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An Evolutionary Strategy for Global
Minimization and Its Markov Chain Analysis

Olivier François

Abstract—The mutation-or-selection evolutionary strategy
(MOSES) is presented. The goal of this strategy is to solve
complex discrete optimization problems. MOSES evolves a
constant sized population of labeled solutions. The dynamics
employ mechanisms of mutation and selection. At each
generation, the best solution is selected from the current
population. A random binomial variable N which represents
the number of offspring by mutation is sampled. Therefore
the N first solutions are replaced by the offspring, and the
other solutions are replaced by replicas of the best solution.
The relationships between convergence, the parameters of the
strategy, and the geometry of the optimization problem are
theoretically studied. As a result, explicit parameterizations of
MOSES are proposed.

Index Terms—Convergence, evolutionary strategy, genetic al-
gorithms, Markov chains, large deviations, simulated annealing.

I. INTRODUCTION

EVOLUTIONARY algorithms are global search proce-
dures based upon the evolution of a vector of solu-

tions viewed as a population of interacting individuals. These
strategies include simulated annealing, genetic algorithms,
evolutionary programming, and simulated evolution [1], [2],
[9], [12]. In applying evolutionary strategies to solve large
scale and complex optimization problems, one of the most
frequently encountered difficulties is convergence toward an
undesired attractor. This phenomenon occurs when the popu-
lation get trapped in a suboptimal state such that the variation
operators cannot produce an offspring which outperforms its
parents. The relationships between convergence to a global
minimum, the parameters of the strategy such as population
size or mutation probabilities, and the geometry of the min-
imization problem are crucial to understand. Many previous
studies have investigated such issues for the simulated an-
nealing process [13] and parallel versions [19], the genetic
algorithm [4], [5], [12], [15], [17], and the evolution strategies
[2]. This work theoretically investigates a simple evolutionary
strategy called MOSES (for mutation-or-selection evolutionary
strategy) whose purpose is to minimize an arbitrary function on
a finite set. MOSES was introduced in [10]. The dynamics em-
ploy mechanisms of mutation and selection. A graph structure
on the search space defines the allowed mutations. Mutation
actually acts as a random walk on this graph. The geometry
of the minimization problem is therefore characterized by
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the values of the objective function on the vertices of the
mutation graph.

The strategy relies on two parameters. The first is the size
of the population, and the second is a positive temperature
that can be imagined as decreasing to zero (as in simulated
annealing). The temperature controls the mean number of
offspring by mutation. This paper focuses on the choice of
the population size and the “cooling” schedules which ensure
that the strategy produces an optimal solution. This work
demonstrates that the parameters of the algorithm can be
chosen so that the dependence on the geometry is weak. In fact,
the parameters can be configured with constants depending
only on the mutation graph (which is generally predefined).
Things are less favorable as far as simulated annealing or
genetic algorithms are concerned [4], [13]. In these procedures,
the crucial constants strongly depend on the global structure
of the minimization problem and are thus unavailable in most
practical cases. The theory developed in this paper is analogous
to the theory of simulated annealing and is based upon the
results of [3], [5], [13], and [19]. The statement of the main
result is composed of two parts. First, the population sizes for
which the evolution “concentrates” on the optimal solution are
determined (Theorem 4.1). Once the population size is fixed,
the choice of reasonable cooling schedules is investigated in
the spirit of simulated annealing (Theorem 4.3). Section II
overviews some results known for simulated annealing and
mutation-selection genetic algorithms. Section III presents the
strategy in a formal way and gives basic results and notations.
Section IV introduces two geometrical indexes which help to
determine whether convergence may hold. Section IV also
emphasizes the main results and introduces the mathematical
formalism which is necessary to prove them. Section V
completes the theoretical results with simulation evidence.

II. STATE OF THEART AND PRESENTATION OF THEALGORITHM

The problem to solve in this paper is to find the minimal
point of an arbitrary function which is defined on a finite
but generally large set . The set is endowed with a
graph structure. This structure defines a neighborhood for each
vertex in . The values of the function on the vertices of the
graph describe thegeometryof the minimization problem. An
evolutionary strategy uses a vector (population) of solutions
to the minimization problem. Each solution is regarded as
an individual which performs a local search on the graph.
The premise of evolutionary computation is that cooperative
searchers are more efficient than isolated ones. The basic
framework for an evolutionary strategy is as follows [9].
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1) Initialize a “population” of solutions in .
2) Evaluate each solution in the population.
3) Propose a number of random changes in the population.
4) Use a rejection criterion to validate each change and

evaluate the new solutions.
5) If a stopping criterion is satisfied, return the best solu-

tion; if not go to step 3).

