formulation and set up

We consider a varying coefficient model

Y (t) = X(t)β(t) + ε(t), (2.1)

where X(t) = (1, X(1)(t), · · · , X(p)(t)), of dimension 1× (p+ 1), is the vector
of time-dependent covariates, and β(t) = (β0(t), β1(t), β2(t), · · · , βp(t))T is

a vector of time-varying coefficients, with AT denoting the transposed of a
vector or matrix A. The first elements in these vectors ensure the inclusion of
an intercept parameter function in the model.

For the error term we assume that for all t and s,

E (ε(t)) = 0, and Cov (ε(t), ε(s)) = σ2δst,

with δst the Kronecker delta, defined as the function of (s, t) that is 1 if s = t
and 0 otherwise.

In the context of longitudinal data, we have for each individual/subject
under study (for i = 1, · · · , n), observations at discrete time point ti1, · · · , tiNi

,
denoted by

((Xi(ti1), Yi(ti1)), · · · , (Xi(tiNi), Yi(tiNi)) ,

with Xi(tij) =
(

1, X
(1)
i (tij), · · · , X(p)

i (tij)
)

the observed covariate values for

individual i at time point tij . So, n denotes the number of subjects/individuals,
Ni is the number of observations at discrete time points for individual/subject
i, and p is the number of covariates.

Observations are from the model (2.1) and hence satisfy

Yi(tij) = Xi(tij)β(tij) + εi(tij), i = 1, · · · , n, j = 1, · · · , Ni, (2.2)

with, for all i, j and all s, t,

E (εi(tij)) = 0 and Cov (εi(t), εj(s)) = σ2δstδij .

As noted by a referee, such an assumption on the covariance structure of the
stochastic process modeling of the longitudinal effects is somewhat restrictive
and excludes interesting functional varying coefficient models. However, not
only it simplifies our analysis, but note also that such a specification seems
unavoidable since the large dimensions of the covariance matrices involved
make it infeasible to estimate them in a completely unstructured fashion. We
believe that our results can be extended to dependent observations with par-
ticular covariance structure and we hope to address this issue in the future.

The main interest in the paper is in the variable selection problem, in par-
ticular when p > n. For tackling this problem we study procedures of grouped
lasso, grouped scad, grouped Bridge and grouped cosso regularization. The
focus is of course on the p univariate functions βk(·), k = 1, · · · , p, since they
describe the influence of the covariates X(k)(·) on the response variable Y (·).
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In practice, it is more useful to express the model in terms of basis func-
tions. Assume that the functions βk(·), k = 0, 1, · · · , p, belong to a certain
space of smooth functions, say that we can write

βk(t) =

∞∑
`=1

γ∗k`B`(t),

where γ∗ denotes the true parameter and we further approximate this by

βk(t) ≈
Lk∑
`=1

γ∗k`B
(k)
` (t), (2.3)

where the superscript (k) indicates that the set of approximating basis func-
tions can be different for each univariate function, and where Lk is an integer-
valued truncation parameter, possible different for each k. For example, in an
approximation with B-splines one could use B-splines of a different degree
and/or a different number of knot points for each of the univariate functions.
Note that the approximation in (2.3) means that one already has dealt with
a (modeling) bias issue. In a modeling setting, we will accept this approxima-
tion. Note, however, that when focusing on the asymptotic analysis (when Lk
goes to infinity), the rate of convergence obtained for each variable coefficient
is the optimal rate for nonparametric regression. Therefore the incurred loss
due to this approximation is not important asymptotically.

Hereafter we restrict ourselves to the finite dimensional space of cubic B-
splines. For each function βk we use a cubic B-spline parameterization with a
reasonable amount of knots or basis functions. A typical choice would be to
use (Lk−2) � mini=1,...,nNi

1/5 interior knots that are placed at the empirical
quantiles of X(k)(·), completed by two extra knots placed at the boundaries
of the domain of definition of βk. A truncation parameter Lk = Lkn for each

component of the order mini=1,...,nNi
1/5 yields a truncation bias that is negli-

gible for twice differentiable functions, i.e.
∥∥∥βk −∑Lk

`=1 γ
∗
k`B

(k)
`

∥∥∥2
L2

= O(L−4k ),

see for instance [36].

We now rewrite the (approximate) model in matrix notation. Substituting
the approximation (2.3) into the model (1.1) we can write for i = 1, . . . , n,
j = 1, . . . , Ni,

Yi(tij) =

p∑
k=0

X
(k)
i (tij)(B

(k)(tij))
Tγ∗k + εi(tij), (2.4)

where we introduced the notation

γ∗k =
(
γ∗k,1, · · · , γ∗k,Lk

)T
and B(k)(t) =

(
B

(k)
1 (t), · · · , B(k)

Lk
(t)
)T
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for these vectors of dimension Lk × 1 and

Y = (Y1(t11), · · · , Y1(t1N1
), Y2(t21), · · · , Yn(tn1), · · · , Yn(tnNn

))
T

ε = (ε1(t11), · · · , ε1(t1N1
), ε2(t21), · · · , εn(tn1), · · · , εn(tnNn

))
T

for the latter vectors of dimension

n∑
i=1

Ni × 1 ≡ N × 1.

