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C H A P T E R 1

Elements of hierarchical Bayesian
inference
Bradley P. Carlin, James S. Clark, and Alan E. Gelfand

Serious investigation of ecological processes is challenging due to the complex nature of these
processes and the lack of sufficient data to see them well. Hence, acknowledging our limitations, we
turn to stochastic modeling as a means to capture the uncertainty in inference about the process.
Since typically, such processes involve components at different levels, stages, and scales, it is natural
to frame our modeling in the context of hierarchical models. In turn, since such models introduce
unknowns, for example, parameters or latent processes, we need to incorporate the uncertainty
associated with these unknowns in order to achieve a better overall assessment of uncertainty. This
encourages us to cast the models under the Bayesian framework.

The objective of this first chapter is to provide an introduction to the tools for Bayesian
hierarchical modeling. Indeed, we acknowledge that the required material here is substantial, that
we are only opening the proverbial Pandora’s box, and that readers will have to invest sufficient time
to climb the learning curve, to achieve comfort with the technology. To that end, we have supplied a
rich reference list. And, we emphasize that the reward is substantial. The ability to let the problem
and, more generally, the science drive the modeling rather than forcing the analysis to fit a standard
technique, is wonderfully liberating and considerably enhances the way one approaches the
understanding of complex systems.

The tools we discuss here include the Bayesian inference paradigm, hierarchical modeling and,
more generally, directed graphical models, model comparison, and Bayesian computation. Though
the development of each is, of necessity brief, we provide exemplification and as noted above,
direction to further resources.

1.1 The challenge of ecological
modeling

Complex interrelationships combined with poor
visibility make environmental modeling hard.
Rarely can the environmental scientist hope to iso-
late one or a few variables to meet assumptions
of classical statistical models. We might even ques-
tion whether such abstraction is desirable. Relevant
ecological and evolutionary processes play out in
heterogeneous landscapes, where context varies
widely in space and time.

Is it reasonable to extrapolate results from a highly
abstracted experimental system with limited spatial

extent and duration to natural and managed ecosys-
tems? There are reasons to question extrapolation
and to attempt inference and prediction directly
from data obtained at the relevant scales. Here we
confront not only the complexity of interacting pro-
cesses, which must be recognized if we are to quan-
tify the important relationships, but also the obscure
relationships that impinge between the processes we
care about and the data that can be had. Traditional
methods have trouble with large numbers of uncon-
trolled variables (each must involve a stochastic
component). Rarely can we observe the processes
directly; rather we derive clues from information
that is indirect and that arrives from nonuniform

3
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methods and uneven sampling effort. We may have
many types of information that are not independent
of one another, yet together they should provide
a richer understanding than if each were taken in
isolation.

Hierarchical Bayes provides new tools for draw-
ing inference, for prediction, and for decision
making. As demonstrated by chapters in this book,
the promise for environmental sciences is large. In
this chapter we lay out the basic tools that arise in the
chapters that follow. We introduce the elements of
hierarchical Bayes and summarize analysis. Rather
than provide specific examples, we cross-reference
where methods we introduce are applied in remain-
ing book chapters. You will find here a common set of
tools applied to such disparate topics as population
genetics (Chapter 2), experimental and monitoring
studies that involve time series (Chapter 5), spa-
tial and spatio-temporal treatment of populations
(Chapter 4), communities (Chapter 3), ecosystems
(Chapter 6), and the atmosphere (Chapter 7). Each
of these approaches builds on the hierarchical frame-
work that involves “models” for context, process,
and data, and exploits simple, conditional relation-
ships as the basic modeling unit. As different as these
studies are, you will recognize a common construc-
tion and strategy for analysis. Through a range of
such applications, we hope to both emphasize the
potential and provide examples. We begin with a
brief introduction of the Bayesian model and the
principles of Bayesian inference. We then move to
hierarchical structures, where the Bayesian model
is extended to high dimensional problems that can
be viewed as a network, most of which is invisible
(and must be inferred). Finally, we turn to analy-
sis, laying out the principles of the Gibbs sampling
framework, and how we use it for inference and
prediction.

Currently, many good Bayesian books are avail-
able, and we list a few of them and their characteris-
tics. First we mention the texts stressing Bayesian
theory, including DeGroot (1970), Berger (1985),
Bernardo and Smith (1994), and Robert (1994). These
books tend to focus on foundations and decision the-
ory, rather than computation or data analysis. On the
more methodological side, nice introductory books
are those of Lee (1997) and Congdon (2001). The
books by Carlin and Louis (2000), by Gelman et al.

(2004), and by O’Hagan (1994) offer more general
Bayesian modeling treatments. Clark (2005) covers
both classical and Bayesian frameworks with spe-
cific applications to ecology, but starts at a more
basic level and building to applications of the type
covered here.

1.2 Introduction to hierarchical
modeling and Bayes’ Theorem

By modeling both the observed data and any
unknowns as random variables, the Bayesian
approach to statistical analysis provides a cohesive
framework for combining complex data models and
external knowledge or expert opinion. In addition
to specifying the distributional model f (y|θ) for the
observed data y = (y1, . . . , yn) given a vector of
unknown parameters θ = (θ1, . . . , θk), we suppose
that θ is a random quantity sampled from a prior
distribution π(θ |λ), where λ is a vector of hyper-
parameters. For instance, yi might be the observed
abundance of a particular species in areal unit i or
it might be the observed frequency of a particular
allele type in population i. θi would then be true
abundance of the species in unit i or the true allele
proportion in population i. Finally, λ is a param-
eter controlling, say, spatial similarity across areal
units or, say, variation among populations. If λ

is known, inference concerning θ is based on its
posterior distribution,

p(θ |y, λ) = p(y, θ |λ)
p(y|λ) = p(y, θ |λ)∫

p(y, θ |λ)dθ

= f (y|θ)π(θ |λ)∫
f (y|θ)π(θ |λ)dθ

. (1.1)

Notice the contribution of both the data (in the form
of the likelihood f ) and the external knowledge or
opinion (in the form of the prior π ) to the posterior.
Since, in practice, λ will not be known, a second
stage (or hyperprior) distribution h(λ) will often be
required, and (1.1) will be replaced with

p(θ |y) = p(y, θ)
p(y)

=
∫

f (y|θ)π(θ |λ)h(λ)dλ∫
f (y|θ)π(θ |λ)h(λ)dθdλ

.

The Bayesian inferential paradigm offers poten-
tially attractive advantages over the classical,
frequentist statistical approach through its more
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philosophically sound foundation, its unified
approach to data analysis, and its ability to formally
incorporate prior opinion or external empirical evi-
dence into the results via the prior distribution
π . The Bayesian approach better captures uncer-
tainty (both with regard to parameters in models
and with regard to model specification itself). It
also provides exact inference, avoiding asymptotics
whose adequacy may be difficult to assess. Indeed,
such asymptotics may be inappropriate in complex
models. Scientists, formerly reluctant to adopt the
Bayesian approach due to its subjectivity and a lack
of necessary computational tools, are now turning
to it with increasing regularity as classical methods
emerge as both theoretically and practically inade-
quate. Modeling the θi as random (instead of fixed)
effects allows us to induce specific (e.g. spatial) cor-
relation structures among them, hence among the
observed data yi as well. As an aside, in (1.1) we
might replace λ by an estimate λ̂ being the value of
λ that maximizes the marginal distribution p(y|λ) =∫

f (y|θ)π(θ |λ)dθ , viewed as a function of λ. Inference
could then proceed based on the estimated poste-
rior distribution p(θ |y, λ̂), obtained by plugging λ̂

into equation (1.1). This approach is referred to as
empirical Bayes analysis; see Berger (1985), Maritz
and Lwin (1989), and Carlin and Louis (2000) for
details regarding empirical Bayes methodology and
applications.

Hierarchical Bayesian methods now enjoy broad
scientific application with increasing application in
ecology, evolutionary biology and climatology, as
the remainder of this book reveals. A computational
challenge in applying Bayesian methods comes from
the fact that, for most realistic problems, the inte-
grations required to do inference under (1.1) are
generally not tractable in closed form, and thus
must be approximated numerically. Forms for π

and h (called conjugate priors) that enable at least
partial analytic evaluation of these integrals may
often be found, but in hierarchical models of interest,
intractable integrations will remain. Here the emer-
gence of inexpensive, high-speed computing equip-
ment and software comes to the rescue, enabling
the application of recently developed Markov chain
Monte Carlo (MCMC) integration methods, such
as the Metropolis–Hastings algorithm (Metropolis
et al. 1953; Hastings 1970) and the Gibbs sampler

(Geman and Geman 1984; Gelfand and Smith
1990).

1.2.1 Illustrations of Bayes’ Theorem

Equation (1.1) is referred to as Bayes’ Theorem or
Bayes’ Rule. We illustrate its use with two standard
normally distributed data examples.

Suppose we have observed a single normal
(Gaussian) observation Y ∼ N(θ , σ 2) with σ 2

known, so that the likelihood f (y|θ) = N(y|θ , σ 2) ≡
1/(σ

√
2π) exp(−(y − θ)2/2σ 2), y ∈ 
, θ ∈ 
, and

σ > 0. If we specify the prior distribution as π(θ) =
N(y|µ, τ2)with λ = (µ, τ2)′ fixed, then from (1.1) we
can compute the posterior as

p(θ |y) = N(θ |µ, τ2)N(y|θ , σ 2)

p(y)

∝ N(θ |µ, τ2)N(y|θ , σ 2)

= N
(
θ

σ 2

σ 2 + τ2µ

+ τ2

σ 2 + τ2 y,
σ 2τ2

σ 2 + τ2

)
. (1.2)

That is, the posterior distribution of θ given y is
also normal with mean and variance as given. The
proportionality in the second row arises since the
marginal distribution p(y) does not depend on θ ,
and is thus constant with respect to the Bayes’
Theorem calculation. The final equality in the third
row results from collecting like terms (θ2 and θ ) in
the exponential and then completing the square.

