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Abstract

We investigate the distribution of statistical measures of tree imbalance in large phylogenies. More spe-
cifically, we study normalized versions of the Sackin�s index and the number of subtrees of given sizes.
Using the connection with structures from theoretical computer science, we provide precise description
for the limiting distribution under the null hypothesis of Yule trees. Corrected p-values are then computed,
and the statistical power of these statistics for testing the Yule model against a model of biased speciation is
evaluated from simulations. As an illustration, the tests are applied to the HIV-1 reconstructed phylogeny.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Phylogenetic trees are widely used in biology to represent evolutionary relationships between
species [13]. A second kind of application is to the study of cladogenesis. In this case, the shape
of a phylogenetic tree conveys useful information about the process by which it has grown [7]. It
may reflect for example the fingerprint of the rates of species formation and extinction. Measuring
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the degree of imbalance or asymmetry of a tree topology may therefore provide support for the
hypothesis that species have different potential for speciation.

Several statistics have been introduced for assessing the level of asymmetry of a tree. These sta-
tistics are often used to test whether the tree topology differs significantly from a null model in
which the rates of speciation are constant among species [9,12]. The null model is commonly
known as the equal-rates Markov model or Yule model [24]. In the Yule model on rooted trees,
each external branch has an equal probability of splitting [3].

Among imbalance statistics, the most classical are Sackin�s index [20,21] and Colless� index
(Colless, 1982). Sackin�s index is the average path length from a tip to the root of the tree. Colless�
index inspects the internal nodes, partitioning the tips that descend from them into groups of sizes
r and s, and computes the sum of absolute values jr � sj for all nodes. Colless�s index is often
renormalized for giving the value one to the totally pectinate tree. More recently, McKenzie
and Steel [11] proposed to count the number of cherries, i.e. the number of pairs of leaves that
are adjacent to a common ancestor node.

The power of five imbalance statistics have been evaluated by Kirkpatrick and Slatkin [9] who
concluded that Sackin and Colless [5] statistics were among the most powerful with respect to an
alternative model of biased speciation. These works were extended by Agapow and Purvis [1]
regarding more biologically motivated alternative models. These authors reached similar
conclusions.

In this article, we consider fully dichotomous trees (binary trees) with n leaves (and (n � 1)
internal nodes). We focus on Sackin�s index and its connection to a series of statistics that are
similar to the number of cherries. Our emphasis is on the fact that all these measures are relevant
to the same empirical distribution, namely the distribution of the size of subtrees. Sackin�s index is
connected to the expectation of the empirical distribution while cherries merely correspond to sub-
trees of size two.

The main results presented in this article can be summarized as follows. First, we give a descrip-
tion of the limiting distribution of the Sackin�s index for large n. The limiting distribution is non-
Gaussian, and can be defined as the solution of a functional fixed-point equation. Second, we
extend McKenzie and Steel�s result for the number of cherries in a Yule tree to the number (or
frequencies) of subtrees of size larger than two.

These extensions are based on a link with existing results in theoretical computer science
regarding binary search trees. These trees appear as formal representation for divide-and-conquer
algorithms [19,8]. We exploit the one-to-one correspondence between binary search trees and Yule
trees in order to describe the asymptotic distributions of the Sackin�s Index and the size of
subtrees.

In addition, we propose a new statistic based of the computation of a ‘1 distance between the
empirical distribution of the number of subtrees and the theoretical distribution. The power of all
statistics to reject the null hypothesis of a Yule tree against a model of biased speciation are then
evaluated.