Numerous algorithms correspond to this description includ-
ing simulated annealing, genetic algorithms, and evolutionary
programming [1], [9], [12]. Evolution strategies introduced by
Rechenberg and Schwefel [2] also fit well to the previous
framework, although these techniques are rather devoted to
continuous optimization. Since randomness arises at each
generation, all these algorithms are Markovian. It is natural to
use the formalism of Markov chains to analyze their behavior
[13], [15]–[18].

A. Simulated Annealing and Genetic Algorithm

In the simulated annealing algorithm, the population reduces
to a single individual. A potentially new solution is generated
by sampling over the neighbors of the current one [step 3)].
The rejection criterion [step 4)] uses Metropolis dynamics with
a decreasing temperature schedule. The Markov chain analysis
of the algorithm shows that the probability for obtaining the
minimal solution converges to 1.0 iff the temperature schedule

satisfies Hajek’s condition [13]

(1)

where is a constant called critical height. The critical height
is a geometrical index which expresses the difficulty for the
simulated annealing to find the global minima of the objective
function. To interpret , it is worth regarding the objective
function as an energy. Then this constant is the smallest
variation of energy which is necessary to exit from any
suboptimal solution in the energy landscape. Unfortunately,
this value remains incomputable in practice, because it depends
strongly on the geometry of the minimization problem, and
assumes a complete knowledge of the energy landscape.

Genetic algorithms proceed by sequentially applying muta-
tion, crossover [step 3)], and selection [step 4)] operators [12].
The links between the geometry of the minimization problem
and the convergence properties of the algorithms are not well
understood yet. Nevertheless, the results of [5], [7], [12], [15],
[17], and [21] can be summarized as follows. Mutation is a
crucial step to warrant that the population does not get trapped
into a suboptimal state. The mutation parameters, however,
must be tuned in a subtle way depending on the problem to
minimize. No rule of thumb actually exists to choose these
mutation parameters properly in general. On the other hand,
crossover is not a necessary feature for convergence to the
minimal solution. Although the importance of this operator
is often asserted [4], [12], it is relevant to study algorithms
which are based on mutation and selection solely. Furthermore,
the genetic algorithm without crossover is not limited to code
binary strings. As far as mutation is well defined (according
to a mutation graph), the algorithm can proceed with arbitrary

discrete variables. Many authors have proposed a simulated
annealing-like approach to genetic algorithms. In [7], the
mutation probability is assumed to converge to zero. A natural
way to parameterize this mutation probability is

(2)

where is the intensity of mutation and is a positive
temperature. This parameterization has also been used in [5]
but with selection (roulette wheel) reinforced as well. In this
setting, the selection probabilities are parameterized with the
same temperature . If the current population is equal to

, then the probability that the individual
is selected in the future generation is

(3)

where is the selection intensity. The genetic algorithm
has been studied by using the formalism of large deviations
[5], [11]. The results obtained in [5] can be restated as follows.

i) Under mild assumptions, there exists a critical popula-
tion size below which the population gets definitively
trapped into a suboptimal solution. If the graph is
connected, the critical size is finite. More precisely,
a sufficient condition on the population sizefor the
concentration of the population on a global minima is

(4)

where is the diameter of the graph used for mutation
(to be redefined later)

(5)

and

(6)

ii) The probability for obtaining the minimal solution con-
verges to 1.0 under a condition which is analogous to
(1). Unfortunately, the critical constant corresponding
to remains unknown.

Equation (4) emphasizes the role of the diameter of the
mutation graph. Because (4) is linear in, the bound is
sensitive to large diameters. This fact means that large pop-
ulations are necessary to deal with wide search spaces. The
dependence on and means that the bound is also sensitive
to rescaling the objective function. The values of and
are seldom available, and the relevance of such a result to
practical situations is weak.

B. Presentation of the Algorithm

This article studies a new procedure called MOSES. This
procedure shares similarities with the genetic algorithm with-
out crossover. It can eventually be introduced into a genetic
code instead of the mutation/selection operations. The main
difference between MOSES and genetic algorithms is that
MOSES proceeds by coupling mutation or selection into a
single operation while genetic algorithms use mutation and
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then selection. An informal description of the algorithm is
presented now. The formal description will be given in Section
III. The size of the population is equal to. A parameter

is introduced which controls the number of offspring of
mutation at each generation. This parameter may depend on
the generation. Becauseis taken in the interval (0, 1), this
parameter is viewed as a mutation probability. The algorithm
is as follows.

