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Abstract

This article describes new models in population genetics
that extend the neutral Wright-Fisher model by including
strong selection and mutation. Fixation times are studied
in the limit of small mutation probabilities within the frame-
work of Markov chains with rare transitions. The main result
outlines the role of the discrete geometry of the fitness land-
scape and provides a mean for estimating the expected num-
ber of generations for an individual with better fitness value
to appear. Some connections to evolutionary algorithms are
discussed as well.

keywords: Population genetics. Markov chains with rare transi-
tions. Fixation times.

1 Introduction

Mathematical models in population genetics usually aim at char-
acterizing the gene distribution dynamics in evolving populations
quantitatively. Among several goals, these models provide the means
to estimate the probabilities of gene fixation, i.e., the condition by
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which an allele or a group of alleles becomes the only present in a
population because of selection.

Both deterministic and stochastic techniques have been intro-
duced for this purpose. Deterministic models rely on the approx-
imation of an infinite population size. In contrast, probabilistic
methods deal with finite populations. The methods for computing
fixation probabilities or averaged fixation times include the analysis
by means of Markov chains using exact computations from generat-
ing functions [11], or use approximations by diffusion processes. In
this case, the underlying models are known as Wright-Fisher models
[2, 13, 14]. Although weak selection is sometimes considered, these
models are mostly intented to describe neutral evolution.

In contrast, this article focusses on fixation times when selection
is a dominant mechanism and when the probability of mutation is
small. In this context, Markov chains with rare transitions provide
a natural framework for describing evolving populations when the
typical pattern includes abrupt appearance of new genotypes and the
relative stability of such genotypes in the population (stasis). Such
a phenomenon is called evolution by punctuated equilibria, and is
related to metastability.

This section presents an introductory model that will be useful
as an illustration throughout the article. Several variants of this ele-
mentary example could be clearly studied in a similar way. Consider
a population of n individuals for which all possible genotypes con-
sist of a (large) finite set. In order for gene frequencies to change,
either mutation or selection must generally occur. Mutation oc-
curs at a very slow rate and its chance of transmission is small. At
the opposite, the selection pressure can be high, and many mutated
genes may disappear because their carrier cannot survive. Individ-
uals might be represented as DNA sequences from a molecular re-
gion where there appears to be no recombination (e.g., mitochondrial
DNA). The molecular region is passed on intact, modulo the effect of
mutational substitutions, from parent to offspring. The evolutionary
process under consideration can be modelled as follows. An offspring
genotype can be created according to

• either the random selection of a parent and a mutation from
the parent genotype,
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• or the random selection of a parent and the transmission of the
parent genotype,

• or the transmission of the “best” genotype in the parental gen-
eration (strong selection).

The first event occurs with a small probability p that represents
the mutation probability. The second event occurs with probability
(1−p)q where q is the conditional transmission probability given that
the mutation does not happen. The last event can be interpreted as
follows. If the carrier of a mutation disappears, it is replaced by
an offspring whose genotype coincides with the “best” genotype in
the previous generation. The word “best” refers to some specific
fitness or adaptive function. This event happens with probability
(1− p)(1− q). The last quantity represents the theoretical fraction
of individuals having the same genotype. In our model this fraction
would be high.

The article is organized as follows. Section 2 presents the models
under interest more specifically, and states the main results about
fixation times. Proofs are deferred to Section 3 together with aux-
illary results. During the recent years, several models of artificial
evolution have emerged based on the metaphor of natural evolution
[5, 6]. These models are often called evolutionary algorithms as they
mimic the computational abilities of biological systems. Several con-
nections with these models are discussed, as recent progress has also
been made by using techniques based on Markov chains with rare
transitions in this framework [3, 4, 7, 8]

2 Main Results

2.1 Models

2.1.1 Definitions

Let E be a finite subset of states (typically a set of genotypes) and
X the set of configurations

X = En, n ≥ 1 (1)
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that can be obtained from the sampling of n genotypes in a popula-
tion. The elements of X are denoted x = (x1, . . . , xn) where each x`
corresponds to an individual genotype. The integer n corresponds
to the population size.

Within the set of genotypes, transitions between states can be
described by a finite dimensional stochastic matrix

π = (π(a, b))a,b∈E. (2)

This matrix contains the transition probabilities corresponding to
the substitutions that may occur during the offspring generation.

