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Faculty of Medicine

38706 La Tronche

France

1



RH: Measuring the amount of genomic instability

Corresponding author:

TIMC-TIMB Department

Institut de l’Ingénierie de l’Information de Santé
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Abstract

Humans have invested several genes in DNA repair and fidelity replication.

To account for the disparity between the rarity of mutations in normal cells

and the large numbers of mutations present in cancer, an hypothesis is that

cancer cells must exhibit a mutator phenotype (genomic instability) during

tumor progression with the initiation of abnormal mutation rates caused by

the loss of mismatch repair. In this study we introduce a stochastic model

of mutation in tumor cells with the aim of estimating the amount of genomic

instability due to the alteration of DNA repair genes. Our approach took into

account the difficulties generated by sampling within tumoral clones, and the

fact that these clones must be difficult to isolate. We provide corrections to

two classical statistics in order to obtain unbiased estimators of the raised

mutation rate, and we show that large statistical errors may be associated

with such estimators. The power of these new statistics to reject genomic

instability is assessed and proved to increase with the intensity of mutation

rates. In addition we show that genomic instability can hardly be detected

unless the raised mutation rates exceed the normal rates by a factor at least

equal to one thousand.
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INTRODUCTION

DNA replication in normal human cells is an extremely accurate process. During

the cell division cycle, copy errors occur with probabilities less than 10−9 − 10−10

per nucleotide. In contrast, the malignant cells that constitute cancer tissues are

markedly heterogeneous and exhibit alterations in the nucleotide sequence of DNA

(e.g., Bielas and Loeb, 2005). To account for the disparity between the rarity

of mutations in normal cells and the large numbers of mutations present in cancer,

Loeb et al. (1974) hypothesized that during tumor progression, cancer cells must

exhibit a mutator phenotype (see the review by Loeb et al., 2003). It is still a matter

of debate to know exactly which event initiates tumorigenesis. But one hypothesis

for the initiation of abnormal mutation rates in tumors is the loss of mismatch repair

(MMR).

For instance, this phenomenon may follow from the inactivation of the genes

hMSH2 and hMLH1 involved in hereditary nonpolyposis colorectal cancers (HN-

PCC) (Fishel et al., 1993; Leach et al., 1993; Lindblom et al., 1993). In normal

conditions, the MMR repair system involves a complex interaction among the pro-

tein products of hMSH2 and hMLH1 genes. The result is to eliminate about 99.9%

of the errors in DNA replication reducing errors to a rate of about 1 per 1012 bp

in genes that regulate the apoptosis or the cell cycle duration. HNPCC is inherited

in an autosomal dominant fashion. One copy of the mutant allele is defective, and

is inherited in the germline. The loss of MMR may start when the second muta-

tion occurs somatically as a consequence of the two-hits theory (Moolgavkar and

Knudson, 1981).

Widespread genomic instability seems associated with MMR defective genes. For

instance microsatellite instability is associated with HNPCC (Ionov et al., 1993;

Peltomaki et al., 1993; Thibodeau et al., 1993). Detection of DNA instability
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is therefore a crucial step in view of non-invasive diagnosis of such forms of can-

cer. Because numerous mutations are required for the full development of cancer,

inactivation of caretaker genes can greatly accelerate its development (Kinzler and

Vogelstein, 2002). For an account of the etiology and genetic epidemiology of

cancer with a statistical perspective a major review is by Thomas (2004).

This study introduces a two-rates model of DNA mutation based on the infinitely-

many sites model (Watterson, 1975). We consider a sample of n sequences taken

from a pretumoral tissue, and assume that loss of DNA repair has occurred once

(and only once) during the history of the n sequences tracking back to their most

recent common ancestor. We denote the mutational event by the formal symbol ∆.

The event ∆ is assumed to occur at a very low rate δ.