1) Initialize a population of labeled individuals in .
2) Repeat

a) Draw a random number from the binomial distri-
bution bin .

b) Select the optimal individual from the population.
c) Replace the first individuals by mutation and the

other individuals by .
d) Update .

The main feature of MOSES is that the search is hier-
archical. Individuals perform different “degrees” of search
according to their position in the population. The individuals
with the first labels are allowed to make long random walks
in the search space, and some of them may travel along the
search space with very weak selection. On the other hand,
the individuals with high labels perform a very local search
around the best individual, and the selection pressure is strong.
This hierarchy is obtained from the use of a random number
of offspring by mutation at each generation. The probability
that individuals mutate is given by the binomial distribution
bin . For all , we have

(7)

The most expensive step in this algorithm is selection which
requires calls to . On the average, the number of calls is

(8)

Nevertheless, this number is smaller than the number of calls
in many other strategies (e.g., genetic algorithms or evolution
strategies). Besides, a proper choice of the mutation graph
can drastically reduce the complexity of computing. Since
only comparisons to a fixed value (the best value at the last
generation) are needed, neighbors can be chosen so that the
difference between the old value and the value of the offspring
by mutation is easy to compute.

Many criteria may be used to stop the evolution. The expi-
ration of the computing resource is an expensive criterion. In
this paper, different criteria are used. The theoretical analysis
assumes that the mutation parameterdecreases to zero.
In regard to this method, a natural criterion is to stop the
algorithm when is below a given threshold. Another criterion
will be used in Section V where test functions are introduced.
The algorithm can be stopped when the value of the objective
function is below a given threshold. The drawback of this
method is the randomness of the hitting time. Due to this
randomness, the control on the length of computation is lost.

MOSES also shares similarities with evolution strategies. In
MOSES, parents (the first labels in the population) create

offspring. Parents and offspring are merged to build the pop-
ulation at the future generation. Again the mutation/selection
steps of an evolution strategy require two operations whereas
these steps are coupled in a single operation in MOSES.

Overall, the great advantage of MOSES is that the mathe-
matical analysis of the procedure can be described in details.
The construction of the algorithm, and especially the choice of
the binomial distribution, is motivated by the application of the
formalism of large deviations. As in the simulated annealing
procedure, a temperature is introduced. This temperature acts
on the mean number of offspring of mutation which
decreases to zero. If the population size and the temperature
are properly chosen, the evolution concentrates on a global
minimum. It has been demonstrated many times that simulated
annealing-like theories are relevant to study genetic algorithms
[4], [7], [14]. More precisely, the theoretical framework which
is used to analyze MOSES is generalized simulated annealing
(GSA) [19] which provides a unified formalism for dealing
with a large class of evolutionary procedures.

III. M ATHEMATICAL DESCRIPTION

A. Formal Description and Hypotheses

In this section, MOSES is formally described. The necessary
assumptions for conducting the mathematical analysis are also
given. The objective function is defined on a set of
finite cardinality. For sake of simplicity, it is assumed that

is one-to-one on ( implies ). The
unique minimal point is denoted by . If only a solution
among the best ones is wished, this restriction is a little loss of
generality. Indeed, a small perturbation ofdoes not change
the minimization problem and can transforminto a one-
to-one function. MOSES evolves a population of randomly
searching individuals which interact through selection. The
size of the population is an integer

(9)

The set of all populations of size consists of the entire
state space replicated to the th degree

(10)

For a given population , let

(11)

denote the subset of individuals contained in. The individual
extracted from the population during the selection step of
MOSES is the minimal point in

(12)

Throughout the entire paper, the uniform population
and the element are identified by denoting

(13)

A graph structure on defines the mutations by associating
to each a neighborhood . The graph
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structure is called mutation graph and is denoted by .
The mutation graph is assumed to be the following:

a) symmetric:

iff (14)

b) connected: there exists a path between two arbitrary
points and in ;

c) and

(15)

where the notation stands for the subset minus the
individual .