We further denote by Zk the matrix of dimension N ×Lk consisting of all
elements

(Zk)ij,` = X
(k)
i (tij)B

(k)
` (tij) i = 1, · · · , n, j = 1, · · · , Ni, ` = 1, · · · , Lk.

We have (p+ 1) such matrices and stack these into one single big structure

Z = [Z0Z1Z2 · · ·Zp] ,

of dimension N ×

(
p∑
k=0

Lk

)
. Finally we denote

γ∗ =
(
γ∗0, · · · ,γ∗p

)T
,

of dimension (

p∑
k=0

Lk)× 1.

With all the notations introduced above we can write the (approximate)
model of observations in (2.4) in matrix form as

Y = Zγ∗ + ε, (2.5)

which is now a linear model in γ∗ in which the variance-covariance matrix of
the error term has the structure

Σ(ε) = σ2IN ,

where IN denotes the diagonal matrix of dimension N ×N with ones on the
diagonal.

In the sequel we work with the goodness-of-fit quantity

n∑
i=1

1

Ni

Ni∑
j=1

(
Yi(tij)−

p∑
k=0

Lk∑
`=1

γk,`X
(k)
i (tij)B

(k)
` (tij)

)2

≡ ‖Ỹ − Z̃γ‖22, (2.6)

where we put Ỹ = W1/2Y and Z̃ = W1/2Z with W the matrix of dimension
N ×N consisting of all diagonal matrices Wi of dimension Ni ×Ni contain-
ing N−1i on the diagonal elements. The weights in this weighted squared `2
goodness-of-fit measure allow us to treat each subject equally, while using
Ỹ = W1/2Y and Z̃ = W1/2Z allows us to simplify the general presentation
to the case where all weights are equal to 1.
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A special situation occurs when, for all individuals, i, observations on the
same time points t1, · · · , tÑ are available, meaning that Ni = Ñ for all i =

1, · · · , n. In that case N = nÑ .
Model (1.1) is also related to the model considered in [34] when study-

ing smoothing `1-penalized estimators for high-dimensional time-course data.
They consider linear models with slowly changing high-dimensional p× 1 pa-
rameter vector β(t):

Y(tr) = X(tr)β(tr) + ε(tr), r = 1, . . . , Ñ , (2.7)

where X(t) is an n(t)×p design matrix at time t, Y(t) is the n(t) dimensional
response vector at times t, that is for every time t one has data as in (2.7)
with sample size n(t), and finally the ε(t)’s are independent with E(ε(t)) = 0
and Cov(ε(t)) = σ2In(t). Assuming that for all t they have the same number

of observations n(t) = Ñ , they propose the smoothed lasso for estimating
sparsely β.

The high-dimensional linear model (2.7) considered in [34] with n(t) = Ñ
is thus a special case of the varying coefficient model (2.2) studied by [18].

Indeed, this is easily seen by taking in (2.2), Ni = Ñ for all i = 1, . . . , n
(cross-sectional longitudinal data model) and assuming further that the error
covariance structure is determined by Cov(ε(t), ε(s)) = σ2δst. This remark will
be important when we are going to explore the various estimation procedures
that have been designed in the literature to treat such models.

The interest is now to study the variable selection problem together with
the estimation of the univariate functions βk(·). Given our framework, this is
equivalent to selecting and estimating some vector of coefficients γ in the linear
model (2.5). In the next sections we discuss several grouped regularization
methods for this task. For each of the methods we provide a brief discussion
on their implementation and computational algorithms as well as on their
possible limitations.

3 Grouped lasso regularization

The first extension of the ideas of penalized regression to problems of grouped
variables was proposed by [41] where rather than penalizing individual co-
variates they proposed penalizing norms of groups of coefficients and called
their method the group lasso. The grouped lasso procedure in our context
consists of minimizing the objective function

1

2n
‖Ỹ − Z̃γ‖22 + λ

p∑
k=1

wk‖γk‖2, (3.1)

where wk =
√
Lk, with respect to the vector of parameters γ. Note that we

are not penalizing the intercept function β0(·) parameterized by the vector
γ0, since this term is not to be selected. Denote by γ̂ the solution of this
optimization problem.



8 A. Antoniadis et al.

Minimization of (3.1) is equivalent to minimization of

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

λkwk‖γk‖22 + ν

p∑
k=1

1

λk
, (3.2)

with the constraints that λ1, · · · , λp > 0 and ν > 0.

The above equivalent reformulation of the minimization problem given
in (3.1) was first noticed and proved in the context of smoothing splines
ANOVA (SS-ANOVA) models where the COmponent Selection Shrinkage Op-
erator (Cosso) was introduced as a variable selection method in SS-ANOVA
models (see [32]). The only difference with the cosso smoothing spline ap-
proach is the penalty, which here is a weighted sum of the `2 norms of the
vectors γk instead of a specific squared projection norm used in the cosso
method. The proposed new penalty penalizes the fitted model more straight-
forwardly through the norm of the vector of fitted coefficients of each group
component. Such a penalty therefore encourages sparsity at the group level.
The equivalence between (3.1) and (3.2) can be proved along the same lines as
in Lemma 1 of [1] who studied additive models with P -splines. Note that the
first penalty term in (3.2), namely

∑p
k=1 λkwk‖γk‖22 involves ‖γk‖22 instead

of ‖γk‖2 as in (3.1). In order to minimize (3.2) with respect to the vector
λ = (λ1, . . . , λp) and the sequence of group coefficients (γk)k=0,...,p one iter-
ates between minimizing (3.2) for fixed λ (ridge regression) and minimizing
(3.2) for fixed (γk)k=0,...,p under the positivity constraint on the components
of λ (nonnegative garrote). We will review in Section 6 how the above results
may be exploited to provide effective algorithms for computing a minimizer
of the original grouped lasso minimization problem but also group bridge
variable selection.