The article is organized as follows. Section 2 presents the asymptotic theory for the Sackin�s
index and the number of subtrees of a given size. Section 3 describes statistical tests with proper
corrections based on the theory and their 5% confidence intervals. Section 4 evaluates the statis-
tical power of these tests based on simulation studies. An example of application to the HIV tree is
discussed in Section 5.
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2. Theory

2.1. Sackin’s statistic

Sackin�s statistic is one of the oldest measure that summarizes the shape of a tree [20,21]. It adds
the number of internal nodes between each leaf of the tree and the root to form the following
index
Ins ¼
Xn

i¼1

Ni;
where the sum runs over the n leaves of the tree and Ni is the number of internal nodes crossed in
the path from i to the root (including the root). An equivalent formulation of Ins is by counting the
number of leaves under each internal nodes
Ins ¼
Xn�1

j¼1

eN j;
where eN j is the number of leaves that descend from the ancestor j. This is a well-known result in
systematic biology that the expectation of Ins under the Yule model is of order 2nlogn (e.g., [9])
E½Ins � ¼ 2n
Xn

j¼2

1=j.
The variance is more complex, but it can be estimated by noticing the analogy with a classical
problem in theoretical computer science. This analogy is a crucial step in defining the proper cor-
rection for indices of large phylogenies. Let us explain this briefly. Binary trees are data structures
often encountered in computer science, more specifically in connection with divide and conquer
algorithms. To each Yule tree corresponds a binary search tree in a unique manner (see [2]). Using
this one-to-one correspondence, Sackin�s statistic is equal to the number of comparisons used by
the quicksort algorithm to sort a random input (e.g., [19]). This can also be seen directly because
the Sackin�s index is involved in a stochastic recurrence equation
Ins ¼ IJs þ In�J
s þ n; ð1Þ
where J is a uniform random variable over the subset {1 ,. . . ,n � 1}. The recurrence equation is
obtained by splitting the tree at the root into two sister clades (the left and right subtrees). Con-
ditional on J, the values IJs and In�J

s are independent random variables which correspond to the
indices of the left and right subtrees.

Standard computations lead to the result that the variance of Ins is of order r2n2 where r2 is
independent of n (e.g., [8]). In addition, the normalized Sackin�s index (to which we refer in the
sequel) can be defined as
Is ¼
Ins � E½Ins �

n
. ð2Þ
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The normalized index Is converges in distribution as the number of leaves n grows to infinity.
According to Rösler [19], the limit X satisfies a (functional) fixed-point equation of the following
type
X ¼ UX þ ð1 � UÞX 	 þ 2U logU þ 2ð1 � UÞ logð1 � UÞ þ 1; ð3Þ

where X, X*, U are independent random variables, X and X* are identically distributed, U is uni-
formly distributed over the interval (0,1), and the equality holds for distributions. Using Eq. (3),
the variance of the limiting distribution can be computed in an exact way
r2 ¼ 7 � 2p2

3
.

2.2. Number of cherries

McKenzie and Steel [11] considered a simple and easily computed statistic for evaluating tree
shape: the number of cherries of the tree. A cherry is a pair of leaves that are adjacent to a com-
mon ancestor node. The authors analyzed the distribution of this statistic under the Yule model.
They obtained exact formulae for the mean and variance of the number of cherries, and showed
that this distribution is asymptotically normal as the number of leaves grows to infinity. More spe-
cifically, if we denote by Cn the number of cherries in a tree of size n, their results can be summa-
rized as follows
E½Cn� ¼
n
3

and
Var½Cn� ¼
2n
45

.

Using an argument based on extended Polya urns, McKenzie and Steel obtained that
Cn � n=3ffiffiffiffiffiffiffiffiffiffiffiffi
2n=45

p ! Nð0; 1Þ.
2.3. The number of subtrees of fixed size

Sackin�s statistic and the number of cherries are two distinct aspects of the same distribution:
the number of leaves under a randomly chosen node. Let Zn denote this number. On the one
hand, Zn is connected to Sackin index by the fact that
Zn ¼ eN J ;
where J is a uniform random variable over that subset {1 ,. . . ,n � 1} (recall that eN j is the number
of leaves that descend from the ancestor j). Given the tree structure T, one actually has
E½ZnjT � ¼
1

n� 1

Xn�1

j¼1

eN j ¼
Ins

n� 1
.
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On the other hand, the empirical frequency of cherries in a Yule tree fn(2) = Cn/(n � 1) is an unbi-
ased estimator of the probability of the event (Zn = 2). The distribution of Zn has been described
by Blum and François [4] using results from coalescent theory.