The loss of MMR (occurrence of ∆) may lead to a ten to thousand fold increase

in the normal mutation rate µ0 (Shibata et al., 1994; Bhattacharyya et al.,

1994). However only the sequences that descend from ∆ are concerned with such an

increase in the mutation rate. Because heterogeneity prevails in cancer tissues and

sampling from the tumor is difficult, we consider that an unknown random number

of sequences among the sample descend from the mutation ∆.

The goal of this study is to provide statistical estimators for the raised mutation

rate µ1 under the assumption that the normal rate µ0 is known, but the number of

descendants of ∆ is unknown. Two classical statistics will be studied (see Hartl

and Clark, 1997) for a review in a population genetics context). The first one

is the nucleotide polymorphism computed as the number of segregating sites in the

DNA. The second one is the nucleotide diversity computed as the number of pairwise

nucleotide differences. Our main contribution is the calculation of corrections to the

classical statistics that are needed because the increase in the mutation rate concerns

only a random subgenealogy of the sample.

In our study, the clonal evolution of mitotic cell divisions is assumed to be neu-
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tral. This hypothesis is often competing with the hypothesis of selective evolution

(Cairn, 1975; Nowell, 1976). Under the neutral assumption, we shall model the

genealogies of DNA sequences using conditional coalescent trees (Tavaré, 2004;

Griffiths and Tavaré, 2003; Wiuf and Donnelly, 1999). This formalism has

been developed for the primary purpose of estimating the age of an allele (Grif-

fiths and Tavaré, 1998; Stephens, 2000). So far evolutionary models have been

introduced for dating the loss of MMR (Tsao et al., 2000; Calabrese et al.,

2004). Tsao et al. (2000) observed microsatellite alleles in noncoding regions as-

suming neutrality as well. However, the need for further mathematical studies has

been emphasized in a recent review to better understand the influence of existing

hypotheses in the evolution of cancer (Michor et al., 2004).

In the next section, we recall notations and give an account on the existing results

in the actual theory of conditional trees. In addition, we extend many results of the

theory so as to encompass other times or ages useful in the context of genomic

instability, and describe an efficient way for simulating conditional trees. In the

Nucleotide polymorphism section and the Nucleotide diversity section, we

introduce unbiased estimators of the raised mutation rate µ1 based on the number

of segregating sites and the number of pairwise differences within the sample. The

statistical errors and the power of tests based on these estimators are then compared

using Monte Carlo methods.

CONDITIONAL COALESCENT TREES

Model and Notations: We consider a sample of n copies of a gene at a particular

DNA locus taken from a pretumoral tissue, and assume that the loss of MMR (event

∆) occurred once in the sample history. However the date and place at which this

event occurred in the sample genealogy are unknown. Mathematically, we consider

taking the limit as the rate of occurrence δ tends to zero conditional on ∆ having
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occurred. In further statements the symbol = will therefore often replace the limit

symbol as δ goes to zero.

The sample is divided in two random complementary subsamples B and C. The

cardinality of B is a random variable denoted by B. Given the number B = b

of sequences in B, the number of sequences in C is then equal to c = n − b. As

usual in studies of conditional coalescent trees, the analysis requires two levels of

conditioning. At the first level, the sample has the property that all sequences in

B are descendants of the particular mutation ∆ while none of those in C are. This

property is called the topological event, and is denoted by E. At the secont level, we

assume that the mutation ∆ arised only once in the history of the sample. We denote

this event by M . Conditioning on E impacts the random topology of the tree, while

conditioning on M affects branch lengths. In the terminology of Tavaré (2004),

conditioning on E ∩ M amounts to considering an unique event polymorphism in

the tree. Stephens (2000) showed that the probability distribution of B can be

described as

P(B = b | E ∩M) =
1

bHn−1

, b = 1, . . . , n− 1,

where Hn−1 denotes the (n−1)th harmonic number. This is a Yule distribution also

called the frequency spectrum (see Griffiths and Tavaré, 2003).