We would like to mention here a different and promising approach for solv-
ing the grouped lasso regularization problem, that is based on an iterative
projection method for structured sparsity regularization used in the machine
learning community (see, e.g. [40]). The method in [40] is based on the spectral
projected-gradient algorithm originally developed by [7]. Instead of the regu-
larized version (3.1) of the grouped lasso problem, they consider the following
constrained version

min
γ

1

2n
‖Ỹ − Z̃γ‖22

p∑
k=1

λkwk‖γk‖2 ≤ τ , (3.3)

where τ is a positive constrain parameter, that they iteratively solve using
a spectral gradient projection. Basically, given a current iterate γ(j) their
iterated solution is defined as

γ(j+1) = Π
(
γ(j) + αZ̃

t
(Ỹ − Z̃γ(j))

)
, (3.4)
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where the step length α > 0 is some step size to be optimized to ensure
sufficient descent (with a backtracking line search, for example) and Π(·) is
the projection operator defined as

Π(u) =

{
argminx‖u− x‖2 subject to

p∑
k=1

λkwk‖γk‖2 ≤ τ

}
.

This algorithm is simple to implement, has low memory requirements and
seems to be competitive with the more elaborated Cosso-based algorithm that
is usually used in the statistical literature (see [19]).

For the grouped lasso problem in (3.1) we aim at applying the theoretical
results established by [33]. We investigate the variable selection consistency
as well as the estimation consistency, i.e. the asymptotic property that the
method can correctly select important variables with probability approaching
one and that the convergence rates for the nonzero coefficients are the same as
the oracle estimator (the estimator when the important variables are known
before carrying out statistical analysis). In order to apply the results in [33] we

need to make sure that the columns of the matrix Z̃ are standardized. This is
done easily by replacing Z̃ by Z̃D−1

‖Z̃‖2
where D‖Z̃‖2 is the diagonal matrix of

dimension (
∑p
k=0 Lk) × (

∑p
k=0 Lk) consisting of all diagonal sub matrices of

dimension Lk × Lk with ‖Z̃k‖2/
√
n on the diagonal where Z̃k = W

1/2
k Zk, for

k = 0, · · · , p. From now on we assume that the matrix Z̃ has been standardized
from the start. Let us remark that the results in [33] are given for a loss function
different from ours when Nj , j = 1, . . . , p, are different. Nevertheless all their
results can be obtained in our case.

We now explain with more details what is meant by variable selection
consistency and estimation consistency in the presented framework. Denote
by

S = {k : ‖γ∗k‖∞ 6= 0, k = 1, · · · , p}, (3.5)

the set of all varying coefficient variables that are non-null, where we used the
standard notation ‖γk‖∞ = max1≤`≤Lk

|γk,`|. Denote by sN = |S|, the number
of elements in S. Since p = pN , sN obviously depends on N . The sparsity
assumption means that sN << pN . An estimator is said to be variable selection
consistent if it can correctly recover the sparsity pattern with probability going
to one, i.e.

P {S (γ̂) = S(γ∗)} → 1, asN →∞,
where S(γ∗) = S as defined in (3.5), and S (γ̂) is defined similarly using γ̂.

An estimator is `2-estimation consistent if

‖γ̂ − γ∗‖2
P−→ 0 as N →∞.

Let us introduce ρ∗N = minj∈S ‖γ∗j‖. Further denote by Z̃S the large matrix

formed by stacking the columns of Z̃ whose indexes belong to S. We need to
introduce the following assumptions
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(C1) Λmin( 1
n Z̃

T

S Z̃S) ≥ C > 0, where Λmin(A) denotes the minimum eigen-
value of the matrix A.

(C2) ∃ 0 < δ < 1, maxk∈SC ‖(Z̃
T

k·Z̃S)(Z̃
T

S Z̃S)−1‖2,2 ≤ 1 − δ, where
‖A‖a,b = supx ‖Ax‖`a/‖x‖`b , 1 ≤ a, b ≤ ∞.
(C3) Lk → +∞, k = 0, . . . , pN , and LN = o(N), where LN = maxk=0,...,pN

Lk.
(C4)

λ2NN

log((pN − sN )LN )
→ +∞.

(C5)

1

ρ∗N


√

log(sNLN )

N
+ λN

√
LN

∥∥∥∥∥
(

1

N
Z̃
T

S Z̃S

)−1∥∥∥∥∥
∞,∞

→ 0.

Note here that (C2) is a variant of the irrepresentable condition used in several
papers involving the variable selection consistency. Applying Theorem 3.1 in
[33], we obtain the following result.

Theorem 1 Under conditions (C1-C5), the grouped lasso estimator is vari-
able selection consistent.

