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An Evolutionary Strategy for Global
Minimization and Its Markov Chain Analysis

Olivier Frarcois

Abstract—The mutation-or-selection evolutionary strategy the values of the objective function on the vertices of the
(MOSES) is presented. The goal of this strategy is to solve mutation graph.
complex  discrete optimization problems. MOSES evolves a  1pg girategy relies on two parameters. The first is the size
constant sized population of labeled solutions. The dynamics . - e
employ mechanisms of mutation and selection. At each of the pOpu"_”‘t'On’_ and the Secon_d IS a positive t_emperature
generation, the best solution is selected from the current that can be imagined as decreasing to zero (as in simulated
population. A random binomial variable N which represents annealing). The temperature controls the mean number of
the number of offspring by mutation is sampled. Therefore offspring by mutation. This paper focuses on the choice of
the I first solutions are replaced by the offspring, and the o honylation size and the “cooling” schedules which ensure
other solytlons_ are replaced by replicas of the best solution. that the strat d timal uti Thi K
The relationships between convergence, the parameters of the a € Stralegy produces an optmal solu 'On'_ IS wor
strategy, and the geometry of the optimization problem are demonstrates that the parameters of the algorithm can be
theoretically studied. As a result, explicit parameterizations of chosen so that the dependence on the geometry is weak. In fact,
MOSES are proposed. the parameters can be configured with constants depending
Index Terms—Convergence, evolutionary strategy, genetic al- Only on the mutation graph (which is generally predefined).
gorithms, Markov chains, large deviations, simulated annealing. Things are less favorable as far as simulated annealing or
genetic algorithms are concerned [4], [13]. In these procedures,
the crucial constants strongly depend on the global structure
of the minimization problem and are thus unavailable in most
VOLUTIONARY algorithms are global search procepractical cases. The theory developed in this paper is analogous
dures based upon the evolution of a vector of solyo the theory of simulated annealing and is based upon the
tions viewed as a population of interacting individuals. Thesgsults of [3], [5], [13], and [19]. The statement of the main
strategies include simulated annealing, genetic algorithmgsult is composed of two parts. First, the population sizes for
evolutionary programming, and simulated evolution [1], [2}yhich the evolution “concentrates” on the optimal solution are
[9], [12]. In applying evolutionary strategies to solve larggletermined (Theorem 4.1). Once the population size is fixed,
scale and complex optimization problems, one of the masfe choice of reasonable cooling schedules is investigated in
frequently encountered difficulties is convergence toward @fe spirit of simulated annealing (Theorem 4.3). Section II
undesired attractor. This phenomenon occurs when the popyerviews some results known for simulated annealing and
lation get trapped in a suboptimal state such that the variatigftation-selection genetic algorithms. Section Il presents the
operators cannot produce an offspring which outperforms Bgategy in a formal way and gives basic results and notations.
parents. The relationships between convergence to a gloBaktion IV introduces two geometrical indexes which help to
minimum, the parameters of the strategy such as populati@étermine whether convergence may hold. Section IV also
size or mutation probabilities, and the geometry of the migmphasizes the main results and introduces the mathematical
imization problem are crucial to understand. Many previoygrmalism which is necessary to prove them. Section V
studies have investigated such issues for the simulated @ompletes the theoretical results with simulation evidence.
nealing process [13] and parallel versions [19], the genetic
algorithm [4], [5], [12], [15], [17], and the evolution strategieg|, StaTe oF THE ART AND PRESENTATION OF THEALGORITHM
[2]. This work theoretically investigates a simple evolutionary Th blem t e in thi is to find th inimal
strategy called MOSES (for mutation-or-selection evolutionary . € prooiem 1o solve In this paper 1S to Tin € mnima
. L : . oint of an arbitrary functionf which is defined on a finite
strategy) whose purpose is to minimize an arbitrary function %1 i .
L : . . ut generally large set. The setFE is endowed with a
a finite set. MOSES was introduced in [10]. The dynamics em- . . .
. . . raph structure. This structure defines a neighborhood for each
ploy mechanisms of mutation and selection. A graph structufe

on the search space defines the allowed mutations. Mutat}f)er{tex InE. The values of the function on the vertices of the

actually acts as a random walk on this graph. The geome \ryaph .descrlbe thgeometryof the m|n|m|zat|on' problem. Ar.]
evolutionary strategy uses a vector (population) of solutions

of the minimization problem is therefore characterized bt\é the minimization problem. Each solution is regarded as
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The author is with the Laboratoire de Meliation et Calcul, 38041 . . .
Grenoble Cedex 9, France. searchers are more efficient than isolated ones. The basic
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1) Initialize a “population” of solutions in&. discrete variables. Many authors have proposed a simulated
2) Evaluate each solution in the population. annealing-like approach to genetic algorithms. In [7], the
3) Propose a number of random changes in the populationutation probability is assumed to converge to zero. A natural
4) Use a rejection criterion to validate each change amdhy to parameterize this mutation probability is

evaluate the new solutions.
5) If a stopping criterion is satisfied, return the best solu- pr = exp(=a/T) (2)

tion; if not go to step 3). where« > 0 is the intensity of mutation and’ is a positive
Numerous algorithms correspond to this description inclugemperature. This parameterization has also been used in [5]
ing simulated annealing, genetic algorithms, and evolutionagyt with selection (roulette wheel) reinforced as well. In this
programming [1], [9], [12]. Evolution strategies introduced b¥etting, the selection probabilities are parameterized with the