The fitness function is a nonnegative function defined on E. This
function is involved in the selection mechanism during the evolution
of populations. The fitness landscape (f, π) is defined as a graph
whose vertices are weighted by the discrete values of the fitness func-
tion and the edges by the transition probabilities π(a, b). Assuming
that two different genotypes cannot be given the same fitness simpli-
fies the description significantly, and we make use of this simplifying
hypothesis. Also we denote

x̂ = arg max{f(xi), i = 1, . . . , n}. (3)

Selection is a process that tends to maximize the fitness of individ-
uals.

In this article, the evolution of populations is modelled with
Markov chains with rare transitions. In such models, transition prob-
abilities are controlled by a small parameter p > 0. This parameter
represents the rate at which an individual undergoes a mutation. Let
Xt = x be the state of the population at generation t. The probabil-
ity that the population be Xt+1 = y at time t + 1 is asymptotically
equivalent to

p(x, y) ∼ c(x, y) pV (x,y) as p→ 0 (4)

where V (x, y) ≥ 0, c(x, y) ≥ 0 and
∑

y p(x, y) = 1 for all p ≥ 0.

2.1.2 Examples

This section describes two examples and the way by which they can
be fitted into the above formalism. The computational properties of
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the first example have been studied in [8] using large deviations and
simulated annealing techniques. The second example corresponds to
the evolution mechanisms presented in the introduction.

In the first example, each parent generates a single offspring in-
dependent from the others. With probability 1 − p, the offspring
genotype is copied from the best parent genotypes (those for which
f is maximal). With probability p, the offspring genotype undergoes
a mutation from the parent genotype according to the transition
matrix π.

More specifically, let x and y be the parent and the offspring
population respectively. Define V (x, y) as the minimal number of
mutations that are necessary to generate population y from popula-
tion x. The term minimal avoids the discussion of coincidences due
to mutations that might result in x̂. In addition, let M(x, y) be the
subset of individuals in population y that correspond to the minimal
number of mutations (for such mutations, the offspring genotypes
differ from the best genotypes in the previous generation, and the
following relationship holds V (x, y) = #M(x, y)). Then, we have

∀x, y ∈ X , p1(x, y) ∼ c1(x, y)pV (x,y) as p→ 0, (5)

with
c1(x, y) =

∏
i: yi∈M(x,y)

π(xi, yi). (6)

As a variant, transmission can be added to this model. Con-
ditional to the absence of mutation, either the parent genotype is
transmitted to the offspring without modification or the offspring
genotype is copied from the best parent genotypes. The first event
occurs with probability q and the second event with probability 1−q.
The basic case corresponds to q = 0. In this situation, we have

∀x, y ∈ X, p1(x, y) ∼ c1(x, y)

(
p

1− q

)V (x,y)

, (7)

with

c1(x, y) = qnT (x,y)(1− q)n−nT (x,y)−n̂(x,y)
∏

i: yi∈M(x,y)

π(xi, yi). (8)
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Here M(x, y) is the subset of individuals in population y that are
not in population x, nT (x, y) is number of individuals in y such that
yi = xi and yi 6= x̂, and n̂(x, y) is number of individuals in y such
that yi = xi and yi = x̂.

Describing the second example formally requires more notations.
In the second example, each parent may create several offspring as in
the Wright-Fisher model. Offspring are created by uniform sampling
(with replacement) from the parent population. Again, mutations
may occur with probability p. Exact transmission of the genotype
is considered as well, and is assumed to happen with probability q
conditionally to the absence of mutation. We assume that q = pθ,
θ > 0. Otherwise the offspring genotype is sampled from the best
parent genotypes.

Again, let M(x, y) be the subset of individuals in population
y that are not in population x, and VM(x, y) = #M(x, y) be the
number of such individuals. Let T (x, y) be the subset of common
members in y and x with genotypes different from x̂, and VT (x, y) =
#T (x, y). Notations M and T stand for mutation and transmission
respectively. Finally, let n(xi)/n denote the frequency of genotype
xi in population x. The evolution can be modelled according to the
following Markov chain.

∀x, y ∈ X, p2(x, y) ∼ c2(x, y)pVM (x,y)+θVT (x,y), (9)

with

c2(x, y) =
∏

i: yi∈T (x,y)

n(yi)

n

∏
i: yi∈M(x,y)

n∑
`=1

π(x`, yi)

n
. (10)

2.2 Statements of Results

The results presented in this paper bear upon hitting times for the
Markovian population dynamics defined in the previous sections. Be-
fore giving the result, a set of definitions is needed.

A trajectory γE is a sequence of mutations, i.e., a path for the
Markov chain of matrix π on E. We denote

π(γE) = π(a0, a1) . . . π(a`−1, a`), ` = `(γE). (11)

For all a, b ∈ E, let d(a, b) be the minimal number of transition
needed to reach b from a. We denote by ΓEaB the subset of minimal
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trajectories from a to B ⊂ E, i.e., the subset of trajectories for which
`(γE) = d(a,B).