For the estimation consistency we need to add and replace condition (C4)
by the following assumption:

(C6) κ = min
S0⊆{1,...,p}:|S0|≤sN

min
{γ:

∑
j∈Sc

0

√
Lj‖γj‖2≤3

∑
j∈S0

√
Lj‖γj‖2}

∥∥∥Z̃γ∥∥∥
2

√
n
√∑

j∈S0
Lj‖γj‖22

> 0.

This assumption on the Gram matrix Z̃ is very similar to the restricted eigen-
value assumption as in [6] that is needed to guarantee nice statistical properties
of the Lasso selector under a sparsity scenario. One can find in the paper cited
above some simple sufficient conditions for such an assumption to hold. Note
however, that such conditions are generally computationally intractable.

We now may apply Theorem 4.3 together with Remark 4.4 in [33] to obtain
the following result.

Theorem 2 Under condition (C6), let εi(tij), i = 1, . . . , n, j = 1, . . . , Ni, be
independent identically normal distributed of mean 0 and variance σ2. If

λN = Aσ

√
log
∑pN
k=1 Lk
N

,

for some A > 2
√

2, then with probability at least 1−(
∑pN
k=1 Lk)1−A

2/8, we have

‖γ̂ − γ∗‖22 ≤
144A4σ4s2NL

2

N

κ4
log
∑pN
k=1 Lk
N

.
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For example, assuming that Ni = Ñ , for i = 1, . . . , n, if one takes pN = O(nβ)
and Lk = O(Ñα) for all k with 0 < α, β < 1/2, in Theorem 2, one guarantees
the asymptotic consistency of γ̂. As noted by a referee, while according to
the above theorems the grouped lasso enjoys nice properties in terms of
estimation consistency and variable selection, it can not be both at the same
time, i.e. it does not possess the oracle property. Indeed, looking carefully at
condition (C4) and the rate required for λN in Theorem 2, it is clear that
in order that the two conditions hold simultaneously one must require that
(pN − sN ) → 0 as N → ∞, meaning that the sparsity assumption is not
true. The grouped lasso therefore behaves similarly to the standard lasso.
One should however note that Huang and Zhang [27] showed recently that the
grouped Lasso can be better than the standard Lasso under an assumption
of strong group sparsity together with a group sparse eigenvalue condition on
the design matrix.

Since we are estimating some functional coefficient βk, it is natural to
study the rate of convergence of the grouped lasso estimator. When using
our B-splines setup, the following holds ([12]):

∥∥∥β̂k − βk∥∥∥2
L2

≤

∥∥∥∥∥
Lk∑
`=1

(γ̂k` − γ∗k`)B
(k)
`

∥∥∥∥∥
2

L2

+

∥∥∥∥∥βk −
Lk∑
`=1

γ∗k`B
(k)
`

∥∥∥∥∥
2

L2

=
1

Lk
‖γ̂k − γ∗k‖

2
2 +O(L−4k ),

where ‖g‖L2 denotes {
∫
g2(x)dx}1/2 the L2-norm of a function g.

Using Theorem 3.2 of [33], we obtain the following theorem:

Theorem 3 Under conditions of Theorem 3.2 in [33], we have∥∥∥β̂k − βk∥∥∥2
L2

= OP

(
s2NL

2

N log
∑pN
k=1 Lk

NLk
+ L−4k

)
.

Note that, assuming again that Ni = Ñ = exp(n1−η), for i = 1, . . . , n, if
one takes pN = O(nβ) and Lk = O(Ñ1/5) for all k with 0 < η < β < 1/2,
in Theorem 3, one guarantees the optimal nonparametric asymptotic rate for
the functional coefficients.

Let us remark that [46] propose a grouped lasso type of variable selection
method in the context of varying coefficient models. They consider however

a penalty term that is equal to
√∑p

k=1 γ
T
kRkγk with Rk being an Lk × Lk

symmetric positive definite matrix. In the context of B-splines approximations
and for components βk that are twice continuously differentiable the evalua-
tion of these quadratic forms Rk involves the inner products of the B-spline
basis functions.
Similar quadratic forms, but involving up to the second order derivatives of
the B-spline basis functions, have been used in the work by [3] . The numerical
evaluation of these quadratic forms is not as easy task as it appears. Indeed,
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when the knots that are used for the B-splines approximation are equi-spaced
then one may use a recursive difference equation defining the elements of the
B-spline basis and then an appropriate algorithm described by [5] for the nu-
merical evaluation of the Rk’s. In [46] it is shown that, under appropriate con-

ditions, this grouped lasso procedure, with penalty term
√∑p

k=1 γ
T
kRkγk,

selects a model of the right order of dimensionality and is estimation con-
sistent. However, this procedure is (under their assumptions) in general not
selection consistent. In order to improve the selection results, they propose to
apply an adaptive grouped lasso penalty, based on a given initial estimator.
But they need to add some critical condition on this initial estimator used in
the weights of the adaptive grouped lasso penalty to have the oracle selection
property (see condition (C5) in [46]). Indeed this condition is very difficult to
establish. For these two reasons, we decided not to compare our approach with
the method of [46].