Under the neutral hypothesis, we assume that lineages coalesce at random, and

time is rescaled so that the unit of time corresponds to N generations with N the

total cell population size (Kingman, 1982). In this setting, the normal mutation

rate is usually rescaled so that to θ0/2 = 2Nµ0 and the raised mutation rate is

θ1/2 = 2Nµ1. Conditioning on B = b leads to a model of genealogies which we

refer to as the conditional coalescent tree (Wiuf and Donnelly, 1999, see Figure

1). All subsequent results will be established conditional on the event E ∩ M , but

at the exception of the appendix section we omit this condition in order to alleviate
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notations in long formulae.

Recalls: In order to state results about conditional coalescent times, some addi-

tional recalls are needed. As far as possible, we use notations similar to those of

Tavaré (2004) and Wiuf and Donnelly (1999). For r = 1, . . . , b−1, we define Jr

to be the total number of ancestors at the time the subsample B first has r ancestors.

This definition implies that Jr ranges between (r + 1) and (n− b + r). In addition,

we denote by J0 the number of ancestors in the sample at the time the B lineages

first coalesce with the rest of the sample. This means that we have

1 ≤ J0 < J1 < . . . < Jb−1 < Jb ≡ n .

Similarly, we consider Kr to be the total number of ancestors at the time the sub-

sample C first has r ancestors. We have

K1 < K2 < . . . < Kc−1 < Kc ≡ n

where the subset B is replaced by C in the previous definition, and the Kr’s are

complementary to the J ′
rs in the set of labels [1, n]. Note that conditional on J0 = j,

we have Kr = r for all r < j and j + 1 ≤ Kj. To finish, we denote by J∆ the total

number of ancestors in the sample at the time the mutation ∆ occurs. This implies

that J∆ takes its values between 2 and n−b+1. A picture of a tree with a summary

of notations is displayed in Figure 2.

The conditional joint distributions of the Jr’s given the events E or E ∩M were

described in Tavaré (2004, Chapter 8, p. 106-109) for which we shall refer to when

necessary. For example, we easily deduce that

P(Jr = jr ; r = 1, . . . , b− 1 | J0 = j ; E ∩M) =

 n− j − 1

b− 1

−1

(1)
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for all j < j1 < . . . < jb−1 < n. This result will be useful in the Nucleotide

diversity section. Similar properties will be stated without proofs when they are

direct consequences of Tavaré’s notations.

Another useful result concerns the number of ancestors in the sample at the time

when the mutation ∆ occurs. Recall that we have

p∆
k ≡ P(J∆ = k | E ∩M) =

 n− k

b− 1


 n− 1

b

 (2)

for all k = 2, . . . , n− b + 1.

The age of the mutation ∆ has been studied by Stephens (2000), Wiuf and

Donnelly (1999), Griffiths and Tavaré (1998). Conditional on B = b, the

expected age is given by

τ∆ = 2
n−b+1∑

k=2

n− k + 1

n(k − 1)
p∆

k . (3)

The distribution of intercoalescence times: In the standard coalescent, the

durations X` that separate coalescence events backward in time are independent

random variables, and have exponential distribution of rate λ` = `(`− 1)/2 where `

is the number of ancestors just before the event. In this section, we show how the

conditioning on B = b and the existence of an unique event polymorphism E ∩ M

further modify the shape of the genealogy by lengthening the intercoalescence times.

Theorem 1 Assume that the mutation ∆ has B = b descendants. The joint proba-

bility distribution of (X2, . . . , Xn) conditional on the event E ∩M has density equal

to

f(x2, . . . , xn) =
n−b+1∑

k=2

p∆
k λkxk

n∏
`=2

f`(x`) (4)
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where f`(x`) is the probability density function of the exponential distribution of rate

λ`.

As a consequence of Theorem 1 we have the following result.

Corollary 1 Assume that the mutation ∆ has B = b descendants. Let ` = 2, . . . , n.