Theorem 2.1 Consider the stochastic matrix P1 defined in Section
2.1.2 equation (7) or the stochastic matrix P2 defined in equation
(9). Let (Xt) be the associated Markov chain. Let a ∈ E and (a)
be the uniform population (a, . . . , a) that consists of n copies of a.
Define the subset of X

A = {x ∈ X, f(x̂) > f(a)}, (12)

and the event
E = (Xt 3 a for all t ≤ τ(a)A). (13)

For P1, we have

E[τ(a)A | E ] ∼ (p/1− q)−d(a,A)

n(1− q)
∑

γE∈ΓEaB
π(γE)

as p→ 0, (14)

where d(a,A) is the minimal number of mutation steps needed to
reach A from (a), and B = {b ∈ E , f(b) > f(a)}.

For P2, we have

E[τ(a)A | E ] ∼ p−d(a,A)

n
∑

γE∈ΓEaB
π(γE)

as p→ 0. (15)

Theorem 2.1 is stated conditionally to the realization of the event
E . This condition is more a convenient technical assumption than a
restrictive hypothesis. Indeed, one has

Prob(E) ∼ 1, as p→ 0, (16)

if the chain is started from (a).
The computation of d(a,A) in equation (14) can be achieved

from the knowledge of the fitness landscape only, i.e., the values of
the fitness function for all vertices in the mutation graph. Then,
d(a,A) represents the distance from the genotype a to the subset
of genotypes of better adaptation, and has a natural “geometric”
interpretation.
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The above result has an obvious interpretation in term of fixa-
tion times for the evolutionary dynamics defined from P1 or P2. In
the models presented in section 2.1.2, populations most often con-
sist of copies of a single genotype. Mutation and transmission are
mechanisms that enable new genotypes to appear and survive but
for few generations only. When a better adapted genotype appears,
it becomes dominant in the population abruptly and fixation occurs.
For small mutation probabilities, equation (14) is a good estimation
of the average fixation time.

3 Proofs

This section is devoted to the proofs of our main results. A gen-
eral result for Markov chains with rare transitions is presented first.
Then, specific results regarding the examples of section 2.1.2 are
stated. An additional result will be stated in Section 3.3.

We start with some definitions borrowed from [9]. The objects
γ, Γxy, c(γ) will have definitions relative to π similar to those of
γE, ΓEab, π(γE). While the first set of definitions corresponds to the
individual level, this new set corresponds to the population level.

Consider a trajectory γ of a Markov chain of matrix P satisfying
equation (4)

γ : x0 → x1 → . . .→ x`,

where ` = `(γ) is the length of γ. We set

p(γ) = p(x0, x1) . . . p(x`−1, x`) ∼ c(γ)pV (γ). (17)

For all x, y ∈ X, let

W (x, y) = min{V (γ) ; γ : x0 = x→ x1 → . . .→ x` = y , ` ≥ 1},
(18)

and, for A ⊂ X,

W (x,A) = min{W (x, y) ; y ∈ A}. (19)

We denote by ΓxA the subset of minimal trajectories from x to
A, i.e., the subset of trajectories for which V (γ) = W (x,A).

Let x ∈ X and A ⊂ X. The hitting time of A starting from x is

τxA = min{t ≥ 0 ; Xt ∈ A , X0 = x}. (20)
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Theorem 3.1 Consider a stochastic matrix P satisfying equation
(4). Assume that

1. there exists a unique x∗ in X such that p(x∗, x∗) ∼ 1 as p goes
to 0;

2. there is no closed trajectory γ such that V (γ) = 0 and `(γ) ≥ 2.

Then, for all A 63 x∗, we have

E[τx∗A] ∼

 ∑
γ∈Γx∗A

c(γ)
∏

x∈γ\x∗∪A

1

1− p(x, x)

−1

p−W (x∗,A) as p→ 0.

(21)
In addition, we have

V ar[τx∗A] ∼ E[τx∗A]2 as p→ 0. (22)

Under the theorem’s assumption, the front term in equation (21)
converges to a constant as p goes to zero. The first result stated
in Theorem 3.1 establishes that the average hitting of time of an
arbitrary subset A becomes proportional to p−W (x∗,A), and the pro-
portionality coefficient is known.

The constant and the order parameter W (x∗, A) can hardly be
made explicit in general situations. Nevertheless, this result will
be applied to studying hitting times for the stochastic population
dynamics defined by P1 and P2.