4 Grouped scad regularization

We have seen previously that the group lasso asymptotically suffers from the
same drawbacks as the lasso, due to the lack of the oracle property. This is
not true for the group scad or group bridge to be discussed hereafter, which
share the oracle property even when the dimension of the predictive variables
is large.

A scad procedure for variable selection in nonparametric varying coeffi-
cient models has been discussed in [45]. An application to microarray gene
expression data can be found in [44].

The approach taken in both papers is as follows. Denote by pλ(v) the
function providing the scad penalty. For v ≥ 0, the penalty is defined as

pλ(v) =


λv if 0 ≤ v ≤ λ,

−v
2 − 2aλv + λ2

2(a− 1)
if λ < v < aλ,

(a+ 1)λ2

2
if v ≥ aλ.

(4.1)

A common choice for a is 3.7. A Taylor expansion of pλ(v) for v around v0
leads to

pλ(v) ≈ pλ(v0) +
1

2

p′λ(v0)

v0
(v2 − v20), (4.2)

as explained in [15].
A grouped scad procedure under the model (2.5) is defined by minimizing

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

pλ(ωk‖γk‖2), (4.3)

with pλ(·) the scad penalty function in (4.4), and ωk =
√
Lk as before.
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It is worth mentioning here that the grouped MCP (Minimax Concave
Penalization) method introduced in [48]) is similar to grouped SCAD; this
method has the same form as (4.3), only with the SCAD penalty replaced
with the MC penalty defined by

pλ(v) =

λv − v2

2a if 0 ≤ v ≤ aλ,
aλ2

2
if v > aλ.

(4.4)

Substitution of (4.2) into (4.3) then leads to

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

{
pλ(ωk‖γ(0)

k ‖2) +
1

2

p′λ(ωk‖γ(0)
k ‖2)

‖γ(0)
k ‖2

ωk

(
‖γk‖22 − ‖γ

(0)
k ‖

2
2

)}
,

which as minimization problem is equivalent to the minimization problem

1

2n
‖Ỹ − Z̃γ‖22 +

1

2

p∑
k=1

p′λ(ωk‖γ(0)
k ‖2)

‖γ(0)
k ‖2

ωk‖γk‖22, (4.5)

with γ
(0)
k starting vectors.

Defining a diagonal matrix

V λ

(
γ(0)

)
=


ω1
p′λ(ω1‖γ(0)

1 ‖2)

‖γ(0)
1 ‖2

IL0
0

. . .

0 ωp
p′λ(ωp‖γ(0)

p ‖2)

‖γ(0)
p ‖2

ILp


of dimension

(
p∑
k=1

Lk

)
×

(
p∑
k=1

Lk

)
, and lettingDλ

(
γ(0)

)
= diag(0,V λ

(
γ(0)

)
),

the (p + 1) × (p + 1) diagonal matrix, we rewrite (4.5) as a Ridge-regression
problem

1

2n
‖Ỹ − Z̃γ‖22 +

1

2
γTDλ(γ(0))γ. (4.6)

Minimization of (4.6) with respect to γ yields

γ̂ =
1

2n

(
1

2n
Z̃
T
Z̃ +

1

2
Dλ(γ(0))

)−1
Z̃
T
Ỹ,

and the fitted values

Ŷ = Z̃γ̂ =
1

2n
Z̃

(
1

2n
Z̃
T
Z̃ +

1

2
Dλ(γ(0))

)−1
Z̃
T
Ỹ,

which leads to the (approximate) Hat matrix

H(λ) =
1

2n
Z̃

(
1

2n
Z̃
T
Z̃ +

1

2
Dλ(γ̂)

)−1
Z̃
T
. (4.7)
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Relying on this expression for the Hat matrix one can then use Generalized
Cross Validation (GCV) techniques for selecting the smoothing parameter λ,
as explained in [45].

The above treatment of the grouped scad regularization problem hence
results into an approximate Ridge regression problem. Of course, for high-
dimensional cases where pN can be larger than N , this ridge alike procedure
produces reasonable local minimizers (reasonable in the sense that the result-
ing estimators while biased have small variance).

Regarding the asymptotic properties of the above group scad method, one
can show that under similar conditions as (C1), (C2) and (C3) of the previous
Section, but assuming further that p and s are fixed and that the p covariate
processes as well as the variance of the noise process, are uniformly bounded,

then with a choice of λN → 0 and N/n
2/5
λN → ∞ the group scad is shown

in [45] to be both variable selection and estimation consistent with oracular
least squares asymptotic rates. A completely different approach for tackling
the grouped scad optimization problem in (4.3) is inspired by the work of
[29] that is using a so-called ConCave Convex Procedure (CCCP) type of al-
gorithm. However, there has been no investigation of asymptotic properties of
estimators derived by this method in the context of high-dimensional models.

5 Grouped Bridge regularization

In the group lasso the estimates are obtained by applying an `1 penalty to the
`2 norms of the groups, while for the group scad a scad penalty is applied to
the `2 norms of the groups. This fundamentally differs from the group bridge
where the penalty is applied to the `1 norms of the groups.