Then we have

E[X` | E ∩M ] =


(
1 + p∆

`

)
/λ` if ` ≤ n− b + 1

1/λ` otherwise.
(5)

As a consequence of Theorem 1, note that conditional on the event E ∩ M the

X`’s are no longer independent random variables. However Theorem 1 has the nice

interpretation that once we know that the number of ancestors is equal to k at

the time ∆ occurs, then Xk has gamma G(2, λk) distribution, the other X` have

exponential G(1, λ`) distribution, and the variables are mutually independent. This

remark is useful for simulating conditional trees given that B = b. The algorithm is

as follows.

1. Draw J∆ = k according to the distribution (p∆
k ) for k = 2, . . . , n− b + 1

2. Draw J0 from the conditional distribution

P(J0 = j | J∆ = k ; E ∩M) =
2j

k(k − 1)
, j = k − 1, . . . , 1.

3. Draw an ordered sequence k ≤ J1 < . . . < Jb−1 < n uniformely from the set of

ordered integral sequences Ib(k, n) = {k ≤ j1 < . . . < jb−1 < n}

4. Fill the holes left in [1, n] by the Jr’s with the Kr’s

5. Sample Xk from the gamma G(2, λk) distribution, otherwise sample X` from

the exponential distribution G(1, λ`), for ` 6= k.
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Testing for the absence of ∆: This paragraph presents a brief study of the

power of a rather “abstract” test to reject the null hypothesis H0 of absence of

the mutation ∆ against the alternative hypothesis H1 of its existence. The test is

abstract because it assumes the knowledge of the sample genealogy, and the dataset

consists of the all the intercoalescence times (Xk). Under the null hypothesis we

assume that the property E holds for a specific subsample of b sequences. In the

alternative hypothesis we assume that the mutation ∆ has B = b descendants as

well. The test statistic consists of the ratio of likelihoods which is believed to behave

optimally for reasonably large sample sizes. It can be described as

r =
L(x, H1)

L(x, H0)
=

n−b+1∑
k=2

λkp
∆
k xk .

Under H0, we see that this ratio has the same distribution as a sum of independent

exponential random variables of rates νk = 1/p∆
k

Y =
n−b+1∑

k=2

E(νk) , (6)

whereas under H1 it is distributed as Y plus a sum of independent exponential

random variables of rates ν2
k ,

Z = Y +
n−b+1∑

k=2

E(ν2
k). (7)

The criteria for rejection is r greater than the 0.95th percentile from neutral data sets

(Equation 6). The power of the test was studied numerically from 10,000 replicates

of Y and Z. We found that the power did not exceed a value close to 0.2 for

n = 10, 20, 50, 100, and b ≈ n. For smaller b’s, the lack in power was even more

striking. For example the power dropped to ≈ 0.1 for b/n ≈ 0.5.

Because we assume the ideal knowledge of tree topologies and branch lengths,

the interest in these power calculations is more theoretical than directed toward

applications. However these results put some limitations in testing for the occurrence
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of the mutation ∆. They are evidence that the occurrence of ∆ alone conveys too

weak information for being detected by any kind of statistical testing even if the full

genealogy were observed. This could be explained as the shapes of such trees do not

undergo significant changes under the occurrence of ∆.

NUCLEOTIDE POLYMORPHISM

Corrected estimator: We now take account of the mutations that are super-

imposed to the conditional coalescent trees. Mutations on the tree branches are

distributed according to Poisson processes of rates θ0/2 or θ1/2 depending on where

∆ takes place. Assuming the infinitely-many sites model of the DNA molecule,

we introduce an unbiased estimator of θ1 based on the number of segregating sites

S. This variable equals the number of mutations that occurred during the sample

history back to the most recent common ancestor of the sample. In the classical

coalescent, S has Poisson distribution of parameter Lnθ/2 where θ is the mutation

rate, and Ln is the length of the genealogy. The nucleotide polymorphism or Wat-

terson’s estimator is defined as θ̂ = S/Hn−1 (Watterson, 1975). It is an unbiased

estimator of θ with the property that

Var[θ̂] =
1

H2
n−1

n−1∑
i=1

(
θ2

i2
+

θ

i

)
.