Rechenberg and Schwefel [2] also fit well to the previousame temperaturd. If the current population is equal to
framework, although these techniques are rather devoted,to- (x1,...,2,), then the probability that the individual;

continuous optimization. Since randomness arises at ea§fselected in the future generation is
generation, all these algorithms are Markovian. It is natural to

use the formalism of Markov chains to analyze their behavior neXp(ﬁf(xi)/T) 3)
[13], [15]-{18]. 2 j=1 exp(Bf(z;)/T)

) _ ) ) where > 0 is the selection intensity. The genetic algorithm
A. Simulated Annealing and Genetic Algorithm has been studied by using the formalism of large deviations

In the simulated annealing algorithm, the population reducfs, [11]. The results obtained in [5] can be restated as follows.
to a single individual. A potentially new solution is generated i) Under mild assumptions, there exists a critical popula-
by sampling over the neighbors of the current one [step 3)].  tion size below which the population gets definitively
The rejection criterion [step 4)] uses Metropolis dynamics with trapped into a suboptimal solution. If the graph is
a decreasing temperature schedule. The Markov chain analysis connected, the critical size is finite. More precisely,
of the algorithm shows that the probability for obtaining the a sufficient condition on the population sizefor the
minimal solution converges to 1.0 iff the temperature schedule  concentration of the population on a global minima is
(T'(t)):>1 satisfies Hajek’s condition [13] D+ B(D — DA

3 exp(—hy /T(t)) = o0 1) " min(c, 36)

>1

(4)

whereD is the diameter of the graph used for mutation
whereh, is a constant called critical height. The critical height ~ (to be redefined later)

is a geometrical index which expresses the difficulty for the A = max{|f(a) — f(b)];a,b € E} (5)
simulated annealing to find the global minima of the objective

function. To interpreth,, it is worth regarding the objective and

function as an energy. Then this constant is the smallest )

variation of energy which is necessary to exit from any 6 = min{|f(a) — f(b);a # b€ E}. (6)

suboptimal solution in the energy landscape. Unfortunately, i)
this value remains incomputable in practice, because it depends
strongly on the geometry of the minimization problem, and (1). Unfortunately, the critical constant corresponding
assumes a complete knowledge of the energy landscape. to h. remains unlénown

Genetic algorithms proceed by sequentially applying muta—E uatioﬁ (4) emphasizes the role of the diameter of the
tion, crossover [step 3)], and selection [step 4)] operators [1%4. tqt' h Bp 2 is i i the bound i
The links between the geometry of the minimization proble utation graph. Because (4) is linear i, the bound is

and the convergence properties of the algorithms are not (ﬁnfsmve o large diameters. Th'S_ fact_means that large pop-
understood yet. Nevertheless, the results of [5], [7], [12], [15%at|ons are necessary to deal with wide se_arch spaces. The
[17], and [21] can be summarized as follows. Mutation is ependepce ol angé means th?t the bound is also sensitive
crucial step to warrant that the population does not get trapptgdrescallng the_ objective function. The values Afand 6

into a suboptimal state. The mutation parameters, howeval® ?e'do”ﬁ av.allabile, and the relevance of such a result to
must be tuned in a subtle way depending on the problem %éctlcal situations is weak.

minimize. No rule of thumb actually exists to choose these ) )

mutation parameters properly in general. On the other haftl, Presentation of the Algorithm

crossover is not a necessary feature for convergence to th&his article studies a new procedure called MOSES. This
minimal solution. Although the importance of this operatoprocedure shares similarities with the genetic algorithm with-
is often asserted [4], [12], it is relevant to study algorithmsut crossover. It can eventually be introduced into a genetic
which are based on mutation and selection solely. Furthermorede instead of the mutation/selection operations. The main
the genetic algorithm without crossover is not limited to coddifference between MOSES and genetic algorithms is that
binary strings. As far as mutation is well defined (accordinglOSES proceeds by coupling mutation or selection into a
to a mutation graph), the algorithm can proceed with arbitrasingle operation while genetic algorithms use mutation and

The probability for obtaining the minimal solution con-
verges to 1.0 under a condition which is analogous to
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then selection. An informal description of the algorithm isffspring. Parents and offspring are merged to build the pop-
presented now. The formal description will be given in Sectiaulation at the future generation. Again the mutation/selection
lll. The size of the population is equal to. A parameter steps of an evolution strategy require two operations whereas
p is introduced which controls the number of offspring ofhese steps are coupled in a single operation in MOSES.

mutation at each generation. This parameter may depend o®verall, the great advantage of MOSES is that the mathe-
the generation. Becaugeis taken in the interval (0, 1), this matical analysis of the procedure can be described in details.
parameter is viewed as a mutation probability. The algorithfithe construction of the algorithm, and especially the choice of

is as follows. the binomial distribution, is motivated by the application of the
1) Initialize a population of. labeled individuals in&. formalism of large deviations. As in the simulated annealing
2) Repeat procedure, a temperature is introduced. This temperature acts

) ~_ on the mean number of offspring of mutatidi{V] which
a) Draw a random numbe¥ from the binomial distri- gecreases to zero. If the population size and the temperature
bution bin(n, p). are properly chosen, the evolution concentrates on a global
b) Select the optimal individual, from the population. minimum. It has been demonstrated many times that simulated
c) Replace theV first individuals by mutation and the gnnealing-like theories are relevant to study genetic algorithms
n — N other individuals byz.. [4], [7], [14]. More precisely, the theoretical framework which
d) Updatep. is used to analyze MOSES is generalized simulated annealing