More precisely, in Bridge regression the penalty function equals, for v > 0,

pλ(v) = λ|v|q with 0 < q < 1. (5.1)

The grouped Bridge approach then consists of minimizing the objective func-
tion

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

pλ(ωk‖γk‖1), (5.2)

and an algorithm for solving this optimization problem is obtained from [9].
Of course, one could instead minimize the objective function

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

pλ(ωk‖γk‖2), (5.3)

and produce meaningful estimators but this problem is not addressed in the
present paper. For a brief discussion on such concave 2-norm group selection
methods the reader may refer to a recent review article [26] by Huang et al.
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Asymptotic properties of Bridge estimators with 0 < q < 1 when the
number of covariates pN may increase to infinity with N have been studied
by [23] extending the results of [30] to infinite-dimensional parameter settings.
They show that, for 0 < q < 1, the Bridge estimators can correctly select
covariates with nonzero coefficients and that, under appropriate conditions on
the growth rates of pN and λN , the estimators of nonzero coefficients have the
same asymptotic distribution as they would have if the zero coefficients were
known in advance. Therefore, Bridge estimators have the oracle property of [15]
and [16]. The permitted rate of growth of pN depends on the penalty function
form specified by q. The above authors require that pN < N that is, the
number of covariates must be smaller than the sample size, which is needed for
identification and consistent estimation of the regression parameters. However,
if there is a special suitable structure in the covariate matrix (the partial
orthogonality condition), they show that it is possible to achieve consistent
variable selection and estimation, even in the case pN > N . The estimation is
performed in two steps: first, they use a marginal bridge estimator to select
the covariates with nonzero coefficients; and then they estimate the regression
model with these selected covariates. The interested reader is referred to their
paper for further details.

6 Grouped Cosso regularization

The grouped Cosso regularization procedure consists of minimizing the ob-
jective function

1

2n
‖Ỹ − Z̃γ‖22 + λ

p∑
k=1

wk‖γk‖2, (6.1)

where wk are positive fixed weights. Note that considering weights in the block
penalty norm is important in practice as those have an influence regarding the
consistency of the estimator (see [4]). Note also that with probability tending

to one, if for example Z̃
T
Z̃ is invertible, there is a unique minimum. Efficient

exact algorithms exist for the regular lasso, i.e., for the case where all group
dimensions, and therefore the weights wk, are equal to one. They are based on
the piecewise linearity of the set of solutions as a function of the regularization
parameter λ (see [14]). For the grouped lasso, however, the path is only
piecewise differentiable, and following such a path is not as efficient as for
the lasso. Other algorithms have been designed to solve problem (6.1) for a
single value of λ. The grouped cosso like algorithm relies upon the equivalent
cosso formulation of (6.1),

1

2n
‖Ỹ − Z̃γ‖22 + µ

p∑
k=1

λkwk‖γk‖22 + ν

p∑
k=1

1

λk
, (6.2)

and the algorithm that one may use can be summarized as follows:
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1. Fix λ = (λ1, . . . , λp) = (1, . . . , 1), find the best µ to minimize GCV in the
corresponding ridge like criterion, say µ0 and let γµ0

the corresponding
coefficients.

2. For fixed γ, solve for λ via quadratic programming.
3. For fixed λ, solve for γ using the normal equation or the Gaussian profile

likelihood if λ contains zero entries.
4. Iterate between steps 2 and 3 until convergence. The final solution corre-

sponds to ν that gives the minimum GCV score.

Such grouped cosso algorithm is also discussed in details in the recent pa-
per [25] devoted to group bridge variable selection. We do not consider further
the grouped cosso regularization method and this algorithm, since the results
obtained with such an approach are very unstable (see for example [1]).

7 Numerical study

In this section, we first carry out a simulation study to compare the perfor-
mances of the grouped Bridge, the grouped scad, the grouped MCP and three
implementations of the grouped lasso methods.

The first grouped lasso method, denoted by grlasso 1, was implemented
by [8] and the second grouped lasso method, called grlasso 2, was imple-
mented by [35]. The third consits of post-model selection which apply ordinary
least squares to the model selected by first-step grlasso 1 penalized estima-
tors. We call this method grlasso-ols. In [9], the authors describe a general
penalization approach based on a local coordinate descent algorithm. This is
further developed in [26] where the authors propose a procedure that also
includes the methods gbridge (with q = 1/2), grscad and grMCP.

In a second section, we illustrate the use of the grouped lasso method
grlasso-ols, on two real data examples: a data set concerning the study of
AIDS and the Boston Housing data set.

To chose the tuning parameter λ, we use a BIC-type criterion with effective
number of model parameters estimated as in [8]. More precisely we use the
following criterion

log

(
RSSλ
Σn
i=1Ni

)
+

log(Σn
i=1Ni)

Σn
i=1Ni

dfλ, (7.1)

where the residual sum of squares (RSSλ) is the sum of squares of residuals as-
sociated with the estimate γ̂ and dfλ is the number of nonzero coefficients of γ̂.
It is worth noting that in [8], one uses a criterion without the logarithm applied
to the normalized RSSλ. In our simulation study we have observed however
that such a criterion (without the log function) leads in some situations to very
bad results in comparison with the criterion involving the logarithm. Moreover
the criterion (7.1) leads to results similar to those obtained when applying the
LSA (Least squares approximation) with a BIC type penalty as proposed by
[42].
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7.1 Simulation study and comparison

Table 1 Selection model ability. First column (λ): mean value of λ. Second one (S): mean
of number of variables selected. Third one (FP): mean of number of false positives (truly zero
variables that were selected). Fourth one (FN): mean of number of false negatives (truly
nonzero variables that were not selected). Fifth one (CF): percentage of the experiments
with model perfectly identified. Sixth one (ME): mean of the model error and in brackets,
its standard deviation.