Note that the posterior mean E(θ |y) is a weighted
average of the prior mean µ and the data value y,
with the weights depending on our relative uncer-
tainty with respect to the prior and the likelihood.
Also, the posterior precision (reciprocal of the vari-
ance) is equal to 1/σ 2 + 1/τ2, which is the sum of
the likelihood and prior precisions. Thus, thinking
of precision as “information,” we see that in the
normal/normal model, the information in the pos-
terior is the total of the information in the prior and
the likelihood.

Next, let us suppose, that instead of a single
datum we have a set of n observations y =
(y1, y2, . . . , yn)

′. From basic normal theory we know
that f (ȳ|θ) = N(θ , σ 2/n). Since y is sufficient for θ ,
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we have

p(θ |y) = p
(
θ |ȳ)

= N
(
θ

(σ 2/n)
(σ 2/n)+ τ2µ

+ τ2

(σ 2/n)+ τ2 y,
(σ 2/n)τ2

(σ 2/n)+ τ2

)

= N
(
θ

σ 2

σ 2 + nτ2µ

+ nτ2

σ 2 + nτ2 y,
σ 2τ2

σ 2 + nτ2

)
.

which is a weighted average of the prior (µ) and
data-supported (ȳ) values.

In these two examples, the prior leads to a poste-
rior distribution for θ that is available in closed form,
and it is a member of the same distributional family
as the prior. Such a prior is referred to as a conju-
gate prior. Such priors are often used, because, when
available, conjugate families are convenient and still
allow a variety of shapes wide enough to capture our
prior beliefs. Note that setting τ2 = ∞ in the previ-
ous example corresponds to a prior that is arbitrarily
vague, or noninformative. This then leads to a poste-
rior of p(θ |y) = N(θ |y, σ 2/n), exactly the same as
the likelihood for this problem. This arises since the
limit of the conjugate (normal) prior here is actually
a uniform, or “flat” prior, and thus the posterior is
nothing but the likelihood (possibly renormalized
to integrate to 1 as a function of θ ). Of course, the
flat prior is improper here, since the uniform does not
integrate to anything finite over the entire real line;
however, the posterior is still well defined since the
likelihood can be integrated with respect to θ .

More generally, let Y be an n× 1 data vector, X an
n× p matrix of covariates, and adopt the likelihood
and prior structure,

Y|β ∼ Nn(Xβ,�),

that is, f (Y|β) ≡ Nn(Y|Xβ,�),

β ∼ Np(Aα, V),

that is, π(β) ≡ N(β|Aα, V).

Here β is a p × 1 vector of regression coefficients
and � is a p × p covariance matrix. Then, as first

discussed in Lindley and Smith (1972), the marginal
distribution of Y is

Y ∼ N(XAα,� + XVXT),

the posterior distribution of β|Y is

β|Y ∼ N(Dd, D),

where

D−1 = XT�−1X + V−1

and

d = XT�−1Y + V−1Aα.

Thus E(β|Y) = Dd provides a point estimate for β,
with variability captured by the associated variance
matrix D. In particular, note that for a vague prior
we may set V−1 = 0, so that D−1 = X�−1X and
d = XT�−1Y. In the simple case where � = σ 2Ip,
the posterior becomes

β|Y ∼ N(β̂, σ 2(X′X)−1),

where β̂ = (X′X)−1X′y. Since the usual likelihood
approach produces

β̂ ∼ N(β, σ 2(X′X)−1),

we once again we see “flat prior” Bayesian results
that are formally equivalent to the usual likelihood
approach. Indeed, Bayesians often attempt to use flat
or otherwise improper noninformative priors, since
prior feelings are often rather vague relative to the
information in the likelihood, and in any case we
typically want the data (and not the prior) to dom-
inate the determination of the posterior. However,
when using improper priors, care must be taken to
ensure that the resulting posterior is still proper, that
is, that the product of the likelihood times the prior
is still integrable with regard to all of the model
parameters. This can be very demanding to check
with complex multilevel models such as those we
encounter in this book. Since we usually have some
prior information on the magnitude of a parame-
ter, we encourage the use of somewhat informative
priors, reflecting rough knowledge of a center and a
scale. Typically, this tends to provide better-behaved
Bayesian computation.
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1.3 Bayesian inference

While the computing associated with Bayesian
methods can be daunting, the subsequent inference
is relatively straightforward, especially in the case
of estimation. Once we have computed (or obtained
an estimate of) the posterior, inference comes down
to summarizing this distribution. In other words,
by Bayes’ Rule the posterior summarizes everything
we know about the model parameters in the light
of the data. As we noted in the previous section,
for hierarchical models, calculation of the posterior
distribution of, for example, components of θ or
functions of θ can not be done explicitly. Fortunately,
the aforementioned simulation methods enable sam-
ples from these posterior distributions which, in
turn, enables us to provide estimates of the distribu-
tions. However, in the remainder of this section, we
shall assume for simplicity that the posterior p(θ |y)
itself is available for summarization. Bayesian meth-
ods for estimation are reminiscent of corresponding
maximum likelihood methods. This should not be
surprising, since likelihoods form an important part
of the Bayesian calculation; we have even seen that
a normalized (i.e. standardized) likelihood can be
thought of a posterior when this is possible. Even
with hierarchical models, associated Bayesian com-
putation is analogous to EM algorithm methods. See,
again, the book by Gelman et al. (2004) and refer-
ences therein. An alternative is the book by Tanner
(1996). However, when we turn to hypothesis test-
ing, the approaches have little in common. Bayesians
(and many like-minded thinkers) have a deep and
abiding antipathy toward p-values, for a long list
of reasons we shall not go into here; the interested
reader may consult Berger (1985, Section 4.3.3), Kass
and Raftery (1995, Section 8.2), or Carlin and Louis
(2000, Section 2.3.3).

1.3.1 Point estimation

To keep things simple, suppose for the moment that
θ is univariate. Given the posterior p(θ |y), a sen-
sible Bayesian point estimate of θ would be some
measure of centrality. Three familiar choices are the
posterior mean,

θ̂ = E(θ |y),

the posterior median, θ̂ such that∫ θ̂

−∞
p(θ |y)dθ = 0.5,

and the posterior mode, θ̂ such that

p(θ̂ |y) = sup
θ

p(θ |y).

Notice that the lattermost estimate is typically easiest
to compute, since it does not require any integra-
tion: we can replace p(θ |y) by its unstandardized
form, f (y|θ)p(θ), and get the same answer (since
these two differ only by a multiplicative factor of
m(y), which does not depend on θ ). Indeed, if the
posterior exists under a flat prior p(θ) = 1, then
the posterior mode is nothing but the maximum
likelihood estimate (MLE). Note that for symmetric
unimodal posteriors (e.g. a normal distribution), the
posterior mean, median, and mode will all be equal.
However, for multimodal or otherwise non-normal
posteriors, the mode will often be the poorest choice
of centrality measure (consider, for example, the case
of a steadily decreasing, one-tailed posterior; the
mode will be the smallest value in the support of
the distribution—hardly central!). By contrast, the
posterior mean will sometimes be overly influenced
by heavy tails (just as the sample mean ȳ is not robust
against outlying observations). As a result, the pos-
terior median will often be the best and safest point
estimate. It is also the most difficult to compute
(since it requires both an integration and a root-
finder), but this difficulty is mitigated for posterior
estimates computed via MCMC; see Section 1.5.

1.3.2 Interval estimation

The posterior allows us to make direct probability
statements not only regarding the median, but for
any quantile. For example, suppose we can find the
α/2- and (1 − α/2)-quantiles of p(θ |y), that is, the
points θL and θU such that∫ θL

−∞
p(θ |y)dθ = α/2

and∫ ∞
θU

p(θ |y)dθ = 1− α/2.
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Then clearly P(θL < θ < θU|y) = 1 − α; our
confidence that θ lies in (θL, θU) is 100 × (1 − α)%.
Thus this interval is a 100 × (1 − α)% credible set
(or simply Bayesian confidence interval) for θ . This
interval is relatively easy to compute, and enjoys a
direct interpretation (“the probability that θ lies in
(θL, θU) is (1−α)”) that the usual frequentist interval
does not. The interval just described is often called
the equal tail credible set, for the obvious reason that
is obtained by chopping an equal amount of sup-
port (α/2) off the top and bottom of p(θ |y). Note that
for symmetric unimodal posteriors, this equal tail
interval will be symmetric about this mode (which
we recall equals the mean and median in this case).
It will also be optimal in the sense that it will have
shortest length among sets C satisfying

1− α ≤ P(C|y) =
∫

C
p(θ |y)dθ . (1.3)

Note that any such set C could be thought of as a
100× (1− α)% credible set for θ . For posteriors that
are not symmetric and unimodal, a better (shorter)
credible set can be obtained by taking only those
values of θ having posterior density greater than
some cutoff k(α), where this cutoff is chosen to be as
large as possible while C still satisfies equation (1.3).
This highest posterior density (HPD) confidence set
will always be of minimal length, but will typi-
cally be much more difficult to compute. The equal
tail interval emerges as HPD in the symmetric uni-
modal case since there too it captures the “most
likely” values of θ . The equal tail interval estimate is
most widely used with hierarchical models since it
is easily obtained from the posterior samples that
are the output of simulation-based model fitting
approaches. Fortunately, many of the posteriors we
will be interested in will be (at least approximately)
symmetric unimodal, so the equal tail interval will
often suffice.