In analogy with the classical approach, we denote by L∆
n the length of the ge-

nealogy of the full sample and by L1
n the length of the subgenealogy of B. Borrowing

the notation from Wiuf and Donnelly (1999), we also denote by ηn the time sep-

arating the root of the subgenealogy from the mutation ∆. In the two-rates model,

the number of segregating sites can be splitted in two independent terms

S = S0 + S1,
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where S1 has Poisson distribution of rate (L1
n + ηn)θ1/2 and S0 has Poisson distri-

bution of rate (L∆
n − L1

n − ηn)θ0/2. Taking expectations, we obtain the expected

number of segregating sites as

E[S] = Anθ0 + Bnθ1

where

Bn =
1

2

(
E[L1

n] + E[ηn]
)
,

and

An =
1

2
E[L∆

n ]−Bn.

Accordingly, an unbiased estimator of θ1 can be defined as follows

θ̂1 =
S − Anθ0

Bn

.

Table 1 and Figures 3-4 provide numerical values for An and Bn with sample sizes in

the range 5−50. Exact formulae are derived afterwards. First of all the expectation

E[L∆
n ] results from corollary 1 as follows

1

2
E[L∆

n ] = Hn−1 +
1

Hn−1

n−1∑
b=1

n−b+1∑
k=2

p∆
k

b(k − 1)

Given that the mutation ∆ has b descendants (B = b), the conditional expectations

involved in the computation of An and Bn can be obtained thanks to the results

of Griffiths and Tavaré (2003) and Wiuf and Donnelly (1999). On the one

hand Griffiths and Tavaré (2003) proved that

E[L1
n | B = b] =

n−b+1∑
j=2

p∆
j

n∑
k=j+1

2

k(k − 1)
cjk

where

cjk = b− (b− 1)
n− k

n− j
− (n− k)!(n− j − b + 1)!

(n− j)!(n− k − b + 1)!
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for j = 2, . . . , n−b+1 and k = j+1, . . . , n. On the other hand Wiuf and Donnelly

(1999) showed that

E[ηn | B = b] = 2
n−b+1∑

k=2

p∆
k

k
, b = 1, . . . , n− 1.

The values of An and Bn can then be computed by integration over all b’s.

Statistical errors and power of tests: In the first half of this paragraph, we

evaluate the standard deviation (SD) of the estimator θ̂1. The exact computation

of Var[θ̂1] appears intricate enough so that we resort to Monte Carlo methods. In a

second half, we evaluate the power of the statistic θ̂1 to reject the hypothesis that

the mutation rate increases simultaneously with the occurrence of the mutation

∆. Simulations were performed using the R statistical programming language (R

Development Core Team, 2004).

Statistical errors: For evaluating statistical errors, the following experimental

design was used. The parameter θ0 was set equal to the value θ0 = 1. Roughly,

this corresponded to a normal mutation rate per mitotic division equal to µ0 ≈

10−10, while the total number of cells N in the tissue approximated 2.5 billions. We

considered three different values for the raised mutation rate θ1 = 10, 102, 103, and

the sample sizes were taken in the range n = 10 − 50. Simulations were performed

using the method described in the previous section. Table 2 gives the bias and the

standard deviation computed over 10,000 replicates. These results confirms that θ̂1

was indeed unbiased. Nevertheless, the standard deviations were rather high. This

could be explained as the empirical distributions exhibited strong positive skew. In

addition, most of the error was contributed by a term which seemed proportional

to θ2
1. For n = 20, we adjusted a regression model of the form anθ1 + bnθ

2
1 to the

variance, and an almost perfect fit was obtained as Var = 1.47θ2
1 (R2 = 0.999,

P < 10−12). For n = 40, we obtained Var = 1.68θ2
1 (R2 = 0.997, P < 10−12).
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Apparently, SDs did not exhibit fast decrease as sample sizes increased. This might

be due to a strong correlation of data within the subsample B, and the fact that

the most recent ancestor of this subsample is expected to be recent. Note that the

shape of the correcting constant Bn suggested a logarithmic rate of decrease of errors

toward zero. This was actually hardly sensitive for the sample sizes used there.