3.1 Proofs of the main results

Let P denote the transition matrix associated with the Markov chain
(Xt) defined in equation (4). The Markov chain (Xt) is defined on a
finite state space X, and the elements of X can be labelled 1, . . . ,m.
Up to this point, no distinction will be made between X and the set
of labels {1, 2, . . . ,m}.
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Let A be a subset of X. Let T denote the vector (τyA)y 6∈A and PA
the matrix whose components are the p(x, y) for x, y 6∈ A. According
to a classical result [12], T is given by

T = Q−1
A (−1), (23)

where QA = PA−I and (−1) denotes the vector with all components
equal to −1.

Let ∆A be the determinant of QA

∆A = det(QA) (24)

and let ∆A
xy denote the minor (x, y) of QA. With these notations, we

have

E[τxA] = −
∑
y 6∈A

(−1)x+y
∆A
xy

∆A
. (25)

Let x and y be two elements of X such that x 6∈ A. Γ̃Axy will
denote the set of paths

γ : x→ x1 → . . .→ xk → y , xi 6∈ A. (26)

Then WA(x, y) is defined as

WA(x, y) = min{V (γ); γ ∈ Γ̃Axy} (27)

and ΓAxy = {γ ∈ Γ̃Axy ; V (γ) = WA(x, y)}.
Note that for any subset Y ⊂ X and Q any square matrix on Y ,

we have
det(Q) =

∑
σ∈S(Y )

ε(σ)
∏
y∈Y

q(y, σ(y)) (28)

where S(Y ) is the symmetric group of Y and ε(σ) is the signature
of σ.

For y0 in Y and σ ∈ S(Y ), consider the orbit of y0

γ = y0 → σ(y0)→ . . .→ σj(y0) = y0 (29)

then, we have

det(Q) =
∑

γ∈Γ̃y0y0

(−1)`(γ)+1q(γ)
∑

σ∈S(Y \γ)

ε(σ)
∏
y∈Y \γ

q(y, σ(y)). (30)
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3.2 Proof of Theorem 3.1.

The proof is decomposed into several steps.

Step 1. Computation of ∆A - case 1: x∗ ∈ A.

We have
∆A =

∏
y 6∈A

(p(y, y)− 1) + o(1) (31)

Proof. Take σ equal to identity in equation (28), then the cor-
responding term in the sum is

∏
y 6∈A p(y, y) − 1. Under hypothesis

(H1), we have

p(y, y) = 1 + o(1) iff y = x∗. (32)

Hence the term
∏

y 6∈A p(y, y)− 1 is of order 0.
If σ differs from the identity, there exists an x0 6∈ A such that

σ(x0) 6= x0. Then let γ be the orbit of x0. Since `(γ) ≥ 2, hypoth-
esis (H2) implies that V (γ) > 0. Hence the corresponding term in
equation (30) is of order higher (or equal) than 1. �

Step 2. Computation of ∆A - case 2: x∗ 6∈ A.

We have
∆A =

∑
γ∈Γ̃x∗A

(−1)`(γ)p(γ)∆A∪γ (33)

Proof. let (Cx)x 6∈A denote the columns of QA. Let CA denote a
vector whose elements are equal to

∑
y∈A p(x, y) with x 6∈ A. The

operation that replaces the column Cx∗ by
∑

y 6∈ACy leaves the deter-
minant unchanged. letQ′A be the matrix obtained fromQA according
to this transformation. Since the matrix P is stochastic, we have∑

y 6∈A

Cy = −CA (34)

and

q′A(x∗ → . . .→ x` → x∗) = −qA(x∗ → . . .→ x` → A) (35)
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Replacing this equality in equation (30) completes the proof of the
result. �

Step 3. Computation of ∆A
xy.

We have

(−1)x+y∆A
xy =

∑
γ∈Γ̃Ayx

(−1)`(γ)p(γ)∆A∪γ. (36)

Proof. Let Q′′A be the matrix obtained from QA by setting the all
coefficients in the line x and all coefficients in the column y equal to
0, except for the coefficient corresponding to (x, y) which is set up
to 1. Obviously, we have

det(Q′′A) = (−1)x+y∆A
xy. (37)

Let γ′ = x → x1 → . . . → x` → x be a path in γ̃Ayy. Since
q′′A(x, t) = 0 for t 6= x, we have q′′A(γ′) 6= 0 if and only if x1 = y.
Then,

q′′A(γ′) = qA(y, x2) . . . qA(x`, x) = qA(y → x2 → . . .→ x` → x).
(38)

Reporting this in equation (30) leads to the result. �

Step 3. Computation of mean fixation times.