Symmetry is assumed for sake of convenience. The purpose
of this assumption is to alleviate the notations used in the
mathematical description of the algorithm. Assumption c) is
technical. It is often checked in practice (e.g., 1-bit mutation in
binary genetic algorithms or 2-opt in traveling salesman prob-
lems). This assumption guarantees that mutations are always
possible. From the convergence viewpoint, the fundamental
assumption is connectivity, which ensures that the process of
evolution is ergodic.

The algorithm is parameterized with a finite temperature
. This parameter controls the number of offspring by

mutation. Let be the state of the population at time ,
and . The population is obtained as
follows.

• A subset of offspring by mutation is created by drawing a
random number according to the binomial distribution
bin where

(16)

Formally, this subset is

if

otherwise. (17)

• Mutation and replacement are introduced. For
is chosen in with uniform probability.
If then is set equal to .

• The population at time is .

The evolution is initialized with an arbitrary population in.

B. Basic Markov Chain Properties

Such dynamics correspond to a Markov chain on the set
for which the transition probabilities can be formulated

explicitly. Let be the Markov transition matrix associated
to the chain . We have

(18)

For two populations, consider the subset of successive
integers defined as

(19)

The number of elements in this subset is denoted by

(20)

Denote by the indicator function of the subset . A
transition between and is possible iff

(21)

In such a case, the probability of a transition from population
to is given by

P (22)

In addition, for all populations that are reachable from
in a single step of the procedure, the transition probabilities
satisfy the following inequalities:

(23)

where

(24)

These inequalities are immediate from the definition of the
binomial distribution. Indeed, we have

(25)

Besides, if , then , and

(26)

with . These estimates are the starting point to develop
the analysis of the algorithm and apply the formalism of
large deviations. By convention, set when

. The constants and satisfy

(27)

The transition probabilities are therefore logarithmi-
cally equivalent to as goes to zero

(28)

The exact transition model which is given by (22) is hardly
tractable, and the analysis will rely on the approximation
given in (23). The quantity represents the number
of individuals in the population which are different from
the best individual in . During the analysis, this quantity is
viewed as a one-step communication cost between populations

and . It expresses the difficulty for the chain to
move from to in one step. This cost satisfies the following
properties:

i) for all

(29)

ii) for all

(30)
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Fig. 1. A very simple example of minimization problem. The state spaceE is depicted as the set of dots, and the mutation graph is determined by the
nearest neighbors on the line. In this example,n� = 7 and d� = 4. The value of Hajek’s critical height is also shown.

iii) by condition (15), for all , there exists
a sequence such that

(31)

and

(32)

Such a sequence is referred to as a path in the sequel.

IV. CONVERGENCE TO THEMINIMAL POPULATION

A. Geometrical Indexes

This section introduces two geometrical indexes which are
useful to quantify the convergence of MOSES toward the
minimal solution. A geometrical index is a quantity expressed
in terms of the objective function, and in terms of variables
depending on the mutation graph.

Notation: The distance on the graph, i.e., the minimal
length of a path between two arbitrary pointsand in ,
is denoted by .

The first index is an index of population size. It is defined as

(33)

where is the minimal point of . This index corresponds to
the maximal distance between the minimal point ofand an
arbitrary point in the graph . Initializing the algorithm
with a state which is very far from the minimum plays in
disfavor of convergence. Intuitively, large population sizes can
attenuate this matter. If the population size is greater than,
it is possible to create a chain of individuals from any solution
to the best solution, avoiding mutation to suboptimal states.

The second index is a convergence index. Again, it quanti-
fies the difficulty of the algorithm to deal with the geometry
of the minimization problem. Formally, it is defined as

(34)

Clearly, the maximum in (34) is attained at a vertexwhich
presents a local minimum of the function. Actually, this
index measures the greatest distance between a local minimum
of and a solution which outperforms this minimum. The
constant can be regarded as a measure of the “chance”
of escape from local minima during the local search. Such
measure has been called mutation order by Suzuki [18], who
introduced a similar quantity in the context of modified elitist
genetic algorithms (a less general setting).

An important feature is that the two indexes and
are not directly dependent from the values of the function.
They actually only depend on the ordering of these values.
In particular, and are not sensitive to affine rescaling
of (for instance, they remain unchanged if is dilated
or contracted). On the other hand, the critical height
introduced in the theory of simulated annealing is strongly
dependent from such rescaling. Fig. 1 gives a simple example
for which the indexes and are explicitly computed.

Another important remark is that and are bounded
by the diameter of the mutation graph ( is the maximal
distance between two arbitrary vertices in the graph). This
bound does not depend on the function to minimize and is
useful to describe universal parameterizations of MOSES.