The main feature of MOSES is that the search is hie@gSA) [19] which provides a unified formalism for dealing

archical. Individuals perform different “degrees” of searcW'th a large class of evolutionary procedures.
according to their position in the population. The individuals

with the first labels are allowed to make long random walks ll. M ATHEMATICAL DESCRIPTION
in the search space, and some of them may travel along the

search space with very weak selection. On the other hard, Formal Description and Hypotheses

the individuals with high labels perform a very local search |, this section, MOSES is formally described. The necessary
around the best individual, and the selection pressure is stroggsmptions for conducting the mathematical analysis are also
This hierarchy is obtained from the use of a random numbgg,en. The objective functiory is defined on a sef of

of offspring by mutation at each generation. The probabilityyite cardinality. For sake of simplicity, it is assumed that
that% individuals mutate is given by the binomial dlstrlbutlonf is one-to-one onf(E) (f(a) = f(b) implies a = b). The

bin(n, p). For all0 < k < n, we have unique minimal point is denoted by*. If only a solution
n! N .- among the best ones is wished, this restriction is a little loss of
Prob(N = k) = W =i (1-p) " (7)  generality. Indeed, a small perturbation ptdoes not change

the minimization problem and can transforfninto a one-
The most expensive step in this algorithm is selection whigb-one function. MOSES evolves a population of randomly
requiresN calls to f. On the average, the number of calls issearching individuals which interact through selection. The

size of the population is an integer
E[N] =np.
n > 2. (9)
Nevertheless, this number is smaller than the number of calls
in many other strategies (e.g., genetic algorithms or evolutidfie setX of all populations of size. consists of the entire
strategies). Besides, a proper choice of the mutation gragfhte spacev replicated to thenth degree
can drastically reduce the complexity of computing. Since

only comparisons to a fixed value (the best value at the last X =F (10)
generation) are needed, neighbors can be chosen so thatgthe, given population: = (z1,...,2,) € X, let
difference between the old value and the value of the offspring

by mutation is easy to compute. E,={z1,...,2,} CF (12)

Many criteria may be used to stop the evolution. The expi- o ) _ S
ration of the computing resource is an expensive criterion. §gnote the subset of individuals contained:ifrhe individual
this paper, different criteria are used. The theoretical analy§¥racted from the population during the selection step of
assumes that the mutation parametedecreases to zero. MOSES is the minimal point ir&,
In regard to this method, a natural criterion is to stop the 2, = argmin f(z;). (12)
algorithm wherp is below a given threshold. Another criterion €,
will be used in Section V where test functions are introduced . .
The algorithm can be stopped when the value of the objecti-\I/—Qroughout the entire paper, thg _unn‘orm popu_latﬂon +026)
function is below a given threshold. The drawback of thi'Slnd the element € £ are identified by denoting
method is the randomness of the hitting time. Due to this (a) = (a,...,a). (13)
randomness, the control on the length of computation is lost.

MOSES also shares similarities with evolution strategies. In A graph structure o’ defines the mutations by associating
MOSES,N parents (théV first labels in the population) createto eachz; € E a neighborhoodN(z;) < FE. The graph
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structure is called mutation graph and is denoted ByG). Denote byl the indicator function of the subset C E. A
The mutation graph is assumed to be the following: transition betweerr andy is possible iff

a) symmetric: we = I IN@onee .)) () I 1ot %0
zi € N(zj) iff a; € N(a:); (14 7  INGi) N (E\{z. )] tr i

icI(zy igI(x,y)
b) connected: there exists a path between two arbitrary (21)
pointsa andb in (£, G); In such a case, the probability of a transition from population
¢) and x to y is given by
veed dsise Nen(Bteh #0019 a(e,y) =P = Clay)n(@y). (22

where the notatio’\{z,} stands for the subséf minus the |n addition, for all populations that are reachable from

individual .. in a single step of the procedure, the transition probabilities
Symmetry is assumed for sake of convenience. The purpQggisfy the following inequalities:

of this assumption is to alleviate the notations used in the

mathematical description of the algorithm. Assumption c¢) is kre”C@W/T < gr(e,y) < Kpe €@W/T (23)

technical. It is often checked in practice (e.g., 1-bit mutation in

binary genetic algorithms or 2-opt in traveling salesman pro%’—here

lems). This assumption guarantees that mutations are always kr = (1 - pr)" H 1
|N(z;) N

possible. From the convergence viewpoint, the fundamental ieTtzy) (E\{z.})]

assumption is connectivity, which ensures that the process of ’ 1

evolution is ergodic. Kr=2" ] . (24)
The algorithm is parameterized with a finite temperature i€ I(zy) [NV (i) N (E\{w})]

T > 0. This parameter controls the number of offspring b
mutation. LetX? be the state of the population at time> 1,
and X!' = = € X. The populationX?,, is obtained as
follows. (1—pr)" < (”
. L . = \k
¢ A subset of offspring by mutation is created by drawing a
random numberV according to the binomial distribution Besides, ifpr < 1/2, then(1 — pz)™ > (1/2)", and
bin(n, pr) where

¥hese inequalities are immediate from the definition of the
binomial distribution. Indeed, we have

)(1 —pr)"F < max (Z) <2" (25)

L () CENIT < g, y) < rr(e,y)eCEVIT (26)

pr = exp(=1/T). (16) =
) ) with x = 2. These estimates are the starting point to develop
Formally, this subset is the analysis of the algorithm and apply the formalism of
I=0, if N=0 large deviagio_lr_lrs]. By c?nvt;ntion,dsfgl(a:,g{[_) = +oo when
. ,4) = 0. The constanté; an satis
I={1,...,N}, otherwise. 17) ar(@,y) r r fy