1.3.3 Hypothesis testing and model choice

While Bayesian estimation is quite straightforward
given the posterior distribution, or an estimate
thereof, hypothesis testing is less straightforward,
for two reasons. First, there is less agreement among
Bayesians as to the proper approach to the problem.
For years, posterior probabilities and Bayes factors

were considered the only appropriate method. But
these methods are only suitable with fully proper
priors, and for relatively low-dimensional models.
With the recent proliferation of very complex models
with at least partly improper priors, other methods
have come to the fore. Second, solutions to hypothe-
sis testing questions often involve not just the poste-
rior p(θ |y), but also the marginal distribution, m(y).
Unlike the case of posterior and the predictive dis-
tributions, samples from the marginal distribution
do not naturally emerge from most MCMC algo-
rithms. Thus, the sampler must often be “tricked”
into producing the necessary samples. Recently, an
approximate yet very easy-to-use model choice tool
known as the Deviance Information Criterion (DIC)
has gained popularity, as well as implementation in
the WinBUGS software package. We will limit our
attention in this subsection to Bayes factors, the DIC,
and a related posterior predictive criterion due to
Gelfand and Ghosh (1998). The reader is referred
to Carlin and Louis (2000, Sections 2.3.3, 6.3, 6.4,
and 6.5) for further techniques and information. We
would also note that formal model choice reduces
a model to a single number for comparison with
numbers associated with other models. In practice,
more informal comparison through displays of say,
prediction or estimation performance may be more
satisfying.

1.3.3.1 Bayes factors
We begin by setting up the hypothesis testing
problem as a model choice problem, replacing the
customary two hypotheses H0 and HA by two
candidate parametric models M1 and M2 having
respective parameter vectors θ1 and θ2. Under prior
densities πi(θ i), i = 1, 2, the marginal distributions
of Y are found by integrating out the parameters,

p(y|Mi) =
∫

f (y|θ i, Mi)πi(θ i)dθ i, i = 1, 2. (1.4)

Bayes’ Theorem (1.1) may then be applied to obtain
the posterior probabilities P(M1|y) and P(M2|y) =
1 − P(M1|y) for the two models. The quantity com-
monly used to summarize these results is the Bayes
factor, BF, which is the ratio of the posterior odds
of M1 to the prior odds of M1, given by Bayes’
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Theorem as

BF = P(M1|y)/P(M2|y)
P(M1)/P(M2)

(1.5)

=
[
(p(y|M1)P(M1))/p(y)
(p(y|M2)P(M2))/p(y)

] [
P(M1)

P(M2)

]−1

= p(y|M1)

p(y|M2)
, (1.6)

the ratio of the observed marginal densities for the
two models. Assuming the two models are a pri-
ori equally probable (i.e. P(M1) = P(M2) = 0.5),
we have that BF = P(M1|y)/P(M2|y), the posterior
odds of M1.

Consider the case where both models are simple,
that is, the priors put mass one on say θ1 = θ10
and θ2 = θ20, respectively. Then from (1.4) and (1.6)
we have

BF = f (y|θ10)

f (y|θ20)
,

which is nothing but the likelihood ratio between
the two models. Hence, in the simple-versus-simple
setting, the Bayes factor is precisely the odds in favor
of M1 over M2 given solely by the data.

In the case of nested nonhierarchical models, say
M1 of dimension p1 contained in M2 of dimension p2,
the Bayesian Information Criterion (BIC) (also known
as the Schwarz Criterion), is given by

�BIC = W − (p2 − p1) log n, (1.7)

where pi is the number of parameters in model
Mi, i = 1, 2, and

W = −2 log

[
supM1

f (y|θ)
supM2

f (y|θ)

]
,

the usual likelihood ratio test statistic. Schwarz
(1978) showed that, in this case, for large sample
sizes n, BIC approximates −2 log BF. An alternative
to BIC is the Akaike Information Criterion (AIC) which
alters (1.7) to

�AIC = W − 2(p2 − p1). (1.8)

Both AIC and BIC are penalized likelihood ratio model
choice criteria, since both have second terms that
act as a penalty, correcting for differences in size
between the models. Crucially, the BIC penalty

depends upon sample size while the AIC penalty
does not. The implication is that for the former, the
penalty tends to ∞ as n → ∞ while for the latter it
is constant, regardless of sample size. The upshot is
that, under mild conditions, BIC is consistent, that
is, the probability that model M1 is selected when
it is, in fact, true tends to ∞ as n → ∞; AIC is not
consistent. Expressed in a different way, AIC tends
to favor more complex models than does BIC.

Another limitation in using Bayes factors or
their approximations is that they are not appro-
priate under noninformative priors. To see this,
note that if πi(θ i) is improper, then p(y|Mi) =∫

f (y|θ i, Mi)πi(θ i)dθ i necessarily is as well, and so BF
as given in (1.6) is not well defined. Also, for the hier-
archical models we are interested in, we have no sim-
ple methods or approximations to compute Bayes
factors. Instead, we offer two alternatives which
are applicable to general hierarchical models, are
easily computed using output from posterior sim-
ulation, and have achieved some popularity. Both
can be criticized but, in reality, there will never be
universal agreement on a model selection criterion
since different researchers have different utilities for
models.

1.3.3.2 The DIC criterion
Spiegelhalter et al. (2002) propose a generalization
of the AIC, (Akaike 1973) based on the posterior
distribution of the deviance statistic,

D(θ) = −2 log f (y|θ)+ 2 log h(y), (1.9)

where f (y|θ) is the likelihood function and h(y) is
some standardizing function of the data alone. These
authors suggest summarizing the fit of a model
by the posterior expectation of the deviance, D =
Eθ |y[D], and the complexity of a model by the effec-
tive number of parameters pD (which may well be
less than the total number of model parameters,
due to the borrowing of strength across random
effects). In the case of Gaussian models, one can
show that a reasonable definition of pD is the
expected deviance minus the deviance evaluated at
the posterior expectations,

pD = Eθ |y[D] −D(Eθ |y[θ ]) = D−D(θ̄). (1.10)
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The Deviance Information Criterion (DIC) is then
defined as

DIC = D+ pD = 2D−D(θ̄), (1.11)

with smaller values of DIC indicating a better-fitting
model. Both building blocks of DIC and pD, Eθ |y[D]
and D(Eθ |y[θ ]), are easily estimated via MCMC
methods (see below), enhancing the approach’s
appeal. Indeed, DIC may be computed automati-
cally for any model in the WinBUGS software (see
Section 1.6). While the pD portion of this expression
does have meaning in its own right as an effec-
tive model size, DIC itself does not, since it has no
absolute scale (due to the arbitrariness of the scal-
ing constant h(y), which is often simply set equal
to zero). Thus only differences in DIC across models
are meaningful. In this regard, when DIC is used
to compare nested models in standard exponential
family settings, the likelihood L(θ ;y) is often used
in place of the normalized form f (y|θ) in (1.9). This
is appropriate since, in this case, for a fixed y the
former is a constant times the latter and this con-
stant does not change across models. Hence, on the
log scale it contributes equally to the DIC scores of
each (and thus has no impact on model selection).
However, in settings where we require comparisons
across different likelihood forms, that is, the compet-
ing models have data generating mechanisms that
come from different distributional families, gener-
ally one must be careful to use the properly scaled
joint density f (y|θ). Indeed, we are most comfort-
able recommending the use of DIC for comparison
of models employing the same first stage likelihood.

Identification of what constitutes a significant dif-
ference is also a bit awkward; delta method approx-
imations to Var(DIC) have to date met with little
success (Zhu and Carlin 2000). In practice one
typically adopts the informal approach of simply
computing DIC a few times using different random
number seeds, to get a rough idea of the variability
in the estimates. With a large number of indepen-
dent DIC replicates {DICl, l = 1, . . . , N}, one could
of course estimate Var(DIC) by its sample variance,

V̂ar(DIC) = 1
N − 1

N∑
l=1

(DICl −DIC)2.

But in any case, DIC is not intended for formal iden-
tification of the “correct” model, but rather merely

as a method of comparing a collection of alterna-
tive formulations (all of which will likely be incor-
rect). This informal outlook (and DIC’s approximate
nature in markedly nonnormal models) suggests
informal measures of its variability will often be suf-
ficient. The pD statistic is also helpful in its own
right, since how close it is to the actual parameter
count provides information about how many param-
eters are actually “needed” to adequately explain
the data. For instance, a relatively low pD may
indicate collinear fixed effects or lots of borrowing
of strength across random effects. DIC is remark-
ably general, and trivially computed as part of an
MCMC run without any need for extra sampling,
reprogramming, or complicated loss function deter-
mination. Moreover, experience with DIC to date
suggests it works remarkably well, despite the fact
that no formal justification for it is yet available out-
side of posteriors that can be well approximated by
a Gaussian distribution (a condition that typically
occurs asymptotically, but perhaps not without a
moderate to large sample size for many models).
Still, DIC is by no means universally accepted by
Bayesians as a suitable all-purpose model choice
tool, as the discussion to Spiegelhalter et al. (2002)
directly indicates.

Model comparison using DIC is not invariant to
parametrization, so (as with prior elicitation) the
most sensible parametrization must be carefully cho-
sen beforehand. Unknown scale parameters and
other innocuous restructuring of the model can also
lead to subtle changes in the computed DIC value.