Now, we are ready for the final step in proving Theorem 3.1.
First, notice that

∆A =
∑

γ∈Γ̃x∗A

(−1)`(γ)p(γ) ∆A∪γ (39)

=
∑

γ∈Γ̃x∗A

(−1)`(γ)c(γ)pV (γ) ∆A∪γ (40)

where, according to equation 31,

∆A∪γ =
∏

y 6∈A∪γ

(p(y, y)− 1) + o(1). (41)

12



Therefore, we have

∆A =
∑

γ∈Γ̃x∗A

(−1)`(γ)c(γ)pV (γ)

( ∏
y 6∈A∪γ

(p(y, y)− 1) + o(1)

)
. (42)

The dominant term in the above sum is obtained by summing over
all terms for which V (γ) is minimal. This yields V (γ) = W (x∗, A)
and the sum runs over all γ ∈ Γx∗A. Replacing in equation (42), we
have

∆A =
∑

γ∈Γx∗A

(−1)`(γ)c(γ)pW (x∗,A)
∏

y 6∈A∪γ

(p(y, y)− 1) (1 + o(1)). (43)

Since the product
∏

y 6∈A∪γ(p(y, y) − 1) contains m − |A| − `(γ)
terms (the end of γ is in A), we have∏

y 6∈A∪γ

(p(y, y)− 1) = (−1)m−|A|−`(γ)
∏

y 6∈A∪γ

(1− p(y, y)), (44)

and

∆A = pW (x∗,A)(−1)m−|A|−1
∑

γ∈Γx∗A

c(γ)
∏

y 6∈A∪γ

(1− p(y, y)) (1 + o(1)).

(45)
Proceeding with all other minors in a similar way leads to the

following result

(−1)m−|A|−1∆A
x∗x∗ =

∏
y 6∈A∪x∗

(1− p(y, y)) + o(1). (46)

If x 6= x∗, ∆A
xx is given by

∆A
xx = ∆A∪x. (47)

If x = x∗ or y = x∗, x∗ is in A ∪ γ for all γ in ΓAyx. Then, we have

|∆A
xy| =

∑
γ∈ΓAyx

c(γ)
∏

z 6∈A∪γ

(1− p(z, z))

 pW
A(y,x)(1 + o(1)). (48)
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and
(−1)m−|A|−1(−1)+x+y|∆A

xy| = ∆A
xy. (49)

In order to compute the mean hitting time, recall that

E[τx∗A] = −
∑
y 6∈A

(−1)x
∗+y

∆A
yx∗

∆A
. (50)

Since p(x∗, x∗) = 1 + o(p), we have V (x∗, y) > 0 for all y 6= x∗

such that c(x∗, y) 6= 0, and

WA(x∗, y) ≥ W (x∗, y) > 0. (51)

Hence, we obtain∑
y 6∈A

(−1)x
∗+y∆A

yx∗ = ∆A
x∗x∗ + o(1). (52)

An interesting consequence is

E[τx∗A] = −∆A
x∗x∗

∆A
(1 + o(1)). (53)

Finally, we have

E[τx∗A] =

∏
y 6∈A∪x∗(1− p(y, y))

pW (x∗,A)
∑

γ∈Γx∗A

∏
y 6∈A∪γ(1− p(y, y))c(γ)

(1 + o(1))(54)

= Kp−W (x∗,A)(1 + o(1)) (55)

where

K =

 ∑
γ∈Γx∗A

c(γ)∏
y∈γ\(x∗∪A) 1− p(y, y)

−1

. (56)

This concludes the first part of Theorem 3.1. �

Step 4. Computation of variances.

The second part of Theorem 3.1 is devoted to the computation
of variances. Let V be the vector of components equal to E[τ 2

xA],
x 6∈ A. Some basic linear algebra shows that

V = 1 + PAV + 2PAT = PAV + 2T − 1 (57)
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and
V = (Q−1

A + 2Q−2
A )1 (58)

The coefficient (x, y) in Q−2
A is equal to

Q−2
A (x, y) = (−1)x+y

∑
z 6∈A

∆A
zx∆

A
yz(∆

A)−2. (59)

The term ∆A
zx∆

A
yz is of order O(pW

A(x,z)+WA(z,y)) for z 6= x and
z 6= y. For all z 6= x∗, we have ∆A

zx∗ = o(1), and if z = x∗, we have
∆A
yx∗ = o(1) for all y 6= x∗. Finally, for x = x∗, the only term ∆A

zx∆
A
yz

of order 0 is ∆A
x∗x∗∆

A
x∗x∗ , and hence

E[τ 2
x∗A] = 2

(
∆A
x∗x∗

∆A

)2

(1 + o(1)) = 2E[τx∗A]2 (1 + o(1)) (60)

and
V ar(τx∗A) = E[τx∗A]2 (1 + o(1)). (61)

3.3 Proof of Theorem 2.1

The proof of Theorem 2.1 is by far shorter than the previous one.
The result arises from Theorem 3.1 directly. The trajectories that
are the most probable with respect to P1 or P2 have been described
in details in [8].