. . lim —7'Inky = lim —7'In Kz = 0. (27)
« Mutation and replacement are introduced. Fag I, y; T—0 T—0

is chosen inV (i) N (E\{x.}) with uniform probability. The transition probabilitieg, () are therefore logarithmi-

If ¢ & I theny; is set equal tar.. cally equivalent toe~C¥)/T asT goes to zero
* The population at time + 1 is X/, = y.
The evolution is initialized with an arbitrary population . lim —Tlngr(z,y) = Oz, y). (28)

The exact transition model which is given by (22) is hardly
tractable, and the analysis will rely on the approximation
Such dynamics correspond to a Markov chain on the sgien in (23). The quantityC(x,y) represents the number
X for which the transition probabilities can be formulate@f individuals in the populationy which are different from
explicitly. Let ¢ be the Markov transition matrix associatedhe best individual inz. During the analysis, this quantity is
to the chain(X{);>1. We have viewed as a one-step communication cost between populations
. ST ST x and y. It expresses the difficulty for the chainX}) to
ar(w,y) = Prob(Xiy, = y| X} = 2). (18) move fromz to v in one step. This cost satisfies trlge ;o?lowing
For =,y two populations, consider the subset of successipoperties:

B. Basic Markov Chain Properties

integersi € {1,...,n} defined as i) forall x € X
Iz,y) = {1l <i<njy # o4} (19) C(z, (24)) = 0; (29)
The number of elements in this subset is denoted by iy forall z € X, y # (z.)

C(z,y) = [I(z,y)]. (20) C(z,y) > 0; (30)
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Fig. 1. A very simple example of minimization problem. The state space depicted as the set of dots, and the mutation graph is determined by the
nearest neighbors on the line. In this example, = 7 andd. = 4. The value of Hajek’s critical height is also shown.

iii) by condition (15), for all(z,y) € X x X, there exists  The second index is a convergence index. Again, it quanti-
a sequencézy — x; — --- — x,.) such that fies the difficulty of the algorithm to deal with the geometry
of the minimization problem. Formally, it is defined as

To=x, TR E€X, T,.=Yy (31)
dy =max min d(a,b). 34
and a#a* b:f(b)< f(a) (a,) (34)
r—1
Clearly, the maximum in (34) is attained at a vertexhich
kZ_OO(xk,ka) < oo (32) presents a local minimum of the functioh Actually, this

index measures the greatest distance between a local minimum
Such a sequence is referred to as a path in the sequet. f and a solution which outperforms this minimum. The
constantd, can be regarded as a measure of the “chance”
of escape from local minima during the local search. Such
measure has been called mutation order by Suzuki [18], who
introduced a similar quantity in the context of modified elitist
This section introduces two geometrical indexes which aggnetl_c algorithms (a Ies_s general settlng).
useful to quantify the convergence of MOSES toward the An |mpprtant feature is that the two indexes and d. .
minimal solution. A geometrical index is a quantity express e not directly dependent from the valges of the function.
in terms of the objective functioffi, and in terms of variables ey a}ctually only depend on the o_r_dermg Of. these va_lues.
depending on the mutation graph. In partlcult_’;\r,n* andd, are not_ sensitive to aﬁlne rgscahng
Notation: The distance on the graph, i.e., the minima(ff f (for instance, they remain unchanged_ﬁ_f IS d'la.lted
length of a path between two arbitrary pointandb in (E, G), or contractgd). On the Othef hand, the crlt!cal .he'@m
is denoted byd(a, b). introduced in the theory of.5|mu!ated gnnealmg is strongly
The first index is an index of population size. It is defined af%ependent frqm such rescaling. Fig. 1 gives a simple example
or which the indexes.. andd.. are explicitly computed.
n, = maxd(a,a”) (33) Another important remark is that, and d, are bounded
aFat by the diameterD of the mutation graph{ is the maximal
wherea* is the minimal point off. This index corresponds to distance between two arbitrary vertices in the graph). This
the maximal distance between the minimal pointfoind an bound does not depend on the function to minimize and is
arbitrary point in the grapliE, G). Initializing the algorithm useful to describe universal parameterizations of MOSES.
with a state which is very far from the minimum plays in In brief, it is worthwhile to imagine that MOSES creates its
disfavor of convergence. Intuitively, large population sizes cawn representation of the energy landscape. In contrast, the
attenuate this matter. If the population size is greater than classical statistical mechanics formalism introduced to deal
it is possible to create a chain of individuals from any solutiowith simulated annealing relies on a direct representation of
to the best solution, avoiding mutation to suboptimal statesthe objective function as an energy. The virtual landscape is

IV. CONVERGENCE TO THEMINIMAL POPULATION

A. Geometrical Indexes
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related to the geometry of the optimization problem in complex Note: The conclusion of the proof of this result (see the
way. This landscape is built upon distances from local mininfppendix) is a little more general than the previous state-

to solutions with better evaluation. ment. Under condition (37), the probability that the vector
of solutions contains at least one coordinate equal*t@also
B. Main Results converges to 1.0 astends to infinity.

Equivalently, the mutation parameter at generatiort can
This section states the main results concerning the cqfs chosen so that

vergence of MOSES. Proofs are deferred to the Appendix. oo
This paper presents two results. Theorem 4.1 gives population Zpt* — 00, (39)
sizes which ensure that the process “concentrates” on the best
solution. Theorem 4.3 gives cooling schedules for the mutang%a”y the algorithm can be parameterized in the following
parameterpr which ensure that the algorithm converges tﬁ/ay
the best solution.