In brief, it is worthwhile to imagine that MOSES creates its
own representation of the energy landscape. In contrast, the
classical statistical mechanics formalism introduced to deal
with simulated annealing relies on a direct representation of
the objective function as an energy. The virtual landscape is
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related to the geometry of the optimization problem in complex
way. This landscape is built upon distances from local minima
to solutions with better evaluation.

B. Main Results

This section states the main results concerning the con-
vergence of MOSES. Proofs are deferred to the Appendix.
This paper presents two results. Theorem 4.1 gives population
sizes which ensure that the process “concentrates” on the best
solution. Theorem 4.3 gives cooling schedules for the mutation
parameter which ensure that the algorithm converges to
the best solution.

According to condition (32), the Markov transition matrix
which is associated with the algorithm satisfies the classical

convergence conditions of the Perron–Frobenius theorem [8]

(35)

(and aperiodicity obviously holds). Thus, the Markov chain
converges to a unique stationary distribution asgoes to

infinity. We shall denote by the stationary distribution. As
in simulated annealing, the convergence of the algorithm relies
upon the concentration of on as

goes to zero.
Theorem 4.1:Let

(36)

The invariant distribution of the chain concentrates on
the uniform population as goes to zero, where is
the minimal point of .

Note: This result justifies the introduction of as an index
of population size. A consequence of this result is that the
critical size is finite. The connectivity of the mutation graph
has a major role in this matter of fact. Depending on the
context, however, it may be difficult to compute the exact
value of . In such a case, the best uniform bound that can
be achieved by this method is the diameter(by uniform, we
mean that no particular knowledge is required on the location
of ).

To implement a practical search of , the temperature
must be decreased to zero. As in the annealing procedure,
it is desirable to decrease this parameter at each step of the
algorithm. Let the notation stand for for all .
Similarly, let the notation stand for for all .

Theorem 4.2:Let . Assume that

(37)

then we have

(38)

as tends to infinity (MOSES converges to the minimal
solution).

Note: The conclusion of the proof of this result (see the
Appendix) is a little more general than the previous state-
ment. Under condition (37), the probability that the vector
of solutions contains at least one coordinate equal toalso
converges to 1.0 as tends to infinity.

Equivalently, the mutation parameter at generation can
be chosen so that

(39)

Finally, the algorithm can be parameterized in the following
way.

Theorem 4.3:Let ( is sufficient). Assume
that

for all (40)

or

for all (41)

Then, we have

(42)

as tends to infinity (MOSES converges to the minimal
solution).

Note: Once the graph is fixed, the parameterization which
uses (41) is universal since it only depends on the graph
and no longer on . Of course, optimal mutation strategies
are dependent on the function to minimize. If the optimal
diameter is desired, then this constant must depend on the
objective function.

This subsection is concluded with a comparison between the
bounds obtained for MOSES and those obtained for simulated
annealing and genetic algorithms. Regarding to the standard
annealing procedure, it is easy to see thatis analogous to
the critical height of Hajek [13]. Hajek’s constant, however,
is of minor practical interest, because it remains incomputable
unless the geometry of the optimization problem is entirely
known. The use of the classical Metropolis algorithm requires
a series of tedious trial-and-error tests which contribute to
slow down the overall process of optimization and make the
quality of the response uncertain. In contrast, the parameter-
ization given in (41) only relies on the diameter of the
mutation graph.

In [5], a mutation-selection genetic algorithm is described
which is similar to MOSES. The emphasis is that MOSES
proceeds by applying mutationor selection whereas a ge-
netic algorithm sequentially applies mutation,and thereafter
selection. In MOSES, a single operator is involved at each
step and this makes the analysis easier (see the Appendix).
Furthermore, the results stated in [5] give few reasons to
implement the mutation-selection algorithm. Concentration
is proved to hold above a value which may be huge [see
(4)] depending on the ratio . Theorem 4.3 holds for
mutation-selection genetic algorithms as well. Nevertheless,
the geometrical indexes which determine the behavior of the
genetic algorithm are different from and . Actually, the
constant which corresponds to is unknown, and all the
available bounds strongly depend on the objective function.
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C. Large Deviations Arguments

A unifying formalism called GSA [19] has been developed
to study simulated annealing and genetic algorithms. In [19],
Markov transition kernel are studied with the assumption
that there exists such that