Finally, DIC will obviously depend on what part of
the model specification is considered to be part of the
likelihood, and what is not. Spiegelhalter et al. (2002)
refer to this as the focus issue, that is, determining
which parameters are of primary interest, and which
should “count” in pD. For instance, in a hierarchical
model with data distribution f (y|θ), prior p(θ |η) and
hyperprior p(η), one might choose as the likelihood
either the obvious conditional expression f (y|θ), or
the marginal expression,

p(y|η) =
∫

f (y|θ)p(θ |η)dθ . (1.12)

We refer to the former case as “focused on θ ,” and
the latter case as “focused on η.” Spiegelhalter et
al. (2002) defend the dependence of pD and DIC on
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the choice of focus as perfectly natural, since while
the two foci give rise to the same marginal den-
sity m(y), the integration in (1.12) clearly suggests
a different model complexity than the unintegrated
version (having been integrated out, the θ parame-
ters no longer “count” in the total). They thus argue
that it is up to the user to think carefully about which
parameters ought to be in focus before using DIC.
Perhaps the one difficulty with this advice is that,
in cases where the integration in (1.12) is not possi-
ble in closed form, the unintegrated version is really
the only feasible choice. Indeed, the DIC tool in
WinBUGS always focuses on the lowest level param-
eters in a model (in order to sidestep the integration
issue), even when the user intends otherwise.

1.3.3.3 Posterior predictive loss criteria
An alternative to DIC that is also easily implemented
using output from posterior simulation is the poste-
rior predictive loss (performance) approach of Gelfand
and Ghosh (1998). Using prediction with regard to
replicates of the observed data, Y�,rep, � = 1, . . . , n,
the selected models are those that perform well
under a so-called balanced loss function. Roughly
speaking, this loss function penalizes actions both
for departure from the corresponding observed
value (“fit”) as well as for departure from what we
expect the replicate to be (“smoothness”). The loss
puts weights k > 0 and 1 on these two components,
respectively, to allow for relative weighting of regret
(or loss) for the two types of departure. We avoid
details here, but note that for squared error loss, the
resulting criterion becomes

Dk =
k

k + 1
G+ P, (1.13)

where

G =
n∑

�=1

(µ� − y�,obs)
2

and

P =
n∑

�=1

σ 2
� .

In (1.13), µ� = E(Y�,rep|y) and σ 2
�
= Var(Y�,rep|y),

that is, the mean and variance of the predictive
distribution of Y�,rep given the observed data y.
The components of Dk have natural interpretations.

G is a goodness-of-fit term, while P is a penalty
term. To clarify, we are seeking to penalize complex-
ity and reward parsimony, just as DIC and other
penalized likelihood criteria do. For a poor model
we expect large predictive variance and poor fit.
As the model improves, we expect to do better
on both terms. But as we start to overfit, we will
continue to do better with regard to goodness of
fit, but also begin to inflate the variance (as we
introduce multicollinearity). Eventually the result-
ing increased predictive variance penalty will exceed
the gains in goodness-of-fit. So as with DIC, as we
sort through a collection of models, the one with
the smallest Dk is preferred. When k = ∞ (so that
Dk = D∞ = G + P), we will sometimes write D∞
simply as D for brevity.

Two remarks are appropriate. First, we may report
the first and second terms (excluding k/(k+1)) on the
right side of (1.13), rather than reducing to the single
number Dk . Second, in practice, ordering of models
is typically insensitive to the particular choice of k.
The quantities µ� and σ 2

�
can be readily computed

from posterior samples. If under model m we have
parameters θ (m), then

p(y�,rep|y) =
∫

p(y�,rep|θ (m))p(θ (m)|y)dθ (m).

(1.14)

Hence each posterior realization (say, θ∗) can be used
to draw a corresponding y�,rep from p(y�,rep|θ (m) =
θ∗). The resulting y∗

�,rep has marginal distribution
p(y�,rep|y). With samples from this distribution we
can obtain µ� and σ 2

�
. That is, development of Dk

requires an extra level of simulation but this can be
done after the model has been fitted. More precisely,
once we have the posterior samples, we can obtain
draws of the set of {y�,rep} one for one with these
samples. More general loss functions can be used,
including the so-called deviance loss (based upon
p(y�|θ (m))), again yielding two terms for Dk with
corresponding interpretation and predictive calcu-
lation. This enables application to, say, binomial or
Poisson likelihoods. We omit details here since in this
book, only (1.13) is used for examples that employ
this criterion rather than DIC. Clark (2006) provides
examples for regression and time series data.
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We do not recommend a choice between the pos-
terior predictive approach of this subsection and
the DIC of the previous subsection. Both involve
summing a goodness-of-fit term and a complex-
ity penalty. The fundamental difference is that the
DIC works in the parameter space with the likeli-
hood, while predictive loss works in predictive space
with posterior predictive distributions. The DIC
addresses comparative explanatory performance,
while predictive loss addresses comparative predic-
tive performance. So, if the objective is to use the
model for explanation, we may prefer DIC; if instead
the objective is prediction, we may prefer Dk .

1.4 Hierarchical models

A key goal of modeling for many complex biological
process is the development of a multilevel stochas-
tic specification that is built from local, simple
relationships but, in total, captures the important
components in explaining the behavior of the pro-
cess. This is the essence of the hierarchical modeling
that will be at the heart of the various presentations
in the ensuing chapters. Here we attempt a brief
introduction to such modeling.

It can be pragmatic to view modeling problems
in terms of three entities, all of which have stochas-
tic elements. First is the data which is presumed to
be drawn from some facet(s) of the underlying pro-
cess. Second is the process specification itself which
involves unknowns that will be estimated as param-
eters. Third, we have parameters that are not only
“uncertain” but will be expected to vary depending
upon how and where the data were obtained. With
this three-part structure in mind, we are prepared to
extend the earlier version of the Bayesian model to
more levels in a general and flexible way. Because
stochasticity is relevant for each, we think in terms
of a joint distribution

f (data,process,parameters)

∝ f (data|process, parameters)

× f (process|parameters)

× f (parameters).

The joint distribution on the left side is provided
in terms of three pieces on the right side. These
pieces may be easier to consider individually rather

than thinking about the entire joint distribution.
Moreover, as the chapters that follow will reveal,
each of these pieces can be quite complex. For
instance, the relationship between data and pro-
cess might depend on many things. It might be
different for different types of data. There may be
spatial or temporal aspects that suggest the mod-
eling might depend upon where and when the
process occurred. The good news is that we can use
appropriate conditioning to capture these aspects in
straightforward ways.

Advantages of this way of thinking about mod-
eling include: (1) the ability to construct complex
models from simple conditional relationships. We
need not conceptualize an integrated specification
for the problem, only the components which will be
linked up through boxes, circles, and arrows (see
below). (2) We can relax customary requirements
for independent data. Conditional independence
is enough. We typically introduce dependence at
a second or third stage in the modeling which,
marginally, introduces association in the data. We
can accommodate different data types within the
analysis as well as “data” that are output from,
say, a computer model. (3) By attaching random-
ness to what we observe as well as to what we do
not observe, we build a fully Bayesian specification.
The inherent unification of Bayesian inference leads
immediately to looking at the posterior distribution
of everything that we did not observe given every-
thing that we did. Though such a posterior will be
high dimensional and analytically intractable, we
can take advantage of the Bayesian computation
tools described in Section 1.5 to fit these models and
provide the desired inference.

In general, the complex process model can be
represented in the form of an acyclic dependence
graph. We briefly describe such models in the con-
text of the discussion of the previous paragraphs. For
a full, accessible development of graphical models
the reader is referred to Whitaker (1991). A more
technical development is provided in Cowell et al.
(1999). The ensuing chapters will provide illustra-
tive graphical models in the course of developing
their particular applications. We offer an illustrative
one below.

A graphical model includes arrows and nodes
(and may be viewed as a more formal version of “box
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Figure 1.1. An illustrative graphical model for assimilation of carbon from the atmosphere by trees.

and arrows” models that are familiar to ecologists).
The nodes denote the variables that comprise or are
used to explain the process. Some are observable,
denoted by rectangles; some are conceptual or unob-
servable denoted by circles. The arrows to a node
indicate which (input) nodes will be used to explain
this (output) node. Some nodes arise determinis-
tically, that is, an explicit functional relationship
produces the output, given the inputs. Others are
stochastic. We postulate a relationship between the
inputs and the outputs but only expect that the out-
put will be a random realization, given the inputs.
So, there will be uncertainty associated with these
nodes. In addition, we will not know the stochas-
tic response model for the output, given the inputs
explicitly. This local model will have parameters,
for example, regression coefficients and a variance,
additional model unknowns. The graph has source
nodes (nodes with no inputs). These are not mod-
elled. We proceed through the graph from inputs to
outputs.

Figure 1.1 presents an illustrative graphical model
which focuses on conductance (denoted by g) at the

tree level in a stand of trees. Without detailing the
experimental data or the model, the salient points are
as follows. Conductance can be studied empirically
to give estimates for particular trees (i), at particu-
lar heights (j), at particular times (t). However, these
measurements are not well calibrated. Alternatively,
sap flux measurements of conductance can be made
at the tree level. These measurements are accurate
but must be disaggregated to particular heights. The
basic objective of this graphical model is to assimilate
these two sources of information to infer about the
actual (unobservable) conductance which eventu-
ally leads to carbon assimilation. Relative humidity,
vapor pressure deficit, temperature, leaf area index,
and available light are available at different scales,
as the subscripting indicates. So, we see through
the boxes and circles what is observed and what
we seek to infer. Through the arrows we see which
variables will be used to explain which responses.
The explicit forms of the models are not presented;
again, the goal is only to identify all the process
variables of interest and to propose relationships
among them.
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The state of the process may evolve in time. Then,
at any time t, there is a state for each node in the
graph. To introduce temporal updating, some nodes
at time t have to feed back into earlier nodes in the
graph to update those nodes to a new state at time
t + 1. Source nodes update themselves. In this way
the graph moves to a new state at time t+ 1.