According to condition (32), the Markov transition matrl
qr Which is associated with the algorithm satisfies the classu:afjl
convergence conditions of the Perron—Frobenius theorem [8] pe=t Y% forallt>1 (40)

Theorem 4.3:Let n > n, (n > D is sufficient). Assume

or

Viz,y) e X x X, Ir>1 q()a:,y >0 (35)
(@) (39) pe=t"YP forallt>1. (41)

(and aperiodicity obviously holds). Thus, the Markov chaifhen, we have

(X]') converges to a unique stationary distributiort @ees to e v

infinity. We shall denote by, the stationary distribution. As Prob(X; = (a") [ Xo =2) — 1.0 (42)

in simulated annealing, the convergence of the algorithm religs ¢ tends to infinity (MOSES converges to the minimal

upon the concentration gfy on (a*) = (a*,...,a*) € X as  solution).
T goes to zero. Note: Once the graph is fixed, the parameterization which
Theorem 4.1:Let uses (41) is universal since it only depends on the graph
and no longer onf. Of course, optimal mutation strategies
n > Ny (36) are dependent on the function to minimize. If the optimal

diameterD is desired, then this constant must depend on the
The invariant distribution of the chaifiX”') concentrates on objective function.
the uniform populationa*) asT’ goes to zero, where* is This subsection is concluded with a comparison between the
the minimal point of f. bounds obtained for MOSES and those obtained for simulated
Note: This result justifies the introduction ef, as an index annealing and genetic algorithms. Regarding to the standard
of population size. A consequence of this result is that ti@nealing procedure, it is easy to see tthais analogous to
critical size is finite. The connectivity of the mutation grapfhe critical height.,. of Hajek [13]. Hajek’s constant, however,
has a major role in this matter of fact. Depending on tHg of minor practical interest, because it remains incomputable
context, however, it may be difficult to compute the exadtnless the geometry of the optimization problem is entirely
value ofn,. In such a case, the best uniform bound that cagown. The use of the classical Metropolis algorithm requires
be achieved by this method is the diamefetby uniform, we @ series of tedious trial-and-error tests which contribute to
mean that no particular knowledge is required on the locatigtPw down the overall process of optimization and make the
of a*). quality of the response uncertain. In contrast, the parameter-
To implement a practical search af, the temperaturg’ ization given in (41) only relies on the diametér of the
must be decreased to zero. As in the annealing proceduréitation graph.
it is desirable to decrease this parameter at each step of th# [5], a mutation-selection genetic algorithm is described
algorithm. Let the notatiorX, stand forXtT(t) for all + > 1. Which is similar to MOSES. .The emph_asis is that MOSES
Similarly, let the notatiorp, stand forps(,) for all t > 1. proceeds by applying mutatioar selection whereas a ge-
Theorem 4.2:Let n > n,. Assume that netic algorithm sequentially applies mutaticamd thereafter
selection. In MOSES, a single operator is involved at each
°0 step and this makes the analysis easier (see the Appendix).
ZG /T = (37)  Furthermore, the results stated in [5] give few reasons to
t=1 implement the mutation-selection algorithm. Concentration
is proved to hold above a value which may be huge [see
then we have (4)] depending on the ratia\/é6. Theorem 4.3 holds for
mutation-selection genetic algorithms as well. Nevertheless,
Prob(X; = (a") | Xo =2) — 1.0 (38) the geometrical indexes which determine the behavior of the
genetic algorithm are different from, andd,. Actually, the
as t tends to infinity (MOSES converges to the minimatonstant which corresponds tf is unknown, and all the
solution). available bounds strongly depend on the objective function.
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C. Large Deviations Arguments TABLE |

. . FINAL VALUE Founp BY MOSESAFTER 10° ITERATIONS. D IS THE
A unifying formalism called GSA [19] has been developed pjaverer oF THE EXPLORATION GRAPH AND 11 THE POPULATION SIZE

to study simulated annealing and genetic algorithms. In [19],

e \ ; . 2 3 4 5 6 10
i\r/l]a:ktcf)]v trans!tli)n kerr;]ei]hT tare studied with the assumption 10 | 72503 | 04631 | 00663 | 00446 | 00292 | 0029
at there exists: such tha n =50 | 05153 | .00625 | 00385 | 00279 | .00279 | .00279
% =100 | 00735 | 00279 | 00279 | 00279 | 00279 | 00279

1
—n(z,y)e “EIT < qr(w,y) < wmlz,y)e ST (43)
K

where the family C (the communication cost) satisfies . . . ) .
Cla,y) > 0 and C(a,y) = +oc iff w(z,y) = 0. Actually, iIs contained in the subséf C X o_f _unlform populatlons._
GSA theory applies under the slightly more general conditioﬂ-georem 4.1 ShO\*NS that for suff|C|_entIy Iarg*e pop_ulatlon
(23) and (27) and yields the same results. This formalisif-S>: the subsety reduces to the_smgletoﬁ(a )} which
generalizes the results of Hajek [13] concerning the stand&df responds to the optimal popullatlon. . .
simulated annealing algorithm. The basic fact underlying GSA Turn now to the results concerning the chqlce of the.coolmg
is that a deterministic mechanism is perturbed at each stepSBPedqles' The wo'rk of [,3] gnd [19] r_ggardlng GSA Is u;ed
the algorithm. GSA relies itself on Freidlin and Wentzell [11 _xtenswely. A cham_ sa_t|sfy|ng condition (.23) and_ (27) is
in which a theoretical framework is developed for dealin |ewed_ as a ge_nerahzatlon of the Me;ropohs _algorlthm, and
with the Markovian perturbations of dynamical systems. T € OQt,'mal cooling schedules can be given as in [13] and [2(.)]'
idea is to replace the classical energy function in simulatdOuve’s paper [1,9’ Thm. 2.22] has established this result in
annealing by a virtual energy which is expressed in ternfis’ormal way. This can l_)e restated as f,OHOWS'

of costs on the trajectories of the system. In MOSES, theTheorem 4.4:There exists a nonnegative constant such

deterministic mechanism is easy to identify. It consists ggat for all decreasing cooling schedulé(#)).. converging
assigning to each pool of solutions the uniform element to zero we have