Theorem 1 [4]. Let n P 2 and Zn be the number of individuals in a uniformly chosen random clade
of a Yule tree with n leaves. We have
pnðzÞ ¼ P ðZn ¼ zÞ ¼ n
ðn� 1Þ

2

zðzþ 1Þ ; z ¼ 2; . . . ; n� 1
and
pnðnÞ ¼ P ðZn ¼ nÞ ¼ 1

n� 1
.

By the above remarks, we can check that (n � 1)Zn has the same average value that Sackin�s sta-
tistics (both are equal to the average complexity of the quicksort algorithm). In addition, we find
that the frequencies of subtrees of size 2 is connected the number of cherries as follows
fnð2Þ ¼
Cn

n� 1
¼ 1

n� 1

Xn�1

j¼1

1ðNj¼2Þ.
Taking expectation, this leads to
E½fnð2Þ� ¼ E
1

n� 1

Xn�1

j¼1

1ðNj¼2Þ

" #
¼ P ðNJ ¼ 2Þ ¼ n

3ðn� 1Þ ; ð4Þ
and we can recover the fact that E[Cn] = n/3.
Normality of frequencies of subset sizes. For a Yule tree T with n leaves, let fn(z) denote the fre-

quencies of subtrees of size z in the tree (z P 2). Eq. (4) tells that the frequency fn(2) is an unbiased
estimator of the probability pn(2). The same argument applies to proving that fn(z) is an unbiased
estimator of the probability pn(z) for all z P 2. In addition, we obtain that the limiting distribu-
tion of fn(z) is Gaussian as n goes to infinity.

Theorem 2. Let z P 2. The empirical probabilities fn(z) have variances of order 1/n
Var½fnðzÞ� ¼
r2n

ðn� 1Þ2
� r2

n
.

In addition, the following convergence in distribution holds
ffiffiffi
n

p
ðfnðzÞ � pnðzÞÞ ! Nð0;r2ðzÞÞ; as n ! 1;
where, for all z P 2,
r2ðzÞ ¼ 2ðz� 1Þð4z2 � 3z� 4Þ
zð2zþ 1Þð2z� 1Þðzþ 1Þ2

.
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Proof. Let X z
n ¼ ðn� 1ÞfnðzÞ denote the number of families of size z. The case z = 2 is a direct

consequence of McKenzie and Steel�s results [11] because X 2
n ¼ Cn is equal to the number of cher-

ries in a coalescent or Yule tree. In addition, r2(2) is equal to 2/45. Let us give a sketch of proof
for the general result. For z P 3, the random variable X z

n can be involved into a quicksort-like
recurrence equation (see [8])
Xn ¼ X J þ X 	
n�J þ tn; ð5Þ
where J is uniformly taken from the set {1, . . . ,n � 1} and the toll function tn is equal to
tn ¼ dn;z;
where dn,z denotes the Kronecker symbol. In this equation, X and X* are independent copies
which correspond to the values obtained for the left and right subtrees after a split at the root
of the tree. The formal expression of the variance of X z

n was computed using Eq. (5) and elemen-
tary programming in MAPLE. For n P 2z + 1, we obtained that Var½X z

n� ¼ r2ðzÞn with r2(z) given
by the theorem. The final result follows from Hwang and Neininger [8]. h

Comments. A rather direct proof of Theorem 2 can be found in [6]. Devroye states the result for
binary search trees. To obtain the above result, it must be modified according to the one-to-one
correspondence between binary search trees and Yule trees. A binary search tree with (n � 1)
nodes corresponds identically to a Yule tree with n leaves (see Aldous [2]). Another proof for
the mean and variance formulae was given by Rosenberg [18] by purely combinatorial techniques.

For all z P 2 and n sufficiently large, 5% level confidence intervals for frequencies are given by
�1.96rðzÞ
ffiffiffi
n

p

n� 1
< fnðzÞ < þ1.96rðzÞ

ffiffiffi
n

p

n� 1
.

The accuracy of the approximation depends on z. For z 6 10, simulation evidences show that
Gaussian distributions provide good fit to the empirical distributions of fn(z) as soon as n P 30.