Let us start with P1. In particular, the most probable trajectory
from a uniform population (a) to a population containing an indi-
vidual “better” than a consists in keeping n− 1 individuals equal to
a and letting one individual evolve from a to b with adaptive value
“better” than a. For each path, γE de E, there are n paths γ in X
that correspond to the n choices for the offspring of mutation (say
i). Along a path

γ : (a)→ . . .→ xk → xk+1 → . . .→ y ∈ A,

the transition probabilities satisfy

p1(xk, xk+1) = π(xki , x
k+1
i )p+ o(p). (62)

If k 6= 0, we have xki 6= a and xkj = a for j 6= i. Then,

p1(xk, xk)) = q + o(1). (63)
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Conditionally to E , we apply Theorem 3.1 with x∗ = (a)

E[τ(a)A|E ] ∼ (p/1− q)−d(a,B)

n(1− q)
∑

γE∈ΓE π(γE)
. (64)

A similar result holds for P2. Again, the most probable trajectory
from a uniform population (a) to a population containing an indi-
vidual “better” than a consists in keeping n − 1 individuals equal
to a and letting one individual go from a to b with adaptive value
“better” than a. For each path, γE de E, there are n`(γ

E) paths γ
in X corresponding to the n choices for the offspring of mutation at
each of the `(γE) steps.

Along he path

γ : (a)→ . . .→ xk → xk+1 → . . .→ y ∈ A,

let xkik denote the offspring of mutation at step k. The transition
probability satisfies

p2(xk, xk+1) = π(xkik , x
k+1
ik+1

)p/n+ o(p) (65)

if k 6= 0 (because in this case n(xkik) = 1) and

p2((a), x1) = π(a, x1
i1

)p+ o(p) (66)

if k = 0 (in this case we have n(xkik) = n(a) = n).
If k 6= 0, we have xkik 6= a and xkj = a for j 6= ik. Then,

p2(xk, xk)) = 1 + o(1). (67)

Conditionally to E , we apply Theorem 3.1 with x∗ = (a) and obtain

E[τ(a)A|E ] ∼ p−d(a,B)

n
∑

γE∈ΓE π(γE)
. (68)

3.4 An additional result

This section presents an additional result that describes the probabil-
ity of hitting B before A. This result emphasizes the exponential-like
behaviour of hitting times for small mutation probabilities.
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Let A and D be two subsets of X and x an element of X such
that x 6∈ D. The hitting time of A starting from x before entering
D is

τDxA = min{t ≥ 0;X0 = x;Xt ∈ A;x1, . . . , Xt−1 6∈ A ∪D}. (69)

The expectation of τDx∗A is given by

E[τDx∗A] =

pWD(x∗,A)
∑

γ∈ΓD
x∗A

c(γ)∏
y∈γ\(x∗∪A)(1− p(y, y))

−1

(1 + o(1)).

(70)

Theorem 3.2 Let A and B be two non intersecting subsets in X
such that x∗ 6∈ A and x∗ 6∈ B. We have

Prob(τx∗A < τx∗B) =
E[τA∪Bx∗B ]

E[τA∪Bx∗A ] + E[τA∪Bx∗B ]
(1 + o(1)). (71)

Proof. let RA (resp. RB) be the vector whose components are
p(y, A) (resp p(y,B)) for y 6∈ A ∪ B. The Markov chain (Xt) is
modified so that if Xt ∈ A ∪ B then Xt+1 = Xt. The transition
matrix of the modified chain is equal to

P̃ =

 PC RA RB

0 1 0
0 0 1

 (72)

By a standard argument, we have

Prob(τxA < τxB) = lim
n→∞

p̃n(x,A), (73)

and
Prob(τ.A < τ.B) = −(PA∪B − I)−1RA. (74)

Replacing (PA∪B − I)−1 yields

Prob(τx∗A < τx∗B) = −
∑

y 6∈A∪B(−1)x
∗+y∆A∪B

yx∗ p(y, A)

∆A∪B (75)