λ S FP FN CF ME

σ = 1
gbridge 0.0180 4.0420 0.0420 0.0000 0.9580 0.0122 (0.0033)
grscad 0.0280 4.0000 0.0000 0.0000 1.0000 0.0106 (0.0027)
grMCP 0.0280 4.0000 0.0000 0.0000 1.0000 0.0106 (0.0027)
grlasso 1 0.0250 5.5440 1.5440 0.0000 0.2420 0.2410 (0.0351)
grlasso 2 0.0590 4.1340 0.1340 0.0000 0.8700 3.1292 (0.0430)
grlasso-ols 0.7670 4.0000 0.0000 0.0000 1.0000 0.0106 (0.0027)
σ = 2
gbridge 0.0400 4.0580 0.0580 0.0000 0.9480 0.0482 (0.0138)
grscad 0.0560 4.0000 0.0000 0.0000 1.0000 0.0423 (0.0106)
grMCP 0.0560 4.0000 0.0000 0.0000 1.0000 0.0423 (0.0106)
grlasso 1 0.0550 4.3040 0.3040 0.0000 0.7220 0.5754 (0.0624)
grlasso 2 0.1100 4.3900 0.3900 0.0000 0.6760 3.5590 (0.1258)
grlasso-ols 0.7620 4.0000 0.0000 0.0000 1.0000 0.0424 (0.0106)
σ = 6
gbridge 0.2090 4.0900 0.0900 0.0000 0.9180 0.4434 (0.1298)
grscad 0.1590 4.6280 0.6280 0.0000 0.6800 1.4763 (1.0481)
grMCP 0.1650 4.1940 0.1940 0.0000 0.8840 0.6769 (0.7342)
grlasso 1 0.1700 4.0220 0.0220 0.0000 0.9780 1.8663 (0.2772)
grlasso 2 0.3350 4.1200 0.1200 0.0000 0.8820 6.2692 (0.4700)
grlasso-ols 0.7640 4.0000 0.0000 0.0000 1.0000 0.3809 (0.0953)

We consider a model similar to the one used by [24] and [45], given by

Yi(tij) = β0(tij) +

23∑
k=1

βk(tij)X
(k)
i (tij) + εi(tij), i = 1, . . . , n, j = 1, . . . , Ñ .

The coefficients βk(t), k = 0, . . . , 3, correspond to the intercept term and the
three true relevant variables and are given by

β0(t) = 15 + 20 sin
(
πt
60

)
, β1(t) = 2− 3 cos

(
π(t−25)

15

)
,

β2(t) = 6− 0.2t, β3(t) = −4 + (20−t)3
2000 , t ∈ [1, 30].

The remaining coefficients are given by βk(t) = 0, k = 4, . . . , 23. The time

points tij are 1, 2, . . . , 30 (Ñ = 30) and n = 100. The three relevant variables

X
(k)
i (t), k = 1, . . . , 3, are simulated in the following way. At any point t, the

variable X
(1)
i (t) is sampled uniformly from [t/10, 2 + t/10]. Conditioning on

X
(1)
i (t), the variable X

(2)
i (t) is a centered Gaussian random variable with vari-

ance given by (1 +X
(1)
i (t))/(2 +X

(1)
i (t)). The variable X

(3)
i (t) is independent
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Fig. 7.1 Boxplot of the model errors for four methods.

of X
(1)
i and X

(2)
i and is a Bernoulli random variable with success rate equal to

0.6. The irrelevant variables X
(k)
i , k = 4, . . . , 23 are paths of centered Gaus-

sian process with covariance function Cov(X
(k)
i (t), X

(k)
i (s)) = 4 exp(−|t− s|);

they are independent between them as well as independent of the other first
three variables. We chose several levels of noise, σ = 1, 2 and 6, for the ran-
dom error. These noise levels correspond to signal-to-noise ratios (SNR) given
respectively by 6.39, 3.08 and 1.02. The SNR is defined by γ∗TZTZγ∗/N (see
[13]).

For each simulated data set, we use cubic splines with five equidistant in-
ternal knots. We repeat the simulations 500 times. The simulation results are
summarized in Table 1. We present the mean value of the tuning parame-
ter λ, the average number of variables selected, the average number of truly
zero variables that were selected (false positives), the average number of truly
nonzero variables that were not selected and the mean and standard devia-
tion of the model error. The model error is defined similarly as in [8] and is
given by (γ̂ − γ∗)TZTZ(γ̂ − γ∗)/N. Figure 7.1 depicts the boxplots of the
model errors for all the methods except for grlasso 1 and grlasso 2, since
the errors for these methods are very (too) high compared to these for the
other four methods. See also Table 1. In Figure 7.2 we present typical curve
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(median-performing curve over all the simulations) estimates of the first four
coefficients for a signal-to-noise ratio given by 1.25.