2.4. New indices

To conclude this section, we propose a new statistic based on the comparison of the empirical
and theoretical distributions of the number of subtrees under the Yule model. This index is de-
fined as a weighted ‘1 distance
D ¼
Xn

z¼2

zjfnðzÞ � pnðzÞj;
where the sum runs over the all possible subset sizes under an arbitrary node.
In spirit, the metric D is comparable to the Sackin�s index, giving importance to the apparition

of abnormally large number of leaves under the nodes close to the root. However it has the advan-
tage of providing a one-sided test, whereas Sackin index provides a two-sided test.
3. Distribution of indices

In this section, we estimate the quantiles of the distributions of the normalized Sackin�s index
and the distance index D for samples of various sizes.
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Experimental design. In order to estimate the quantiles of the distributions 10000 Yule trees
were simulated. All simulations were performed under the object-oriented R language, which pro-
vide facilities for manipulating tree data [16]. Empirical cumulative distribution functions were
computed and displayed in Figs. 1 and 2. Approximate values of the empirical quantiles can easily
be determined from these graphical representations.
Normalized Sackin. Normalized values of the Sackin index have been considered earlier by

Kirkpatrick and Slatkin [9]. However, these authors proposed the value 1.96 for statistical signif-
icance at the 5% level (Gaussian approximation). We propose corrections that account for the fact
that the distribution of the normalized Sackin�s index is non-Gaussian. For n = 30 taxa, the 5%
rejection area can be described as
Fig. 1
trees o
Is < �0.72 or Is > 1.24.
For n = 100, the 5% rejection area is slightly different
Is < �0.87 or Is > 1.43.
The limiting distribution was computed numerically according to Eq. (1) (using a method devel-
oped by Tan and Hadjicostas [22]), and good agreement with the empirical distribution was no-
ticed for n = 100.
Distance D. Regarding the distance D, no normalization is available theoretically. Empirical

quantiles for samples of size n = 30, 100, 200 can be deduced from Fig. 2. The test is significant
at the 5% level if D > 5.10 for n = 30, D > 8.04 for n = 100 and D > 9.65 for n = 200. Simulation
results show that D should be corrected to eD ¼ D� 2.27 logðnÞ þ 3.62 (almost perfect log-linear
fit). The 5% rejection area is eD > 1.25 for large n.
. Empirical cumulative distribution functions of the normalized Sackin�s index under the Yule model for random
f sizes n = 30 and 100 (smooth line). The cdfs were computed from 10000 trees.



Fig. 2. Empirical cumulative distribution functions of the D statistic under the Yule model for random trees of sizes
n = 30, 100, and 200.
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4. Statistical power

4.1. Biased speciation model

A basic issue regarding the power of these different statistics is which one is the most sensitive to
a departure from the Yule model. This question is also relevant to coalescent models and popu-
lation genetics where departure from neutrality is an important step in detecting the evolutionary
pressures acting on a sample of genes.

The power of statistics depends on the alternative hypothesis and there are many possible
choices that may produce imbalanced trees. For instance, Pinelis introduced a family of models
that encompass the traditional hypotheses about tree-biased speciation [15]. Kirkpatrick and
Slatkin [9] evaluated the power of five tree shape statistics encompassing the Sackin and Colless
indices at three tree sizes (10, 20 and 40 species). They generated imbalanced phylogenies by
making the instantaneous rates of speciation of every pair of sister lineages differ by a constant
factor. They concluded that the Sackin and Colless indices performed well (except for the smallest
trees).

Agapow and Purvis considered other processes of non-random speciation in which the rate of
speciation in a lineage evolves independently of the rates in other lineages and is directed toward
greater biological relevance (see [1]). Among eight studied statistics, they found that the Sackin
and Colless indices performed well for models of trait evolution. These indices were a little less
powerful when applied to a model of age-dependent rates.
Biased speciation model. In this study, we used an alternative model of biased speciation which

is similar to the one used by Kirkpatrick and Slatkin. Assume that the speciation rate of a specific
lineage is equal to r (0 6 r 6 1). When a species with speciation rate r splits, one of its descendent
species is given the rate pr and the other is given the speciation rate (1 � p)r where p is fixed for the
entire tree. These rates are effective until the daughter species themselves speciate. Values of p
close to 0 or 1 yield very imbalanced trees while values around 0.5 lead to over-balanced
phylogenies.