(z.) (as in [4] and [5]). Prob(X | X, = 0 t 48
The communication costin many steps) from: to 4 in X jg)( rob(Xe g W[ Xo =) = ast e (48)
is defined as
L if and only if
Vi(z,y) = inf{z Clak, Trt1), To = 2, >
k=0 ZG_H‘/T(t) = 00. (49)

t=1

wpe€X, wp=y, r22,.  (44) - - T
In [19], an explicit description ofH; is given in terms of

- ] the decomposition ofX into cycles. The definition off;,
Specific subgraphs of are needed to proceed with theyowever, is quite intricate and intractable. In this work, an
definition of virtual energy. Let(x) be the set of all spanning gjternative description off; is preferred [3]. A characteriza-

trees onX rooted ate. Recall that an-graph(g € G(«)) ends  ion of H, in terms of paths of X;) is proposed. Recall some
at and contains no cycle (eagh# « is the starting point gefinitions. For each path

of exactly one oriented edge). Thartual energyis defined

on the setX by Yoy = (@o =0 > 21— - > T =Y) (50)
Ve e X, W(x) :g?é,@{;) > Vi) (45) petweens andy in X, define
(y—z)Cg
In formula (45), the minimum is taken over the set of &l H(vey) = o%?i‘r{w(“) + Claw i)} 1)

graphs onX and the sum runs over the edges of these graphs. ) ) ) .
The virtual energyV’ describes the asymptotic behavior of th&here the maximum is ta!<en over all verticesyp,. Let
chain(X}) asT goes to zero. In [11], a logarithmic equivalent? (¢, y) be the lowest possible value &f(v.,) over all self-

for the stationary probability distributiops(z) is given avoiding pathsy,, from z to y. The quantityH (z,y) is the
communication altitude betweenandy. Then, following the

Ve € X, lim -Tln pr(w) = W(z) — Wiin (46) results of [3],H; is given by

whereW,.;n is the minimal value o#¥. Let W* be the set of H; = max H(z,(a")) — W(x). (52)
all populations inX for which W,,.;, is attained. In reference z#(a”)
to statistical mechanics, the distributig- can be regarded o MOSES. an upper bound di; can be easily obtained
as a Gibbsian distribution (see the Appendix). This bound is
e~ W@)/T
pr(z) =~ —Z (47) Hy <d.. (53)

associated with the virtual enerd¥y (z). Equation (46) states Theorem 4.3 follows from Theorem 4.4 and the previous
that the distributionur concentrates oiww*. Clearly, W* inequality.
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Fig. 2. Two-dimensional plot of the population in the test problem (54). The diamefer4s252, and the population size is = 2000. The individuals
were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 gengratigns The optimal solution is
located at the center of every image. The best individual is located in front of the cluster observed in every image.

V. EXPERIMENTAL RESULTS with (ay,az) € [0,10]%. The functionf oscillates and admits
a large number of barriers which are difficult to cross. The
A. Role of Diameter and Size global minimumea* is located near the point (5, 5) and the

To extend the previous theoretical results, numerical sim{inimal value is close to 0.0 (the value at (5, 5) is 2.0, and
lations were carried out on a specific minimization problenf actu2ally not minimal butf(4.92,4.92) ~ 0). The square
We empirically investigated the effects of the variations of tHd» 10I" was discretized into a grid of mesh= 0.004. A

population size and of the diameter of the exploration grapfiu@red neighborhood has been imposed to each individual,
For a graph with a fixed diametdd € {1,...,10}, the size I-€- @square of sidelengttfor the Euclidean metric (centered

of the populationn was varied from 10 t0u,,.;c = 100. The ©ON the_ individual). A graph of d_iam_etelD was obtained b_y
cooling schedule defined by (41) was used in all cases. MOSE!®0singr = 10.0/D. The evolution is started from the point
was stopped after £0generations. The optimization problem(0, 0) where the difficulty is the highest. The results reported

involved the search of the global minimum of the function in Table | show the optimal value found by the algorithm at
the final generation in a typical trial.

flay,a2) = 0-2((a1 —5)% + (a2 — 5)2) With small diameters, only suboptimal solutions are pro-
+ 2sin(10(ay + az — 10)) +2 (54) duced. Obtaining the optimal solution is then a very slow
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Fig. 2. (Continued) Two-dimensional plot of the population in the test problem (54). The diametBr s 252, and the population size is = 2000. The
individuals were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 gerferatighsThe optimal
solution is located at the center of every image. The best individual is located in front of the cluster observed in every image.