The power of a graphical modeling approach for
a complex system lies in its ability to provide a
conceptual decomposition of the system into sub-
models, consistent with our foregoing discussion.
Attention can be focused on trying to build suit-
able local models and then all of the pieces can
be put together to create the system level model.
Historically, researchers will likely have investi-
gated the local components. Through this work, lab
experiments, field studies, first principles, etc. we
will have some insight into how to propose the local
modeling. In fact, the local modeling can be tuned as
needed and, if we ultimately have no information to
guide us, we can introduce empirical or phenomeno-
logical specifications. The advantage to analysis of
a system level model is that, by allowing the local
submodels to interact with on another, we enhance
our learning about all submodels. In fact, the over-
all model implies a complex dependence structure
across the graph. Arrows can be removed to exam-
ine more parsimonious specifications. They can be
added to see if fuller explanation is needed for some
nodes.

From an inferential perspective, we seek to
learn about the circled nodes given the boxed
nodes. Because there will be parameters associ-
ated with many of the nodes, we really seek
the conditional distribution, f (unobserved nodes,
parameters| observed nodes). The directed graph
provides the required joint distribution or likeli-
hood. So we know the conditional distribution up
to a normalizing constant, which is the joint distri-
bution, inserting the values of the observed nodes.
Such a simplified summary understates the compu-
tational challenge involved in fitting such a complex
graphical model. We complete the model specifi-
cation with weak prior specifications for unknown
model parameters.

We then attempt fitting using Gibbs sampling/
Markov chain Monte Carlo algorithms (Section 1.5).
In fact, the process of fitting the full model also
benefits from local modeling. That is, local models

may be fitted and the results will enable us to acquire
some feel for the magnitudes of model parameters in
an enlarged model. Typically, some approximation
in implementing the overall fitting may be required
as well, in order to enable realistic computing times.

A particularly attractive feature of the graphical
model is its ability to propagate uncertainty across
the model. The uncertainty associated with an input
node augments the variability attached to the result-
ing output nodes. As this occurs across the graph
and, perhaps, over time, we achieve an assessment
of the full uncertainty at any node or set of nodes. We
can also consider conditional uncertainty for a por-
tion of the graph as a result of fixing the values of
other nodes. Such uncertainty will be smaller than
the full uncertainty but can be useful in studying
the response of local processes to external inputs of
interest.

1.5 Bayesian computation

Here, we provide a brief introduction to Bayesian
computing, at the level of the presentation in say,
Carlin and Louis (2000). The explosion in Bayesian
activity and computing power of the last decade or
so has caused a similar explosion in the number of
books in this area. The earliest comprehensive treat-
ment was by Tanner (1996), with books by Gilks et
al. (1996), Gamerman (1997), and Chen et al. (2000)
offering updated and expanded discussions that are
primarily Bayesian in focus. Also significant are the
computing books by Robert and Casella (1999) and
Liu (2001), which, while not specifically Bayesian,
still emphasize Markov chain Monte Carlo methods
typically used in modern Bayesian analysis. Specific
application to ecology is continued in Clark (2006).

Without doubt, the most popular computing tools
in Bayesian practice today are MCMC methods.
This is due to their ability (in principle) to break
the “curse of dimensionality,” to enable inference
from posterior distributions of very high dimension,
essentially by reducing the problem to one of recur-
sively treating a sequence of lower-dimensional
(often one dimensional) problems. Like traditional
Monte Carlo methods, MCMC methods work by
producing not a closed form for the posterior in
(1.1), but a sample of values {θ (g), g = 1, . . . , G}
from this distribution. While this obviously does
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not carry as much information as a closed form
expression, a histogram or kernel density estimate
based on such a sample is typically sufficient for
reliable inference. Moreover such an estimate can
be made arbitrarily accurate merely by increasing
the Monte Carlo sample size G. (Note, importantly,
that this has nothing to do with the sample size
of the observed data.) However, unlike traditional
Monte Carlo methods, MCMC algorithms produce
correlated samples from this posterior, since they
arise from recursive draws from a particular Markov
chain, the stationary distribution of which is the
same as the posterior.

The convergence of the Markov chain to the
correct stationary distribution can be guaranteed for
an enormously broad class of posteriors, explaining
MCMC’s popularity. But this convergence is also the
source of most of the difficulty in actually imple-
menting MCMC procedures, for two reasons. First,
it forces us to make a decision about when it is
safe to stop the sampling algorithm and summarize
its output, an issue known as convergence diagnosis.
Second, it clouds the determination of the quality
of the estimates produced (since they are based not
on i.i.d. draws from the posterior, but on correlated
samples. This is sometimes called the variance esti-
mation problem, since a common goal here is to
estimate the Monte Carlo variances (equivalently
standard errors) associated with our MCMC-based
posterior estimates. In the remainder of this section,
we introduce the two most popular notions in devel-
oping MCMC algorithms, the Gibbs sampler and the
Metropolis–Hastings algorithm. We then return to
the convergence diagnosis and variance estimation
problems.

1.5.1 The Gibbs sampler

Suppose our model features k parameters, θ =
(θ1, . . . , θk)

′. To implement the Gibbs sampler, we
must assume that samples can be generated from
each of the full or complete conditional distributions
{p(θi|θ j �=i,y), i = 1, . . . , k} in the model. These dis-
tributions are always known up to proportionality
constant since they take the form of the likelihood
x prior with everything fixed but θi. That is, we
insert the current values of θ j �=i and the observed y.
Samples might be available directly (say, if the full
conditional is a familiar form, like a normal or

gamma) or indirectly (say, via a rejection sampling
approach). In this latter case two popular alter-
natives are the adaptive rejection sampling (ARS)
algorithm of Gilks and Wild (1992), and the Metropo-
lis algorithm described in the next subsection. We
note that, under compatibility conditions (which
usually hold in practice), the collection of full con-
ditional distributions uniquely determines the joint
posterior distribution, p(θ |y), and hence all marginal
posterior distributions p(θi|y), i = 1, . . . , k. Given an
arbitrary set of starting values {θ(0)2 , . . . , θ(0)k }, the
algorithm proceeds as follows:

Gibbs sampler: For (t ∈ 1 : T), repeat:

Step 1: Draw θ
(t)
1 from

p(θ1|θ(t−1)
2 , θ(t−1)

3 , . . . , θ(t−1)
k ,y)

Step 2: Draw θ
(t)
2 from

p(θ2|θ(t)1 ,θ(t−1)
3 , . . . , θ(t−1)

k ,y)
...

Step k: Draw θ
(t)
k from

p(θk|θ(t)1 , θ(t)2 , . . . , θ(t)k−1,y)

Under mild regularity conditions that are gen-
erally satisfied for most statistical models (see, for
example, Roberts and Smith 1993), one can show
that the k-tuple, (θ

(t)
1 , . . . , θ(t)k ), obtained at itera-

tion t converges in distribution to a draw from
the true joint posterior distribution p(θ1, . . . , θk|y).
This means that for t sufficiently large (say, bigger
than t0), {θ (t), t = t0 + 1, . . . , T} is a (correlated)
sample from the true posterior, from which any pos-
terior quantities of interest may be estimated. For
example, a histogram of the {θ(t)i , t = t0 + 1, . . . , T}
themselves provides a simulation-consistent esti-
mator of the marginal posterior distribution for
θi, p(θi|y). We might also use a sample mean to
estimate the posterior mean, that is,

Ê(θi|y) = 1
T − t0

T∑
t=t0+1

θ
(t)
i . (1.15)

The time from t = 0 to t = t0 is commonly known as
the burn-in period; popular methods for selection of
an appropriate t0 are discussed below.

In practice, we may actually run m parallel Gibbs
sampling chains, instead of only 1, for some modest
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m (say, m = 5). We will see below that such parallel
chains may be useful in assessing sampler conver-
gence, and anyway can be produced with no extra
time on a multiprocessor computer. In this case, we
would again discard all samples from the burn-in
period, obtaining the posterior mean estimate,

Ê(θi|y) = 1
m(T − t0)

m∑
j=1

T∑
t=t0+1

θ
(t)
i,j , (1.16)

where now the second subscript on θi,j indicates
chain number. Again we defer comment on how
the issues how to choose t0 and how to assess
the quality of (1.16) and related estimators for the
moment. As a historical footnote, we add that
Geman and Geman (1984) apparently introduced
the name “Gibbs sampler” because the distributions
used in their context (image restoration, where the
parameters were actually the colors of pixels on a
screen) were Gibbs distributions. These were, in
turn, named after J.W. Gibbs, a nineteenth-century
American physicist and mathematician generally
regarded as one of the founders of modern ther-
modynamics and statistical mechanics. While Gibbs
distributions form an exponential family on poten-
tials that includes most standard statistical models
as special cases, most Bayesian applications do
not require anywhere near this level of general-
ity, typically dealing solely with standard statistical
distributions (normal, gamma, etc.). Yet, despite
a few attempts by some Bayesians to choose a
more descriptive name (e.g. the “successive substitu-
tion sampling” (SSS) moniker due to Schervish and
Carlin 1992), the Gibbs sampler name has stuck.

1.5.2 The Metropolis–Hastings algorithm

The Gibbs sampler is easy to understand and
implement, but requires the ability to readily sam-
ple from each of the full conditional distributions,
p(θi|θ j �=i,y). Unfortunately, when the prior distribu-
tion p(θ) and the likelihood f (y|θ) are not a conjugate
pair, one or more of these full conditionals may
not be available in closed form. As noted above,
even in this setting, p(θi|θ j �=i,y) will be available
up to a proportionality constant, since it is propor-
tional to the portion of f (y|θ) × p(θ) that involves
θi. The Metropolis algorithm (or Metropolis–Hastings

algorithm) is a rejection algorithm that attacks pre-
cisely this problem, since it requires only a function
proportional to the distribution to be sampled, at
the cost of requiring a rejection step from a par-
ticular candidate density. Like the Gibbs sampler,
this algorithm was not developed by statistical data
analysts for this purpose, but by statistical physi-
cists working on the Manhattan Project in the 1940s
seeking to understand the particle movement theory
underlying the first atomic bomb (see, for example,
the seminal paper in this area, Metropolis et al. 1953).