We simulated this model for different numbers of species n = 30, 100, 200 and different values
of p. The most interesting values are around p = 0.12–0.15 where it may sometimes be difficult to
detect the imbalance visually. Type two errors b were calculated from 10000 independent Monte
Carlo repetitions and the type one error a was fixed at the level of 5%.
Results. The results are reported in Tables 1–3. The performance of the statistics fn(z) to detect

imbalance were weak for small (n = 30) phylogenies. They were sightly better for larger trees
n = 100–200. Among subtrees, counting the number of cherries appeared to be the most efficient
way of detecting departure from the Yule model. Overall, fn(z) and Cn showed very low power for
all z, and we would not recommend their use for testing imbalance.

Sackin statistics Is and the D distance were very powerful as concerned high desequilibrium, i.e.
p = 0.05 for n = 30, and p 6 0.1 for n = 100, 200. In this situation, Is was sightly more powerful
than D. When imbalance is less evident p = 0.125–15, the performances of both indices decreased.
In this situation, we typically obtained 86% of errors for D while this ratio was equal to 92% for Is.
The decrease of power was thus slower for D. The last rows of Table 1–3 show that D was unable
to detect over-balanced trees while Is performed rather well in this regard (due to the two-sided
test).



Table 1
Type two error b for the alternative hypothesis H1 of biased speciation with parameters n = 30, and p = 0.05–0.5
computed from 10000 repetitions

n = 30 D Is fn(2) fn(3) fn(4) fn(5) fn(6) fn(7) fn(8)
p

p = 0.05 0.02 0.005 0.79 0.80 0.95 1 – – –
p = 0.1 0.42 0.36 0.95 0.96 0.98 1 – – –
p = 0.125 0.69 0.72 0.96 0.96 0.99 1 – – –
p = 0.15 0.86 0.92 0.97 0.96 0.98 1 – – –

p = 0.25 0.99 0.98 0.97 0.95 0.98 0.99 0.99 0.96 0.99
p = 0.4 0.99 0.35 0.93 0.94 0.97 1 0.99 0.96 0.99
p = 0.5 1 0.11 0.92 0.93 0.97 1 1 0.95 0.98

The type one error is a = 0.05.

Table 2
Type two error b for the alternative hypothesis H1 of biased speciation with parameters n = 100, and p = 0.05–0.5
computed from 10000 repetitions

n = 100 D Is fn(2) fn(3) fn(4) fn(5) fn(6) fn(7) fn(8) fn(9) fn(10)
p

p = 0.05 0 0 0.21 0.96 0.99 0.99 0.98 0.97 0.90 – –
p = 0.1 0.01 0.00 0.55 0.88 0.99 0.98 0.97 0.94 0.94 – –
p = 0.125 0.24 0.27 0.78 0.90 0.98 0.99 0.98 0.94 0.93 0.92 –
p = 0.15 0.77 0.90 0.91 0.92 0.98 0.99 0.98 0.96 0.94 0.96 –

p = 0.25 0.99 0.98 0.89 0.95 0.97 0.97 0.97 0.94 – – –
p = 0.4 0.99 0 0.63 0.92 0.96 0.96 0.96 0.96 0.92 – –
p = 0.5 1 0 0.57 0.91 0.95 0.96 0.95 0.95 0.92 – –

The type one error is a = 0.05.