= −

∑
y 6∈A∪B

∑
γ∈Γ̃A∪B

x∗y
(−1)`(γ)p(γ)p(y, A)∆A∪B∪γ

∆A∪B .(76)
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Now, transform γ = x∗ → . . . → y into γ′ = x∗ → . . . → y →
z ∈ A. The new path satisfies

p(γ′) = p(γ)p(y, z). (77)

Therefore, we have

Prob(τx∗A < τx∗B) =

∑
γ′∈Γ̃A∪B

x∗A
(−1)`(γ

′)p(γ′)∆A∪B∪γ′∑
γ′∈Γ̃A∪B

x∗A∪B
(−1)`(γ′)p(γ′)∆A∪B∪γ′ . (78)

The result follows by splitting the denominator into two inverse ex-
pectations. �

This result provides an explanation why natural or simulated
population processes may not follow their most probable trajectories
(that lead to the closest individual with better adaptive value). In-
stead, shortcuts are always possible. Regarding simulated evolution
procedures in optimization, this result also suggests that maintain-
ing short independent parallel runs of population algorithms might
be more efficient than keeping a single long run given the same com-
putational resource.

3.5 Connections to Evolutionary Algorithms

During the recent years, several models of evolutionary algorithms
have been studied within the simulated annealing framework[3, 4,
7, 8]. Simulating these Markovian models leads the user to the ob-
servation of metastable states, and long stasis during which few im-
provements of the solutions can be obtained. Section 3.5.1 presents
an overview of recent results for these particular Markov chains with
rare transitions. These results use the formalism of large deviations.
Most of them actually required trajectorial techniques of proof that
differ from the algebraic techniques involved in section 3. Another
difference arises from the very nature of the results. Computational
properties of evolutionary algorithms are usually investigated with
mutation probabilities depending on a positive temperature parame-
ter that slowly decreases to zero. While the above references describe
simulated annealing-like theories, the next section extracts and re-
states the results that bear on hitting time of an optimal population

18



(i.e., a population containing an individual genotype of optimal fit-
ness).

In contrast to the statements presented in section 2.2, the results
obtained via the large deviations formalism are rough logarithmic
equivalents. The implications of precise equivalents in implementing
evolutionary algorithms will be discussed in Section 3.5.2.

3.5.1 A Brief Overview of Evolutionary Algorithms Re-
sults

In describing the dynamics of an ergodic Markov chain with rare
transitions, subsets called cycles play a central role [9], [10], [3]. A
subset C ⊂ X is a cycle if either it consists of a single population, or
for all x, y in C, the expected number of “cyclic” visits to x followed
by y before exiting from C is exponential

E[Nxy(C)] ≈ p−Kxy(C) , Kxy(C) > 0 (79)

(the symbol ≈ means that the relationship is a logarithmic equiva-
lent). As a consequence, a cycle should be explored systematically
before the chain exits and proceeds with an other cycle. Here is a
trajectorial definition of cycles, which is more amenable to a mathe-
matical analysis [15], [3]. For all x, y ∈ X, x 6= y, and each trajectory
γ, define the elevation as

H(γ) = max
0≤k<r

{V (xk) + V (xk, xk+1)}, (80)

with the maximum taken over all vertices in γ, and

V (x) = lim
p→0

log µp(x)/ log p, (81)

where µp is the (unique) invariant probability distribution of the
chain. Let H(x, y) be the lowest possible value of H(γ) over all self-
avoiding trajectories γ from x to y. The quantity H(x, y) is called the
communication altitude. Now, let λ ≥ 0 and Vλ = {x ∈ X ; V (x) ≤
λ}. Say that x and y communicate at height λ in Vλ if H(x, y) ≤ λ.
A subset C ⊂ X is a cycle if all populations are able to communicate
at height λ for some λ > 0.
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While the hierarchy of cycles may be extremely complex in gen-
eral, a remarkable fact is that, for large population sizes, a cycle C
which does not contain the optimal population (a∗) reduces to a sin-
gle population. This result actually holds for the induced chain on
the set of uniform populations. As evolutionary algorithms can reach
uniform populations at null cost (V (x, (x∗)) = 0), the induced chain
nevertheless gives a right picture of the dynamics for small mutation
probabilities. For genetic algorithms, the critical population size n∗
has been estimated by Cerf [3]. For our basic process, the critical
value is lower than

n∗ = max
a 6=a∗

d(a, a∗). (82)

Now, denote by τC the exit time of the subset C (the hitting time
of C̄). The expected value can be computed as