Looking at Table 1 we can see that for all the signal-to-noise ratios, the
method grlasso-ols gives the best results in terms of selection ability and
model error compared to the other methods. The grlasso-ols is the only
method that each time has selected the exact model whatever the level of
the noise. The procedures gbridge, grscad and grMCP leads to similar re-
sults, except for grscad whose results seem to deteriorate when the noise level
increases. Finally the grlasso 1 and grlasso 2 procedures give relatively
correct result in selection model but leads to very bad results in terms of the
model error criterion (especially for grlasso 2). At first sight, one would be-
lieve that the grlasso-ols should have exactly the same selection properties
as grlasso 1 but this is not the case. The optimal value of the regularisa-
tion parameter is searched over a fine grid of λ values. For each value of the
penalty parameter λ on the given λ-grid one applies a model selection using
grlasso 1 and then re-estimates by ordinary least squares the coefficients
already selected by grlasso 1 in the first step. Now the above estimator is re-
injected into the BIC-type criterion defined in eq.(7.1), leading to a BIC value
that differs from the one obtained in the first step. The optimal λ and the
corresponding model selected is the one minimising this BIC criterion over
the chosen grid. Therefore the two methods are different in terms of model
selection.

7.2 Data analysis

In this subsection we demonstrate the effectiveness of the grlasso-ols method
in selecting the variables and in estimating the varying coefficients, by consid-
ering results from the analysis of two real data sets: the AIDS data set (see
[28]) and the Boston Housing data set (see [20]). Also, as suggested by a ref-
eree, we have computed pointwise variability bands for the estimated varying
coefficients by bootstrap resampling from the original data in a way similar
to the one used in [24]. We have treated the selected varying coefficients as
if they were known in advance (because of the Oracle property) in order to
estimate the bias. However a general and concrete constructive procedure to
achieve exact uniform confidence bands for the estimated varying coefficients,
with the requested coverage probabilility, is beyond the scope of the present
paper. For each data set, together with the estimated varying coefficients we
display, for each t, a 95% confidence interval based on a normal approximation
with a sample standard error of the estimated varying coefficient computed
from 100 bootstrap samples.

7.2.1 AIDS data

In [28] the authors reported on a Multicenter AIDS Cohort Study conducted,
in which one obtain repeated measurements of physical examinations, labo-
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Fig. 7.2 Typical curve (median-performing curve over all the simulations) estimates of the
intercept and the three coefficients corresponding to relevant variables for the five methods
(σ = 2). Red curves correspond to the true coefficient functions and black ones to the
estimated coefficient functions.
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Fig. 7.3 Application of the grlasso-ols method to the AIDS data: estimates of the relevant
coefficient functions for the intercept and pre-infection CD4 percentages together with their
pointwise 95% variability bands.

ratory results, and CD4 cell counts and percentages of homosexual men who
became human immunodeficiency virus (HIV)-positive during 1984 and 1991.
This data set is also analyzed by [45] using a varying coefficient model. They
use the gscad method to select and estimate the varying coefficients. All in-
dividuals were scheduled to undergo measurements at semi-annual visits, but
because many individuals missed some of their scheduled visits and the HIV
infections occured randomly during the study, there were unequal numbers of
repeated measurements and different measurement times for each individual.
Their analysis focused on the 283 homosexual men who become HIV-positive
and aimed to evaluate the effects of cigarette smoking, pre-HIV infection CD4
cell percentage, and age at HIV infection on the mean CD4 percentage after
infection. This data set is available in the R package timereg (data(cd4)). As
in [45], the glasso 1 method identified two nonzero coefficients (the intercept
and the pre-infection CD4 percentages). That indicates that cigarette smoking
and age at HIV infection have no effect on the post-infection CD4 percentage.
Figure 7.3 shows the two fitted relevant varying coefficients.

7.2.2 Boston data

The Boston Housing data set was analyzed by [20], with the aim to find out
whether ‘clean air’ had an influence on house prices. This data set is avail-
able in the R package mlbench (data(BostonHousing)) with 14 variables and
506 cases. As in [43], we consider the median value of owner occupied homes
(MEDV) as the response of interest and the proportion of population that
has a lower status (LSTAT) as the index variable. We consider the following
predictors as: per capita crime rate by town (CRIM), nitric oxides concen-
tration (parts per 10 million, NOX), average number of rooms per dwelling
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Fig. 7.4 Application of the glrasso-ols method to the Boston data: estimates of relevant
coefficient functions for the intercept, the crime rate ratio, the average number of rooms,
the full-value property-tax rate and the pupil-teacher ratio together with their pointwise 95%
variability bands.

(RM), proportion of owner-occupied units built prior to 1940 (AGE), full-value
property-tax rate per 10,000 (TAX) and pupil-teacher ratio by town (PTRA-
TIO). Moreover as in [43] before applying our procedure, both the response and
the predictors (except the intercept) are transformed so that their marginal
distribution is approximately centered and reduced to an approximate normal
distribution. We use Box-Cox transformations. The index variable LSTAT is
transformed so that its marginal distribution is approximately uniform on
[0, 1].

The authors [43] propose to combine local polynomial smoothing and
grouped lasso to select and estimate the varying coefficients. We obtain re-
sults similar to theirs except that we select one supplementary variable (TAX).
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Figure 7.4 shows the five fitted relevant varying coefficients together with their
95% pointwise confidence bands.
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