(43)

where the family (the communication cost) satisfies
and iff . Actually,

GSA theory applies under the slightly more general conditions
(23) and (27) and yields the same results. This formalism
generalizes the results of Hajek [13] concerning the standard
simulated annealing algorithm. The basic fact underlying GSA
is that a deterministic mechanism is perturbed at each step of
the algorithm. GSA relies itself on Freidlin and Wentzell [11]
in which a theoretical framework is developed for dealing
with the Markovian perturbations of dynamical systems. The
idea is to replace the classical energy function in simulated
annealing by a virtual energy which is expressed in terms
of costs on the trajectories of the system. In MOSES, the
deterministic mechanism is easy to identify. It consists of
assigning to each pool of solutions the uniform element

(as in [4] and [5]).
The communication cost(in many steps) from to in

is defined as

(44)

Specific subgraphs of are needed to proceed with the
definition of virtual energy. Let be the set of all spanning
trees on rooted at . Recall that an -graph ends
at and contains no cycle (each is the starting point
of exactly one oriented edge). Thevirtual energy is defined
on the set by

(45)

In formula (45), the minimum is taken over the set of all-
graphs on and the sum runs over the edges of these graphs.
The virtual energy describes the asymptotic behavior of the
chain as goes to zero. In [11], a logarithmic equivalent
for the stationary probability distribution is given

(46)

where is the minimal value of . Let be the set of
all populations in for which is attained. In reference
to statistical mechanics, the distribution can be regarded
as a Gibbsian distribution

(47)

associated with the virtual energy . Equation (46) states
that the distribution concentrates on . Clearly,

TABLE I
FINAL VALUE FOUND BY MOSESAFTER 105 ITERATIONS. D IS THE

DIAMETER OF THE EXPLORATION GRAPH AND n THE POPULATION SIZE

is contained in the subset of uniform populations.
Theorem 4.1 shows that for sufficiently large population
sizes, the subset reduces to the singleton which
corresponds to the optimal population.

Turn now to the results concerning the choice of the cooling
schedules. The work of [3] and [19] regarding GSA is used
extensively. A chain satisfying condition (23) and (27) is
viewed as a generalization of the Metropolis algorithm, and
the optimal cooling schedules can be given as in [13] and [20].
Trouvé’s paper [19, Thm. 2.22] has established this result in
a formal way. This can be restated as follows.

Theorem 4.4:There exists a nonnegative constant such
that for all decreasing cooling schedules converging
to zero we have

as (48)

if and only if

(49)

In [19], an explicit description of is given in terms of
the decomposition of into cycles. The definition of ,
however, is quite intricate and intractable. In this work, an
alternative description of is preferred [3]. A characteriza-
tion of in terms of paths of is proposed. Recall some
definitions. For each path

(50)

between and in , define

(51)

where the maximum is taken over all vertices in . Let
be the lowest possible value of over all self-

avoiding paths from to . The quantity is the
communication altitude betweenand . Then, following the
results of [3], is given by

(52)

For MOSES, an upper bound on can be easily obtained
(see the Appendix). This bound is

(53)

Theorem 4.3 follows from Theorem 4.4 and the previous
inequality.
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(a) (b)

(c) (d)

Fig. 2. Two-dimensional plot of the population in the test problem (54). The diameter isD = 252, and the population size isn = 2000. The individuals
were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 generations(a � g). The optimal solution is
located at the center of every image. The best individual is located in front of the cluster observed in every image.

V. EXPERIMENTAL RESULTS

A. Role of Diameter and Size

To extend the previous theoretical results, numerical simu-
lations were carried out on a specific minimization problem.
We empirically investigated the effects of the variations of the
population size and of the diameter of the exploration graph.
For a graph with a fixed diameter , the size
of the population was varied from 10 to . The
cooling schedule defined by (41) was used in all cases. MOSES
was stopped after 10generations. The optimization problem
involved the search of the global minimum of the function

(54)

with . The function oscillates and admits
a large number of barriers which are difficult to cross. The
global minimum is located near the point (5, 5) and the
minimal value is close to 0.0 (the value at (5, 5) is 2.0, and
is actually not minimal but ). The square
[0, 10] was discretized into a grid of mesh . A
squared neighborhood has been imposed to each individual,
i.e., a square of sidelengthfor the Euclidean metric (centered
on the individual). A graph of diameter was obtained by
choosing . The evolution is started from the point
(0, 0) where the difficulty is the highest. The results reported
in Table I show the optimal value found by the algorithm at
the final generation in a typical trial.