While, as mentioned above, our main interest
in the algorithm is for generation from (typically
univariate) full conditionals, for convenience, we
describe it for the full multivariate θ vector. Thus,
suppose for now that we wish to generate from
a joint posterior distribution p(θ |y) ∝ h(θ) ≡
f (y|θ)p(θ). We begin by specifying a candidate den-
sity q(θ∗|θ (t−1)) that is a valid density function for
every possible value of the conditioning variable
θ (t−1), and satisfies q(θ∗|θ (t−1)) = q(θ (t−1)|θ∗), that
is, q is symmetric in its arguments. Most naturally, we
would take q of the form q(θ∗ − θ (t−1)). Then, given
a starting value θ (0) at iteration t = 0, the algorithm
proceeds as follows:

Metropolis algorithm: For (t ∈ 1 : T), repeat:

Step 1: Draw θ∗ from q(·|θ (t−1))

Step 2: Compute the ratio r = h(θ∗)/h(θ (t−1)) =
exp[log h(θ∗)− log h(θ (t−1))]
Step 3: If r ≥ 1, set θ (t) = θ∗; If r < 1, set

θ (t) =
{

θ∗ with probability r,
θ (t−1) with probability 1− r

Then under generally the same mild conditions
as those supporting the Gibbs sampler, draws θ (t)

converge in distribution to a draw from the true pos-
terior density p(θ |y). Note however that when the
Metropolis algorithm (or the Metropolis–Hastings
algorithm below) is used to update within a Gibbs
sampler, it never samples from the full conditional
distribution. Convergence using Metropolis steps,
then, would be expected to be slower than that
for a regular Gibbs sampler. Recall that the steps
of the Gibbs sampler were fully determined by
the statistical model under consideration (since full
conditional distributions for well defined models
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are unique). By contrast, the Metropolis algorithm
affords substantial flexibility through the selection
of the candidate density q. This flexibility can be
a blessing and a curse: while theoretically we are
free to pick almost anything, in practice only a
“good” choice will result in sufficiently many can-
didate acceptances. The usual approach (after θ has
been transformed to have support 
k , if necessary)
is to set

q(θ∗|θ (t−1)) = N(θ∗|θ (t−1), �̃), (1.17)

since this distribution obviously satisfies the sym-
metry property, and is “self correcting” (candidates
are always centered around the current value of the
chain). Specification of q then comes down to specifi-
cation of �̃. Here we might try to mimic the posterior
variance by setting �̃ equal to an empirical esti-
mate of the true posterior variance, derived from
a preliminary sampling run.

The form in (1.17) is referred to as a “random
walk” proposal; we propose a random mean 0 incre-
ment to the current θ (t−1). The reader might well
imagine an optimal choice of q would produce an
empirical acceptance ratio of 1, the same as the Gibbs
sampler (and with no apparent “waste” of candi-
dates). However, the issue is rather more subtle than
this: accepting all or nearly all of the candidates
is often the result of an overly narrow candidate
density. Such a density will “baby-step” around the
parameter space, leading to high acceptance but also
high autocorrelation in the sampled chain. An overly
wide candidate density will also struggle, proposing
leaps to places far from the bulk of the posterior’s
support, leading to high rejection and again, high
autocorrelation. Thus the “folklore” here is to choose
�̃ so that roughly 50% of the candidates are accepted.
Subsequent theoretical work (e.g. Gelman et al. 1996)
indicates even lower acceptance rates (25–40%) are
optimal. This result varies with the dimension and
true posterior correlation structure of θ but pro-
vides a useful benchmark when developing your
own Metropolis algorithm code. As a result, choice
of �̃ is often done adaptively. For instance, in one
dimension (setting �̃ = σ̃ , and thus avoiding the
issue of correlations among the elements of θ ), a
common trick is to simply pick some initial value
of σ̃ , and then keep track of the empirical propor-
tion of candidates that are accepted. If this fraction

is too high (75–100%), we simply increase σ̃ ; if it is
too low (0–20%), we decrease it. Since certain kinds
of adaptation can actually disturb the chain’s con-
vergence to its stationary distribution, the simplest
approach is to allow this adaptation only during the
burn-in period, a practice sometimes referred to as
pilot adaptation. This is in fact the approach currently
used by WinBUGS, where the pilot period is fixed at
4000 iterations.

As mentioned above, in practice the Metropolis
algorithm is often found as a substep in a
larger Gibbs sampling algorithm, used to gener-
ate from awkward full conditionals. Such hybrid
Gibbs–Metropolis applications were once known
as “Metropolis within Gibbs” or “Metropolis sub-
steps,” and users would worry about how many
such substeps should be used. Fortunately, it was
soon realized that a single substep was sufficient to
ensure convergence of the overall algorithm, and so
this is now standard practice: when we encounter
an awkward full conditional (say, for θi), we sim-
ply draw one Metropolis candidate, accept or reject
it, and move on to θi+1. Further discussion of con-
vergence properties and implementation of hybrid
MCMC algorithms can be found in Tierney (1994)
and Carlin and Louis (2000, Section 5.4.4).

We end this subsection with the important gen-
eralization of the Metropolis algorithm devised by
Hastings (1970). In this variant we drop the require-
ment that q be symmetric in its arguments, which
is often useful for bounded parameter spaces (say,
θ > 0) where Gaussian proposals as in (1.17) are not
natural.

Metropolis–Hastings algorithm: In Step 2 of the
Metropolis algorithm earlier, replace the acceptance
ratio r by

r = h(θ∗)q(θ (t−1)|θ∗)
h(θ (t−1))q(θ∗|θ (t−1))

(1.18)

Then again under mild conditions, draws θ (t) con-
verge in distribution to a draw from the true
posterior density p(θ |y) as t → ∞. In practice we
often set

q(θ∗|θ (t−1)) = q(θ∗),



GELFAND: “CHAP01” — 2006/3/20 — 11:50 — PAGE 18 — #18

18 H I E RA R C H I CA L M O D E L L I N G F O R T H E E NV I R O N M E NTA L S C I E N C E S

that is, we use a proposal density that ignores the
current value of the variable. This algorithm is some-
times referred to as a Hastings independence chain, so
named because the proposals (though not the final
θ (t) values) form an independent sequence. While
easy to implement, this algorithm can be difficult to
tune since it will converge slowly unless the chosen
q is rather close to the true posterior. In fact, it is
evident that movement of the chain depends on the
ratio of h to q at the proposed θ relative to the ratio at
the current θ so q plays the role of an importance sam-
pling density. See, for example, the books by Robert
and Casella (1999) and Liu (2001) in this regard.

1.5.3 Slice sampling

An alternative to the Metropolis–Hastings algorithm
that is still quite general is slice sampling (Neal 2003).
In this regard the general paper by Damien et al.
(1999) and the spatial modeling oriented paper by
Agarwal and Gelfand (2005) may be of interest. In
its most basic form, suppose we seek to sample a
univariate θ ∼ f (θ) ≡ h(θ)/

∫
h(θ)dθ , where h(θ) is

known. Suppose we add a so-called auxiliary vari-
able U such that U|θ ∼ Unif (0, h(θ)). Then the joint
distribution of θ and U is p(θ , u) ∝ 1 · I(U < h(θ)),
where I denotes the indicator function. If we run
a Gibbs sampler drawing from U|θ followed by
θ |U at each iteration, we can obtain samples from
p(θ , u), and hence from the marginal distribution of
θ , f (θ). Sampling from θ |u requires a draw from a
uniform distribution for θ over the set SU = {θ :
U < h(θ)}. Figure 1.2 provides an illustrative picture
for a bimodal univariate density to reveal why this
approach is referred to as slice sampling. U “slices”
the nonnormalized density, and the resulting “foot-
print” on the axis provides SU . If we can enclose
SU in an interval, we can draw θ uniformly on this
interval and simply retain it only if U < h(θ) (i.e.
if θ ∈ SU ). If θ is instead multivariate, SU is more
complicated and now we would need a bounding
rectangle.

Note that if h(θ) = h1(θ)h2(θ) where, say, h1 is
a standard density that is easy to sample, while h2
is nonstandard and difficult to sample, then we can
introduce an auxiliary variable U such that U|θ ∼
U(0, h2(θ)). Now p(θ , u) = h1(θ)I(U < h2(θ)). Again
U|θ is routine to sample, while to sample θ |U we

U

S_U S_U

Figure 1.2. Illustrative slice sampling.

would now draw θ from h1(θ) and retain it only if θ is
such that U < h2(θ). Slice sampling incurs problems
similar to rejection sampling in that we may have to
draw many θ ’s from h1 before we are able to retain
one. On the other hand, it has an advantage over
the Metropolis–Hastings algorithm in that it always
samples from the exact full conditional p(θ |u). As
noted above, Metropolis–Hastings does not, and
thus slice sampling would be expected to converge
more rapidly. Nonetheless, overall comparison of
computation time may make one method a win-
ner for some cases, and the other a winner in other
cases.