process. Better results are observed with larger diameteTheorem 4.3 ensures the reliability of the procedure in the
Augmenting the size of the population speeds up the cdobng run. Better results may be obtained, however, in short
vergence of the process. To understand this, the virtual eneegymputing time without following the (sufficient) conditions of
must be studied more deeply. Since the communication c@s theorem. In practice, useful information can be gained from
is linear in n, such a study must be very similar to [5.MOSES even when the population is far from convergence.
Intuitively, whenn is large the energy landscape looks likgor instance, there is no need for the whole population to
a large basin and the optimization process is greatly faciiynsist of optimal solutions. A relevant event is the occurrence
tated. Fig. 2 illustrates a possible scenario with= 2000 ot the first visit toa* of a single individual in the population.
and D = 252 (these_unreahstlc values are used for th?o assess the occurrence of this event, 50 simulations were
purpase of demonsiration). run at fixed temperaturd’ = 1.0 (pr = 0.368) and
with population sizen = 500. The initial population was
B. Nonasymptotical Experimental Study sampled from the uniform distribution over the square [0,
It must be pointed out that the above given result (Theoreb®]*. In Table II, the mean time of the first visit to* is
4.3) is an asymptotical result. Although it can be large, threported. The simulations shed light on the fact that the
computing resource is always finite. Applying the conditiondiameter of the search graph plays an important role. The
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Fig. 3. Two-dimensional plot of the population in the time dependent problem. The diamdde=i252, and the population size is equal o= 2000.

The individuals were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 geterationThe optimal
solution moves on circle of radius 2 at the center of every image. The best individual is located in front of the cluster observed in every imaggthifhe algo
uses self organization to find the solution in real time, and individuals are ordered on the trajectory of the minimum.

TABLE 1

MEAN TIME OF THE FIRST VISIT TO a™ OVER 50 REPETITIONS 1 = 500
AND 7" = 1.0. D |s THE DIAMETER OF THE MUTATION GRAPH

Diameter DD

5 10 | 30 | 35401 45

50

55

60

70

80

Mean time

1842 | 514 | 136 | 63 | 53 | 50

24

25

36

50

140

best value is obtained foD = 50. The average number

of evaluations necessary to find the solution2igpr =
4400. (The total number of comparisons required to find the pwantion is called here that MOSES can be used to
minimum by enumeration is approximately 6500000.) Wit§olye time-dependent problems. By using a hierarchical
small diameters, the whole space is scanned, and local miniggpulation, the procedure is able to produce features of
are rapidly found. Nevertheless, these solutions may be fif-organization. Individuals may organize to track the
from optimal. On the other hand, the process of evolutiowptimal solution in real time. Such a claim is illustrated

is slow when very large diameters are used. This is due to
the very local search performed by most of the individuals.

In practical situations, a balance between the choice of the
diameter and the computing resource must be investigated.
We have yet no theoretical result in that direction. It seems
difficult to tackle this issue since it assumes that the geometry
of the problem varies in time.

C. Time-Dependent Problems
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Fig. 3. (Continued) Two-dimensional plot of the population in the time dependent problem. The diamefer=s252, and the population size is equal to

n = 2000. The individuals were initially located at (0, 0). The cooling schedule is given by (41). The population is displayed each 100 ge(eratipns

The optimal solution moves on circle of radius 2 at the center of every image. The best individual is located in front of the cluster observed irgevery ima
The algorithm uses self organization to find the solution in real time, and individuals are ordered on the trajectory of the minimum.

with the following problem. The function to minimize For all #, there exists a unique global minimum gf:
it is close to (a:,8;). The trajectory of this minimum
is a circle of radius 2 centered at a point close to (5,
5). A typical scenario is shown in Fig. 3. In Fig. 4, the
felar, a2) = 0.2((a1 — ) + (a2 — 3)?) o]E)ti_maI value found by MOSES is plotted as a function
of time.

is

+4sin(10(a; — oy +as — ft)) +4 (55)

VI. CONCLUSION

with (a1, ) in the square [0, 16]and MOSES shares similarities with both the simulated anneal-

ing [1], [13] and the mutation-selection genetic algorithm [5].
In the present analysis, the formalism of GSA introduced in
[3] and [19] was used. This approach replaces the standard
B = 5+ 2sin(27t/100). (57) energy function of the Metropolis algorithm by a virtual energy

oy = 5+ 2cos(2nt/100) (56)
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Fig. 4. Typical evolution of the optimal value computed by MOSES in the time-dependent problem. The minimal value is 0.0.

TABLE I
A VARIATION ON MOSES WITH POPULATION SizE EQUAL TO 1= AND MUTATION PROBABILITIES EQUAL TO pp. THIS
ALGORITHM |s CoNVERGENT (NO CRITICAL SizE) AND THE COOLING SCHEDULE CAN BE CHOSEN AS IN (39)

1. Initialize the population randomly.
2. Repeat

e Draw a random number N from the binomial distribution bin(n — 1, pr).

e Sclect the optimal individual z, from the population.

e Replace the N first individuals by mutation and the n— N other individuals
by z..

e Update pr.

which is expressed in terms of costs on the trajectories sich events. The artifact merely consists in sampling from
the system. the binomial distributiorbin(n — 1, pr) instead ofbin(xn, pr).