With small diameters, only suboptimal solutions are pro-
duced. Obtaining the optimal solution is then a very slow
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(e) (f)

(g)

Fig. 2. (Continued.) Two-dimensional plot of the population in the test problem (54). The diameter isD = 252, and the population size isn = 2000. The
individuals were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 generations(a � g). The optimal
solution is located at the center of every image. The best individual is located in front of the cluster observed in every image.

process. Better results are observed with larger diameters.
Augmenting the size of the population speeds up the con-
vergence of the process. To understand this, the virtual energy
must be studied more deeply. Since the communication cost
is linear in , such a study must be very similar to [5].
Intuitively, when is large the energy landscape looks like
a large basin and the optimization process is greatly facili-
tated. Fig. 2 illustrates a possible scenario with
and (these unrealistic values are used for the
purpose of demonstration).

B. Nonasymptotical Experimental Study

It must be pointed out that the above given result (Theorem
4.3) is an asymptotical result. Although it can be large, the
computing resource is always finite. Applying the conditions

of Theorem 4.3 ensures the reliability of the procedure in the
long run. Better results may be obtained, however, in short
computing time without following the (sufficient) conditions of
the theorem. In practice, useful information can be gained from
MOSES even when the population is far from convergence.
For instance, there is no need for the whole population to
consist of optimal solutions. A relevant event is the occurrence
of the first visit to of a single individual in the population.
To assess the occurrence of this event, 50 simulations were
run at fixed temperature and
with population size . The initial population was
sampled from the uniform distribution over the square [0,
10] . In Table II, the mean time of the first visit to is
reported. The simulations shed light on the fact that the
diameter of the search graph plays an important role. The
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(a) (b)

(c) (d)

Fig. 3. Two-dimensional plot of the population in the time dependent problem. The diameter isD = 252, and the population size is equal ton = 2000.
The individuals were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 generations(a� g). The optimal
solution moves on circle of radius 2 at the center of every image. The best individual is located in front of the cluster observed in every image. The algorithm
uses self organization to find the solution in real time, and individuals are ordered on the trajectory of the minimum.

TABLE II
MEAN TIME OF THE FIRST VISIT TO a� OVER 50 REPETITIONS. n = 500

AND T = 1:0. D IS THE DIAMETER OF THE MUTATION GRAPH

best value is obtained for . The average number
of evaluations necessary to find the solution is

. (The total number of comparisons required to find the
minimum by enumeration is approximately 6 500 000.) With
small diameters, the whole space is scanned, and local minima
are rapidly found. Nevertheless, these solutions may be far
from optimal. On the other hand, the process of evolution

is slow when very large diameters are used. This is due to
the very local search performed by most of the individuals.
In practical situations, a balance between the choice of the
diameter and the computing resource must be investigated.
We have yet no theoretical result in that direction. It seems
difficult to tackle this issue since it assumes that the geometry
of the problem varies in time.

C. Time-Dependent Problems

Attention is called here that MOSES can be used to
solve time-dependent problems. By using a hierarchical
population, the procedure is able to produce features of
self-organization. Individuals may organize to track the
optimal solution in real time. Such a claim is illustrated
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(e) (f)

(g)

Fig. 3. (Continued.) Two-dimensional plot of the population in the time dependent problem. The diameter isD = 252, and the population size is equal to
n = 2000. The individuals were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 generations(a� g).
The optimal solution moves on circle of radius 2 at the center of every image. The best individual is located in front of the cluster observed in every image.
The algorithm uses self organization to find the solution in real time, and individuals are ordered on the trajectory of the minimum.

with the following problem. The function to minimize

is

(55)

with in the square [0, 10]and

(56)

(57)

For all , there exists a unique global minimum of :
it is close to . The trajectory of this minimum
is a circle of radius 2 centered at a point close to (5,
5). A typical scenario is shown in Fig. 3. In Fig. 4, the
optimal value found by MOSES is plotted as a function
of time.

VI. CONCLUSION

MOSES shares similarities with both the simulated anneal-
ing [1], [13] and the mutation-selection genetic algorithm [5].
In the present analysis, the formalism of GSA introduced in
[3] and [19] was used. This approach replaces the standard
energy function of the Metropolis algorithm by a virtual energy
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Fig. 4. Typical evolution of the optimal value computed by MOSES in the time-dependent problem. The minimal value is 0.0.