E[τC ] ≈ p−He(C), (83)

where, according to [15], He(C) is the exit height of C defined as

He(C) = max
x 6∈C

min
y∈C
{H(x, y)− V (x)}. (84)

Let τ∗ denote the hitting time of the absolute optimum. The ex-
pected value of τ∗ can therefore be approximated as

E[τ∗] ≈ p−H1 , (85)

where

H1 = max{He(C) ; C cycle not intersecting V∗}, (86)

and V∗ = arg minV . For the both algorithms, H1 can be given as

H1 = max
x 6=(a∗)

{H(x, (a∗))− V (x)} , (87)

whenever n > n∗. As far as our basic example is concerned, [8] shows
that

H1 = max
a 6=a∗

min
b:f(b)>f(a)

d(a, b). (88)

In other words, H1 is the minimal number of mutations required for a
genotype to exit from any local (non global) minimum in the fitness
landscape. This quantity plays the same role in the implementation
of an algorithm as the critical depth in simulated annealing proce-
dures [10].
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3.5.2 Algorithmic Implications of the Results

This section is devoted to the application of Theorem 2.1 to the
optimization algorithm that corresponds to our basic model P1 (q =
0). An elistist version of the algorithm can be implemented easily.
In such a case, we have

Prob(E) = 1. (89)

As often assumed in genetic algorithms, the set of genotypes E
can be taken as the set of bit strings of length k, i.e.,

E = {0, 1}k. (90)

Assume that mutations occur randomly, i.e., every genotype can be
reached by mutation in a single step. The new genotype is randomly
chosen among the 2k possible genotypes in E, and we say that the
fitness landscape is fully connected. For any pair (a, b) in E2, we have
π(a, b) = 2−k. Then Theorem 3.1 can be applied to the Markov chain
defined by equation (6) that models the basic mutation-selection
evolutionary algorithm studied in [8]. Taking q = 0, mean hitting
times are given by

E[τ(a)A] ∼ 2k

nma

p−1 (91)

where
A = {x ∈ X , f(x̂) > f(a)}, (92)

and ma is the number of genotypes in E with adaptive values lower
than f(a)

ma = #{b ∈ E, f(b) > f(a)} = #B. (93)

Equation (85) indicated that fully connected structures become good
in the asymptotical settting (because H1 = 1). In contrast, equation
(91) shows that this may be true for very small mutation probabilities
only. Indeed hitting times become proportional to the size of E and
the method has the same order of performances as enumeration.
Fully connected structures are usually precluded in implementing
a optimization algorithm, and some kind of local search is always
considered within the evolutionary procedure.

For instance, single bit mutation is a widely used example of a
mutation operator [5]. When mutation occurs, a bit is randomly
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chosen among the k possible and flipped. In this case, the minimal
number of mutations required to change the state a into the state b
is the number of bits of b that differ from those of a. This quantity
is also known as the Hamming distance between a and b.

If d(a, b) = d, d steps are required to go from a to b. The d
associated mutations may happen in any of the d! orders. For each
step, we have π(a, b) = 1/k. Finally, mean hitting times are given
by

E[τ(a)A] ∼ (p/k)−d(a,A)

nma d(a,A)!
(94)

where
ma = #{b ∈ E, f(b) > f(a) d(a, b) = d(a,A)}. (95)

Again, this result is far more accurate than equation (85). In addi-
tion, the condition that the population size be greater than a thresh-
old value (which is necessary and sufficient in the simulated-like
framework) is not critical in studying average fixation times. This
explains why the algorithm may work well even when population
sizes are small.

4 Conclusion

This article has presented new models of evolving populations that
can be viewed as Markov chains with rare transitions. In such mod-
els, the probability of a transition from a parent to the offspring is
controlled by a small disorder parameter. In these models, the pa-
rameter is the probability that a genotype undergoes a mutation.
In living organisms, these probabilities are usually measured in the
range 10−4 − 10−8.

The models take their inspiration from simulated evolution where
the goal is optimizing an objective function. A basic (and efficient)
procedure based on a fraction of elitism has been modified so that it
includes exact transmission of genotypes as well as random sampling.
The modified model can actually be considered as a natural extension
of the classical Wright-Fisher model (p = 0, q = 1).

Our main result has described the hitting times of populations of
better adaptive values and hence fixation times (or punctuated equi-
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libria). There is a close relationship between our results and those ob-
tained in the large deviations/simulated annealing framework. Both
approaches outline the role of the discrete geometry of the fitness
landscape. However there are important differences as well. Our
results are based on algebraic instead of trajectorial techniques. As
a consequence, we were able to establish sharp asymptotics instead
of rough logarithmic equivalents.
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