1.5.4 Convergence diagnosis

As mentioned above, the most problematic part of
MCMC computation is deciding when it is safe to
stop the algorithm and summarize the output. This
means we must make a guess as to the iteration t0
after which all output may be thought of as coming
from the true stationary distribution of the Markov
chain (i.e. the true posterior distribution). The most
common approach here is to run a few (say, m = 3–5)
parallel sampling chains, initialized at widely dis-
parate starting locations that are overdispersed with
respect to the true posterior. These chains are then
plotted on a common set of axes, and the resulting
trace plots are then viewed to see if there is an iden-
tifiable point t0 after which all m chains seem to be
“overlapping” (traversing the same part of θ -space).
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Sadly, there are obvious problems with this
approach. First, since the posterior is unknown at
the outset, there is no reliable way to ensure that the
m chains are “initially overdispersed,” as required
for a convincing diagnostic. We might use extreme
quantiles of the prior p(θ) and rely on the fact that the
support of the posterior is typically a subset of that
of the prior, but this requires a proper prior and in
any event is perhaps doubtful in high-dimensional
or otherwise difficult problems. Second, it is hard
to see how to automate such a diagnosis proce-
dure, since it requires a subjective judgment call by
a human viewer. A great many papers have been
written on various convergence diagnostic statistics
that summarize MCMC output from one or many
chains that may be useful when associated with var-
ious stopping rules; see Cowles and Carlin (1996)
and Mengersen et al. (1999) for reviews of many such
diagnostics.

One of the most popular diagnostics is that of
Gelman and Rubin (1992). Here, we run a small
number (m) of parallel chains with different start-
ing points that are “initially overdispersed” with
respect to the true posterior. (Of course, since we
do not know the true posterior before beginning
there is technically no way to ensure this; still, the
rough location of the bulk of the posterior may
be discernible from known ranges, the support of
the (proper) prior, or perhaps a preliminary poste-
rior mode-finding algorithm.) Running the m chains
for 2N iterations each, we then try to see whether
the variation within the chains for a given param-
eter of interest λ approximately equals the total
variation across the chains during the latter N iter-
ations. Specifically, we monitor convergence by the
estimated scale reduction factor,

√
R̂ =

√(
N − 1

N
+ m+ 1

mN
B
W

)
df

df − 2
, (1.19)

where B/N is the variance between the means from
the m parallel chains, W is the average of the m
within-chain variances, and df is the degrees of free-
dom of an approximating t density to the posterior
distribution. Equation (1.19) is the factor by which
the scale parameter of the t density might shrink if
sampling were continued indefinitely; the authors
show it must approach 1 as N →∞.

The approach is fairly intuitive and is applicable
to output from any MCMC algorithm. However, it
focuses only on detecting bias in the MCMC esti-
mator; no information about the accuracy of the
resulting posterior estimate is produced. It is also an
inherently univariate quantity, meaning it must be
applied to each parameter (or parametric function)
of interest in turn, although Brooks and Gelman
(1998) extend the Gelman and Rubin approach in
three important ways, one of which is a multivariate
generalization for simultaneous convergence diag-
nosis of every parameter in a model. While the
Gelman–Rubin–Brooks and other formal diagnostic
approaches remain popular, in practice very simple
checks often work just as well and may even be more
robust against “pathologies” (e.g. multiple modes)
in the posterior surface that may easily fool some
diagnostics. For instance, sample autocorrelations in
any of the observed chains can inform about whether
slow traversing of the posterior surface is likely to
impede convergence. Sample cross-correlations (i.e.
correlations between two different parameters in the
model) may identify ridges in the surface (say, due to
collinearity between two predictors) that will again
slow convergence; such parameters may need to be
updated in multivariate blocks, or one of the param-
eters dropped from the model altogether. Combined
with a visual inspection of a few sample trace plots,
the user can at least get a good feel of whether
posterior estimates produced by the sampler are
likely to be reliable.

1.5.5 Variance estimation

An obvious criticism of Monte Carlo methods gen-
erally is that no two analysts will obtain the identical
inference since they will not generate identical poste-
rior samples. This makes assessment of the variance
of these estimators crucial. Combined with a cen-
tral limit theorem, the result would be an ability
to test whether two Monte Carlo estimates were
significantly different. For example, suppose we
have a single chain of N post-burn-in samples of
a parameter of interest λ, so that our basic poste-
rior mean estimator (1.15) becomes Ê(λ|y) = λ̂N =
(1/N)

∑N
t=1 λ

(t). Assuming the samples comprising
this estimator are independent, a variance estimate
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for it would be given by

V̂ariid(λ̂N) = s2
λ/N = 1

N(N − 1)

N∑
t=1

(λ(t) − λ̂N)2,

(1.20)

that is the sample variance, s2
λ = (1/N − 1) ×∑N

t=1(λ
(t) − λ̂N)2, divided by N. But while this

estimate is easy to compute, it would very likely
be an underestimate due to positive autocorrelation
in the MCMC samples. One can resort to thinning,
which is simply retaining only every kth sampled
value, where k is the approximate lag at which the
autocorrelations in the chain become insignificant.
However, MacEachern and Berliner (1994) show
that such thinning from a stationary Markov chain
always increases the variance of sample mean esti-
mators, and is thus suboptimal. This is intuitive;
it is never a good idea to throw away information
(in this case, (k − 1)/k of our MCMC samples) just
to achieve approximate independence among those
that remain. A better alternative is to use all the
samples, but in a more sophisticated way. One such
alternative uses the notion of effective sample size, or
ESS (Kass et al. 1998, p. 99). ESS is defined as

ESS = N/κ(λ),

where κ(λ) is the autocorrelation time for λ, given by

κ(λ) = 1+ 2
∞∑

k=1

ρk(λ), (1.21)

where ρk(λ) is the autocorrelation at lag k for the
parameter of interest λ. We may estimate κ(λ) using
sample autocorrelations estimated from the MCMC
chain. The variance estimate for λ̂N is then

V̂arESS(λ̂N) = s2
λ/ESS(λ)

= κ(λ)

N(N − 1)

N∑
t=1

(λ(t) − λ̂N)2.

Note that unless the λ(t) are uncorrelated, we have
κ(λ) > 1 and ESS(λ) < N, so that V̂arESS(λ̂N) >

V̂ariid(λ̂N), in concert with intuition. That is, since
we have fewer than N effective samples, we expect
some inflation in the variance of our estimate. In
practice, the autocorrelation time κ(λ) in (1.21) is
often estimated simply by cutting off the summation

when the magnitude of the terms first drops below
some “small” value (say, 0.1). This procedure is sim-
ple but may lead to a biased estimate of κ(λ). Gilks
et al. (1996, pp. 50–51) recommend an initial convex
sequence estimator mentioned by Geyer (1992) which,
while still output-dependent and slightly more com-
plicated, actually yields a consistent (asymptotically
unbiased) estimate here.

A final and somewhat simpler (though also more
naive) method of estimating Var(λ̂N) is through
batching. Here we divide our single long run of
length N into m successive batches of length k (i.e.
N = mk), with batch means B1, . . . , Bm. Clearly
λ̂N = B̄ = (1/m)

∑m
i=1 Bi. We then have the variance

estimate

V̂arbatch(λ̂N) = 1
m(m− 1)

m∑
i=1

(Bi − λ̂N)2, (1.22)

provided that k is large enough so that the corre-
lation between batches is negligible, and m is large
enough to reliably estimate Var(Bi). It is important
to verify that the batch means are indeed roughly
independent, say, by checking whether the lag 1
autocorrelation of the Bi is less than 0.1. If this is
not the case, we must increase k (hence N, unless the
current m is already quite large), and repeat the pro-
cedure. Regardless of which of the above estimates
V̂ is used to approximate Var(λ̂N), a 95% confidence
interval for E(λ|y) is then given by

λ̂N ± z0.025

√
V̂,

where z0.025 = 1.96, the upper 0.025 point of a stan-
dard normal distribution. If the batching method is
used with fewer than 30 batches, it is a good idea
to replace z0.025 by tm−1,0.025, the upper 0.025 point
of a t distribution with m − 1 degrees of freedom.
WinBUGS offers both naive (1.20) and batched (1.22)
variance estimates.

1.6 Implementation via WinBUGS

In this subsection we provide an introduc-
tion to Bayesian data analysis in WinBUGS, the
most general and well-developed Bayesian soft-
ware package available to date. WinBUGS is
the Windows successor to BUGS, a UNIX pack-
age whose name originally arose as a humor-
ous acronym for Bayesian inference Using
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Gibbs Sampling. The package is freely available
from the website http://www.mrc-bsu.cam.

ac.uk/ bugs/welcome.shtml. The software
comes with a user manual, as well as two examples
manuals that are enormously helpful for learning the
language and various strategies for Bayesian data
analysis.
WinBUGS has an interactive environment that

enables the user to specify models hierarchically
as well as perform Gibbs sampling to generate
posterior samples. Convergence diagnostics, model
checks and comparisons, and other helpful plots and
displays are also available. We will now look at the
WinBUGS code for a few illustrative problems.

1.6.1 Simple linear regression

We begin by considering the line example, which
is used as the first illustration in the WinBUGS

manual itself. Consider a set of five artificial data
pairs (xi, yi): (1, 1), (2, 3), (3, 3), (4, 3), (5, 5).
We wish to fit a simple linear regression of Y on X
using the notation,

Yi ∼ N(µi, σ
2), where µi = α + βxi.

As the WinBUGS code in Figure 1.3 illustrates, the
language allows a concise expression of the model,
where dnorm(a,b) denotes a normal distribution
with mean a and precision (reciprocal of the variance)
b, and dgamma(c,d) denotes a gamma distribution
with mean c/d and variance c/d2. The data means
mu[i] are specified using a logical link (denoted
by <-), instead of a stochastic one (denoted by ∼).

model
{
for(i in 1:N){

Y[i] ∼ dnorm(mu[i], tau)
mu[i] <- alpha + beta * x[i]
}

sigma <- 1/sqrt(tau)
alpha ∼ dnorm(0, 1.0E-6)
beta ∼ dnorm(0, 1.0E-6)
tau ∼ dgamma(1.0E-3, 1.0E-3)
}

Figure 1.3. WinBUGS code for the line example.