TABLE III
A VARIATION ON MOSES WITH POPULATION SIZE EQUAL TO n AND MUTATION PROBABILITIES EQUAL TO pT . THIS

ALGORITHM IS CONVERGENT (NO CRITICAL SIZE) AND THE COOLING SCHEDULE CAN BE CHOSEN AS IN (39)

which is expressed in terms of costs on the trajectories of
the system.

In this paper, the relationships between convergence, the pa-
rameters of the strategy, and the geometry of the optimization
problem were investigated, and a universal parameterization
of the strategy has been proposed. The conclusions are similar
to those of the theory of simulated annealing. Nevertheless,
the constants involved in both approaches differ and are easier
to estimate in MOSES.

The main result in this paper may be summarized as follows.
Convergence of MOSES is ensured when the population size
is greater than the diameter of the graph on which mutating
individuals explore the search space. Once the size is fixed,
the temperature can be decreased according to a logarith-
mic schedule which is again proportional to the diameter of
the graph.

The analysis is mainly asymptotical. A nonasymptotical
study would directly rely on (22) which is hardly tractable.
Mutation probabilities are assumed to be small and the com-
puting time is assumed to be large. It seems natural that these
conditions are broken in realistic situations. The asymptoti-
cal study, however, has emphasized the relevant geometrical
quantities such as the diameter and the critical constant

. As in genetic algorithms, the information on the best
solution ever found by the procedure may be lost in course
of the evolution. A large size minimizes the influence of
this event. An artifact can be introduced, however, to avoid

such events. The artifact merely consists in sampling from
the binomial distributionbin instead ofbin .
Such a variant is elitist: it becomes impossible to lose the
best individual, and the minimal solution becomes an
absorbing state of the Markov chain . In this situation the
question of convergence is obviously solved. The population
converges to as soon as the population consists of at
least two individuals (see Table III). Concerning the cooling
schedules, the conclusions are exactly analogous to those of
Section IV-B (except that may be arbitrary). The behavior
of MOSES is therefore asymptotically identical to the variant
with population size equal to two. Obviously, this is not true in
the nonasymptotic regime. This remark underlines a weakness
of the asymptotic approach. Further efforts must be devoted
to develop the nonasymptotic approach.

Although MOSES will be outperformed by genetic algo-
rithms or simulated annealing on some problems, applying
these techniques requires a difficult preliminary study of the
optimization problem whereas the parameters of MOSES can
be configured with little (or no) prior knowledge on.

APPENDIX

Note: We shall work with paths in and with paths in .
To avoid confusion, paths in are paths in the graph
while paths in are trajectories of the chain .

Theorem 5.8 of [5] is used to compute the relevant quanti-
ties: and the communication altitude (defined Section
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IV). Theorem 5.8 of [5] says that if for all , we
have and , then and can
be computed on with

(58)

instead of the cost defined in (44). For uniform populations
and and will now stand for

and (parentheses are omitted when dealing with
uniform populations).

Lemma 6.1:Let where is the minimal point of
. Then we have

(59)

where is the distance on the graph .
Proof: Obviously, we have . Now,

consider a path in which realizes
and the path in

(60)

such that

(61)

(If for instance then and
etc.) Then we have .

The concentration on is obtained by controlling the
cost function on the subset .

Lemma 6.2:Assume that there exists an such that

(62)

Then, for all : the chain concentrates
on .

Proof: Let such that and an -graph
on for which

(63)

Since and is a spanning tree on rooted at , there
must be such that is in . We build an

-graph by deleting the edge in and introducing
the edge . Thus, we have

(64)

The problem that is addressed now is to force to be
equal to by correctly determining the size of the
population. Here is the proof of Theorem 4.1.

Proof: Let and be uniform populations, .
We have

length of the shortest path fromto in

(65)

and hence, by Lemma 6.1

(66)

Moreover, the path of minimal cost which exits from in
necessarily involves simultaneous mutations

(67)

We obtain

(68)

Under this condition, Lemma 6.2 applies.
The last statement to prove is as follows.
Lemma 6.3:We have .

Proof: First, use again Theorem 5.8 of [5] to compute
and from instead of . Then we have

(69)

Let and consider the path

(70)

in (or equivalently in ) where realizes

(71)

Obviously, we have . Now, consider a path
in which realizes

and the path in defined by

(72)

Then, the cost of this path in is exactly

(73)

and . Then, we have

(74)
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Obviously, this implies that

(75)
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