In this paper, the relationships between convergence, the paich a variant is elitist: it becomes impossible to lose the
rameters of the strategy, and the geometry of the optimizatibast individual, and the minimal solutiofu*) becomes an
problem were investigated, and a universal parameterizati@sorbing state of the Markov chgi;"). In this situation the
of the strategy has been proposed. The conclusions are sinfidgstion of convergence is obviously solved. The population
to those of the theory of simulated annealing. Neverthele§§nverges to(a*) as soon as the population consists of at
the constants involved in both approaches differ and are ead®#st two individuals (see Table Ill). Concerning the cooling
to estimate in MOSES. schedules, the conclusions are exactly analogous to those of

The main result in this paper may be summarized as follow2ection IV-B (except that may be arbitrary). The behavior
Convergence of MOSES is ensured when the population S&feMOSES is the_refore asymptotlcally_ |dent|ca! t(_) the vana_nt
is greater than the diameter of the graph on which mutatiMﬂth population size equal to two. Obviously, th_ls is not true in
individuals explore the search space. Once the size is fixdd€ nonasymptotic regime. This remark underlines a weakness
the temperature can be decreased according to a Iogarﬁ%—the asymptotic approach. Further efforts must be devoted

. o : . . develop the nonasymptotic approach.
tmh|ec ;g;;dule which is again proportional to the diameter g?AIthough MOSES will be outperformed by genetic algo-

The analysis is mainly asymptotical. A nonasym toticz#:hms or simulated annealing on some problems, applying
Y y asymp ' ymp ese techniques requires a difficult preliminary study of the

study would directly rely on (22) which is hardly tractable, timization problem whereas the parameters of MOSES can

. gy 0
Mu_tatlo_n prc_)babllmes are assumed to be small and the COBE configured with little (or no) prior knowledge g
puting time is assumed to be large. It seems natural that these

conditions are broken in realistic situations. The asymptoti-

cal study, however, has emphasized the relevant geometrical APPENDIX

quantities such as the diametér and the critical constant Note: We shall work with paths iZ and with paths inX.

d.. As in genetic algorithms, the information on the besfo avoid confusion, paths i&’ are paths in the grapf®, G)
solution ever found by the procedure may be lost in cours¢hile paths inX are trajectories of the chaipX}).

of the evolution. A large size minimizes the influence of Theorem 5.8 of [5] is used to compute the relevant quanti-
this event. An artifact can be introduced, however, to avotees: W and the communication altitudd (defined Section
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IV). Theorem 5.8 of [5] says that if for alk € X, we The problem that is addressed now is to fold& to be
have (z.) € U and Vi(z,(z,)) = 0, then W and H can equal to{(a*)} by correctly determining the size of the

be computed orV with population. Here is the proof of Theorem 4.1.

—1 Proof: Let (a) and(b) be uniform populationss, b # a*.
V(.T,y) Iinf{zc($k7$k+1), To =, We have

k=0

n > Ir;émf{length of the shortest path fromto a” in E}
R UL Lk<r), zp =y, 7>2; (58) (65)
. ) . ) __and hence, by Lemma 6.1
instead of the cost; defined in (44). For uniform populations
(a) and(b), V(a,b) and W (a) will now stand forV((a), (b)) n>Via,a"). (66)
and W((a)) (parentheses are omitted when dealing wit
uniform populations).

Lemma 6.1:Let a # o* whereq* is the minimal point of

p/loreover, the path of minimal cost which exits frofa*) in
U necessarily involves simultaneous mutations

/. Then we have Vb #£a*, V(a*,b) >n. (67)
V(a,a") = d(a,a") (59) we obtain
whered is the distance on the grafl¥, G). V(a*,b) > V(a,a"). (68)
Proof: Obviously, we haveV(a,a*) > d(a,a*). Now, _ N _
consider a path ifE, G) which realizesd(a,a*) : a? = a — Under this condition, Lemma 6.2 applies. O
al — - — af = a* and the path inX The last statement to prove is as follows.
Lemma 6.3:We haveH; < d,.
zo = (a) Proof: First, use again Theorem 5.8 of [5] to compute
1 H andW from V instead ofC. Then we have
1
x1 = (ag,...) H, :H;a)fH(a,a*)—W(a). (69)
l azF=a”
. Let « € E and consider the path
l v (a) = (b) = (a%) (70)
Lr T (@) in X (or equivalently inl/) whereb realizes
i d(a,b). 71
rras = (@) (60 s 25 1) 7
such that Obviously, we havé/(a,b) > d(a,b). Now, consider a path
Wh=0,...r—1, Clan i) = 1. (61) in (E,G) which realizesd(a, b)

0 1 T

. - .. -}
(If for instance f(al) < f(a) thenz, = (a},a,...,a) and fmamm T
z2 = (a?,ai,...,a}) etc.) Then we hav&(a,a*) < d(a,a*). and the path inX defined by

The concentration orfa*) is obtained by controlling the

cost functionV on the subset/. O o = (a)
Lemma 6.2: Assume that there exists ari € E such that !
_ 1
Vabe E, ab#d*, V(aa*)<V(ab). (62) v1 = (01,0, a)
l
Then, for alla # a*, W(a*) < W(a): the chain concentrates
on (a*).
Proof: Let a € E such thata # a* and g an a-graph l
on U for which 2. = (bya,...,a)
W)= > V(uw). (63) |
(u—v)Cg Lryl = (b) (72)

Sincea # a, andg is a spanning tree olf rooted ata, there Then, the cost of this path iX is exactly

must bea,b € U such that(a* — b) is in g. We build an -

a*-graph by deleting the edge* — b) in g and introducing Z Clxn, tryr) = da, b) (73)
the edge(a — a*). Thus, we have =0
W(a*) < W(a)+V(a,a*) = V(a*,b) < W(a). (64) andV(a,b) = d(a,b). Then, we have

| H(v) < W(a)+ V(a,b) = W(a) +d(a,b). (74)
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Obviously, this implies that
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[12]

H(a,a") — W(a) < d(a,b). (75) [3]
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