Powers: A fundamental assumption through this work is that the mutation ∆

has occurred once in the history of the sample. Assuming a normal mutation rate

θ0, we report results regarding the power of the test based on θ̂1 to reject the null

hypothesis of absence of ∆ against the alternative of its existence together with an

increase in mutation rate θ1 > θ0. Results for θ0 = 1 and θ1 = 10 − 103 are given

in Table 3. Power values ranged from ≈ 0.06 to ≈ 0.90. Reasonable powers were

obtained for θ1 greater than 103θ0. No significant improvements were observed when

the sample sizes varied from n = 10 to n = 50.

In a second step we reverted the role of the null and alternative hypotheses, and

used a test based on θ̂. The results are reported in Table 4. In this Table, powers

range from ≈ 0.43 to ≈ 0.90. For θ1 lower than 10, the test exhibited performances

similar to those presented in the previous section where the simultaneous rise in

mutation rate was ignored. Significant gains in power were obtained for θ1 = 103θ0.

Increasing the sample sizes did not provide additional benefit. Table 4 indicates that

the event ∆ was more easily detected when associated with large mutation rates and

small sample sizes. However the power to detect ∆ remains small for θ1 lower than

1, 000θ0.

NUCLEOTIDE DIVERSITY

Corrected estimator: This section introduces an unbiased estimator of θ1 based

on the nucleotide diversity Π. In the infinitely many sites model the nucleotide

diversity is defined as the mean number of pairwise differences between nucleotides.
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Let Π(i, j) be the number of sites at which the sequence i differs from the sequence

j, for 1 ≤ i ≤ n and 1 ≤ j ≤ n. The nucleotide diversity is the average value of

Π(i, j). It can be computed as follows

Π =
1

n(n− 1)

∑
i6=j

Π(i, j)

In the unconditional coalescent, we have E[Π(1, 2)] = θE[X2], and Π is an unbiased

estimator of θ. The variance of Π is equal to Var[Π] = (n + 1)θ/3(n − 1) + 2(n2 +

n + 3)θ2/9n(n− 1) (Tajima, 1983).

Now consider the occurrence of ∆ and the two rates of mutation θ0 and θ1.

Again, we assume that the mutation ∆ has B = b descendants. Consider two

arbitrary sequences labelled 1 and 2. In the classical coalescent, E[X2] is the expected

coalescence time of sequences 1 and 2. In analogy with this, the computation of

E[Π(1, 2)] requires distinguishing three cases. In the first case, sequences 1 and 2

both belong to B, and we have

E[Π(1, 2)] = τBθ1

where τB is the expected coalescence time within B. This case occurs with a prob-

ability equal to (b/n)2. In the second case, one sequence is in B while the other

belongs to C. This event occurs with probability 2b(n− b)/n2, and we have

E[Π(1, 2)] = (2τB,C − τ∆)θ0 + τ∆θ1

where τB,C is the expected coalescence time of sequence 1 and sequence 2, and τ∆ is

the age of ∆ given in Equation (3). The third case occurs with probability (1−b/n)2.

It corresponds to the situation where both sequence 1 and sequence 2 are in C. Then

we have

E[Π(1, 2)] = τCθ0
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where τC is the corresponding expected coalescence time. Taking expectation with

respect to B, we deduce that

E[Π(1, 2)] = Cnθ0 + Dnθ1

where the constants Cn and Dn can be computed from the above defined coalescence

times. Therefore, an unbiased estimator Π1 of θ1 is of the form

Π1 =
Π− Cnθ0

Dn

Table 5 and Figures 5-6 give numerical values for Cn and Dn for n in the range

10− 50. The next section explains the way by which the exact computations of all

coalescence times can be achieved.