Table 3
Type two error b for the alternative hypothesis H1 of biased speciation with parameters n = 200, and p = 0.05–0.5
computed from 10000 repetitions

n = 200 D Is fn(2) fn(3) fn(4) fn(5) fn(6) fn(7) fn(8) fn(9) fn(10)
p

p = 0.05 0.02 0.01 0.001 0.75 0.99 0.90 0.87 0.88 0.92 0.92 0.96
p = 0.1 0.42 0.36 0.49 0.77 0.88 0.97 0.99 0.96 0.93 0.84 0.82
p = 0.125 0.69 0.71 0.83 0.92 0.91 0.94 0.98 0.98 0.97 0.92 0.90
p = 0.15 0.86 0.92 0.93 0.95 0.94 0.94 0.98 0.98 0.98 0.97 0.95

p = 0.25 1 0.92 0.81 0.93 0.93 0.93 0.97 0.97 0.97 0.95 0.95
p = 0.4 1 0.0 0.32 0.86 0.92 0.92 0.95 0.96 0.96 0.96 0.95
p = 0.5 1 0.0 0.24 0.85 0.91 0.92 0.95 0.96 0.96 0.96 0.95

The type one error is a = 0.05.
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5. Example

This section analyzes a dataset taken from the literature [25]. Several authors attempted to infer
historical features of the acquired immune deficiency syndrome (AIDS) using human immunode-
ficiency virus type 1 (HIV-1) sequences. There are three distinctive form of HIV-1 (M,O,N).
Group M contains the viruses which cause the global HIV pandemic and appear to have arisen
in Central Africa during the last 100 years [10]. Vidal et al. [23] investigated the genetic diversity
of HIV-1 group M in this region by obtaining viral gene sequences in 1997 from 197 infected indi-
viduals living in the Democratic Republic of Congo. Yusim et al. [25] used a maximum likelihood
approach to estimate a phylogeny for this large data set, and it is this phylogeny that we use here.
The phylogeny is available from the R package ape [14].

Korber et al. [10] estimated the time since the most recent common ancestor of the HIV-1
thanks to this tree, and this was compared with a coalescent approach by Yusim et al. [25]. These
works were based on the assumption of a molecular clock, or a constant rate of evolution among
each lineage. Rambaut et al. [17] noticed that it is unlikely that this HIV-1 data set has been evolv-
ing according to this hypothesis. Therefore, the goodness-of-fit of Yule or coalescent (essentially
the same topological model) to this dataset has to be tested.

To assess the fit to a Yule model, we computed the normalized Sackin index, the empirical dis-
tribution of subset sizes, and the weighted ‘1 distance D. The Sackin�s index was equal to Is = 0.82
(P(Is > 0.82) = 0.10). The empirical distribution fn(z) of subset sizes is given in Table 4. The test
provided by Theorem 2
Table
Theor

Theor
Empir

The n
jfnðzÞ � pnðzÞj > 1.96r2ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 1Þ

p

was non-significant for all z 6 10. The distance D was equal to D = 9.37 (eD ¼ 1.05) and the p-
value was equal P ðeD > 1.05Þ � 0.08. We could not conclude to the rejection of the Yule or
coalescent models.

To go further, we remark that imbalance might be detected at any level of the tree, and we con-
sidered cutting the branches of the tree which were far from the root. Doing so, we kept only the
�old� internal branches that corresponded to the 30 oldest ancestors. Under the null hypothesis for
the n = 192 sequences, the pruned tree should also be compatible with a Yule model. In this case,
the Sackin�s index was equal to Is = 1.21 (P(Is > 1.21) = 0.03). The empirical distribution fn(z) of
subset sizes is given in Table 5. The test provided by Theorem 2 was significant for z = 2 (cherries).
The distance D was equal to D = 5.17 and the p-value was P(D > 5.17) � 0.04. These results prob-
ably indicate a change in the evolutionary rate during the evolution which had more impact on
cladogenesis during the early expansion of the virus.
4
etical and empirical distribution fn(z) of the size of subsets in the HIV-1 phylogeny group M

z = 2 z = 3 z = 4 z = 5 z = 6 z = 7

etical .335 .167 .100 .067 .047 .035
ical .312 .140 .114 .057 .057 .036

umber of sequences is n = 192 and z denotes the size of subsets.



Table 5
Theoretical and empirical distribution f30(z) of the size of subsets in the HIV-1 phylogeny group M

z = 2 z = 3 z = 4 z = 5 z = 6 z = 7

Theoretical .344 .172 .103 .068 .049 .036
Empirical .241 .172 .103 .068 .068 .068

The tree was pruned to keep the 30 oldest internal nodes (the top of the tree).
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