The second logical expression allows the standard
deviation σ to be estimated.

The parameters in the Gibbs sampling order here
will beα, β, and τ = (1/σ 2). All parameters are given
proper but minimally informative prior distribu-
tions; namely, either normals with very small preci-
sions (10−6) or a gamma prior with both parameters
equal to ε = 10−3 (so that the prior has mean 1 but
variance 103).

We next need to load in the data. The
data can be represented using S-plus or R

object notation as list(x = c(1, 2, 3, 4,

5), Y = c(1, 3, 3, 3, 5), N = 5), or as a
combination of an S-plus object and a rectangu-
lar array with labels at the head of the columns,
like so:

list(N=5)
x[ ] Y[ ]

1 1
2 3
3 3
4 3
5 5

Implementation of this code in WinBUGS is
most easily accomplished by pointing and clicking
through the menu on the Model/Specification,
Inference/Samples, and Inference/Update

tools; the reader may refer towww.statslab.cam.
ac.uk/∼krice/winbugsthemovie.html for an
easy-to-follow Flash introduction to these steps.
WinBUGS may also be called by R; see the
functions written by Andrew Gelman for this
purpose atwww.stat.columbia.edu/∼gelman/
bugsR/, or the new BRugs package described at
http:// mathstat.helsinki.fi/openbugs/.

1.6.2 Hierarchical Poisson failure rates

Here we consider a hierarchical model for failure
rates arising from discrete failure counts Yi arising
during an elapsed time of ti for similar but not
identical systems i = 1, . . . , k. The hierarchical
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Table 1.1 Pump failure data (Gaver and O’Muircheartaigh 1987,
Technometrics)

i Yi ti ri

1 5 94.320 0.053
2 1 15.720 0.064
3 5 62.880 0.080
4 14 125.760 0.111
5 3 5.240 0.573
6 19 31.440 0.604
7 1 1.048 0.954
8 1 1.048 0.954
9 4 2.096 1.910

10 22 10.480 2.099

model we adopt is

Yi|θi
ind∼ Poisson(θiti),

θi|α,β
ind∼ Gamma(α,β),

α ∼ Exp(µ), and β ∼ Gamma(c, d),

where µ, c, d, and the ti are known, and Exp denotes
the exponential distribution with mean µ. Note the
gamma offers a conjugate hyperprior for β, but the
exponential is not conjugate for α (indeed there is no
conjugate form available here).

We apply this model to the data in Table 1.1, which
gives the numbers of pump failures, Yi, observed in
ti thousands of hours for k = 10 different systems
of a certain nuclear power plant. The observations
are listed in increasing order of raw failure rate ri =
Yi/ti, the classical point estimate of the true failure
rate θi for the ith system. These data (and the cor-
responding WinBUGS code in Figure 1.4) are also
available within WinBUGS: simply click on Help,
pull down to Examples Vol I and see the second
example in the list.

The full conditional distributions for the θi and
β are available in closed form (as gamma distribu-
tions), but the full conditional distribution for α is
not standard. However, its form is

p(α|β, {θi},y) ∝
 k∏

i=1

g(θi|α,β)

 h(α)

∝
 k∏

i=1

θα−1
i

�(α)βα

 e−α/µ

model
{

for (i in 1:k) {
theta[i] ∼ dgamma(alpha,beta)
lambda[i] <- theta[i]*t[i]
Y[i] ∼ dpois(lambda[i])

}
alpha ∼ dexp(1.0)
beta ∼ dgamma(0.1, 1.0)

}

DATA:
list(k = 10, Y = c(5, 1, 5, 14, 3,

19, 1, 1, 4, 22),
t = c(94.320, 15.72, 62.88,

125.76, 5.24, 31.44, 1.048,
1.048, 2.096, 10.48))

INITS:
list(theta=c(1,1,1,1,1,1,1,1,1,1),

alpha=1, beta=1) }

Figure 1.4. WinBUGS code for the pump data example.

which can be shown to be log-concave in α, so
that WinBUGS may use adaptive rejection sampling
here. For posteriors for which log-concavity cannot
be readily checked, WinBUGS uses Metropolis sam-
pling with a Gaussian proposal density.

We choose the values µ = 1, c = 0.1, and d =
1.0, resulting in reasonably vague hyperpriors for α
and β. Results from running 1000 burn-in samples,
followed by a “production” run of 10,000 samples
(single chain) are given in Table 1.2. Note that while
θ5 and θ6 have very similar posterior means, the
latter posterior is much narrower (i.e. smaller poste-
rior standard deviation). This is because, while the
crude failure rates for the two pumps are similar,
the latter is based on a far greater number of hours
of observation (t6 = 31.44, while t5 = 5.24). Hence
we “know” more about pump 6, and this is properly
reflected in its posterior distribution.

1.6.3 Bayesian kriging

As a third example, consider a point-level spatial
(kriging) model of the form

Y ∼ MVN(µ, w2H(φ)+ v2I),

where Y = (Y(s1), . . . , Y(sn))′ is a vector of obser-
vations at spatial locations si, i = 1, . . . , n, and we
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Table 1.2 Posterior summaries, Pump data model

node mean sd MC error 2.5% median 97.5%

alpha 0.7001 0.2699 0.004706 0.2851 0.6634 1.338
beta 0.929 0.5325 0.00978 0.1938 0.8315 2.205

theta[1] 0.0598 0.02542 2.68E-4 0.02128 0.05627 0.1195
theta[5] 0.6056 0.315 0.003087 0.1529 0.5529 1.359
theta[6] 0.6105 0.1393 0.0014 0.3668 0.5996 0.9096
theta[10] 1.993 0.4251 0.004915 1.264 1.958 2.916

model
{
for(i in 1:N) {

Y[i] ∼ dnorm(mu[i], tauv)
mu[i] <- inprod(X[i,],beta[]) + W[i]
muW[i] <- 0
}

for(i in 1:p) {beta[i] ∼ dnorm(0.0,
0.0001)}

W[1:N] ∼ dmnorm(muW[], Omega[,])
tauv ∼ dgamma(0.001,0.001)
v <- 1/sqrt(tauv)
tauw ∼ dgamma(0.001,0.001)
w <- 1/sqrt(tauw)
phi ∼ dgamma(0.01,0.01)

for (i in 1:N){
for(j in 1:N){

H[i,j] <- (1/tauw)
*exp(-phi*pow(d[i,j],2))}}

Omega[1:N,1:N] <- inverse(H[1:N,1:N])
}

Figure 1.5. WinBUGS code for the Bayesian kriging example using
only standard functions.

assume µ = Xβ where the design matrix X will
also likely depend on location. Here, w2 is the vari-
ance of the spatial model (or partial sill) and v2 is
the pure error variance (or nugget) so that w2 + v2

is the sill. I is an n × n identity matrix, while � =
w2H(φ), an n × n correlation matrix having expo-
nential form H(φ)ij = exp(−φdij), where dij is the
distance between locations i and j.

Figure 1.5 gives WinBUGS code to do this prob-
lem directly, that is, using the multivariate normal
distribution dmnorm and constructing the H matrix
explicitly using the exponential (exp) and power
(pow) functions, the distances dij, and the partial
sill and range parameters τw and φ. This H is then

model
{
for(i in 1:N) {

Y[i] ∼ dnorm(mu[i], tauv)
mu[i] <- inprod(X[i,],beta[]) + W[i]
muW[i] <- 0
}

for(i in 1:p) {beta[i] ∼ dnorm(0.0,
0.0001)}

W[1:N] ∼ spatial.exp(muW[], x[], y[],
tauw, phi, 1)

tauv ∼ dgamma(0.001,0.001)
v <- 1/sqrt(tauv)
tauw ∼ dgamma(0.001,0.001)
w <- 1/sqrt(tauw)
phi ∼ dgamma(0.01,0.01)
}

Figure 1.6. WinBUGS code for the Bayesian kriging example using
the spatial.exp function.

inverted to give �, the precision of the random
effects Wi. Finally, the Wi are added into the mean
structure created via the inprod command, with
the nugget precision τv incorporated into the normal
distribution of the data itself.

This kriging model can be handled in a better
way using the spatial.exp function now avail-
able in WinBUGS releases 1.4 and later; this code is
given in Figure 1.6. Note the spatial.exp func-
tion simplifies the specification of the spatial random
effects Wi (where the lower case x and y refer
to the x and y coordinates of the spatial locations
si), but the nugget term τv must still be added
separately. Finally, this code handles spatial esti-
mation, but for prediction of unseen values Y0 at
new sites having covariate valuesX0, we would add
in a loop utilizing the spatial.pred function; for
details see the WinBUGS spatial help (click on Map
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and pull down to Manual) or Banerjee et al. (2004,
Section 5.1). The source code for Figures 1.3 and 1.4
is taken from the website http://www.biostat.
umn.edu/∼brad/ph8472.html.

1.7 Summary

In summary, this chapter has attempted a broad
overview of many different topics. We have asserted
a general modeling formulation for ecological pro-
cesses. We have shown that such a formulation leads
us to hierarchical modeling and, more generally, to

graphical modeling. We have argued that fitting and
inference for such models is most naturally imple-
mented within the Bayesian framework. We have
briefly reviewed the issues in Bayesian inference and
Bayesian model comparison. Finally, we have noted
that simulation-based model fitting (in the form of
MCMC) is a valuable tool for carrying out the fitting
and inference. Recognizing that we have offered
really a “bare bones” exposure to all of this mate-
rial, we strongly encourage the reader to look further
into the literature and we have attempted to provide
a bibliography suitable to do so.