Coalescence times: In this section, we provide explicit ways of computing the

coalescence times τB, τB,C, and τC. As a consequence, we are able to give formal

expressions for the correcting constants Cn and Dn. Because the formal expressions

are somewhat ugly, the following results should be more considered as recipes for

computing expressions than immediate closed mathematical formulae. The strat-

egy for establishing these exact formulae is rather simple and replicable with slight

variations in the three cases.

Case 1: Coalescence within B. Let Tj+1 = Xn + . . . + Xj+1 denote the time at

which the sample first has j ancestors. A basic argument shows that if a node has J

ancestors, then its expected age is E[TJ+1]. Therefore, the coalescence time of two

individuals in a subsample of size b for which the total number of ancestors at each

node are J1 < . . . < Jb−1 is given by

τB =
b + 1

b− 1

b−1∑
r=1

2

(r + 1)(r + 2)
E[TJr+1]

which writes as

τB =
b + 1

b− 1

b−1∑
r=1

2

(r + 1)(r + 2)

n−b+1∑
k=2

c+r∑
j=k+r−1

P(Jr = j | J∆ = k)E[Tj+1 | J∆ = k]p∆
k .
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In this expression, we used corollary 1

E[Tj+1 | J∆ = k] =
2(n− j)

jn
, for j ≥ k,

and the result stated in Lemma 2 (Appendix).

Case 2: Coalescence between B and C. The average coalescence time for two

sequences one within B and one within C is straightforward from the conditioning

on J∆. We obtain that

τB,C = 2
n−b+1∑

k=2

(k + 1)

(k − 1)
φ(n, k)p∆

k , (8)

where

φ(n, k) =
k∑

j=2

E[Tj | J∆ = k]/j(j + 1), k = 2, . . . , n− b + 1.

Because j ≤ k in the above summation, we obtain from corollary 1 that

E[Tj | J∆ = k] =
2(n− j + 1)

(j − 1)n
+

2

k(k − 1)
.

The expression of τB,C has a simple interpretation in terms of the age of ∆. It

can be reduced using a symbolic computing language such as MapleTM. Because

the gamma distribution G(2, λk) is the sum of two independent exponential, we find

that the coalescence time τB,C is equal to τ∆ (age of ∆) plus the coalescence time of

two ancestors among the k present at the occurrence of ∆. According to Theorem

1, the second coalescence time has exponential G(1, 1) distribution. Hence, we have

τB,C = 1 + τ∆,

which corresponds to Equation (8) exactly.

Case 3: Coalescence within C. The third case concerns the average coalescence

time formula for two sequences within B. This leads to the most terrific (unexplicit)

formula which uses a series of probabilistic results stated in Lemmas 3-4 (see Ap-

pendix). The average coalescence time for two individuals within C can be obtained
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from conditioning on J0 = j, and the observation that we have Kr = r for r < j

given that J0 = j. We have

τC = 2
(c + 1)

(c− 1)

c−1∑
r=1

E[TKr+1]

(r + 1)(r + 2)
, r = 1, . . . , c− 1.

Now we use the fact

E[TKr+1] =
c∑

j=1

E[TKr+1 | J0 = j] P (J0 = j).

For j = 1, . . . , c and r < j, we have

E[TKr+1 | J0 = j] =
2(n− r)

rn
+ εj,

with

εj =
n−b+1∑
`=j+1

2

`(`− 1)
P (J∆ = ` | J0 = j).

Otherwise, we have r ≥ j and

E[TKr+1 | J0 = j] =
b+r∑

k=r+1

P(Kr = k | J0 = j)

(
2(n− k)

nk
+ εjk

)
where

εjk =
k∑

`=j+1

2

`(`− 1)
P (J∆ = ` | J0 = j), k = r + 1, . . . , b + r.

For all ` = j + 1, . . . , n− b + 1, the conditional probabilities P(J∆ = ` | J0 = j) can

be obtained from the Bayes formula.

Statistical errors and power of tests: In this paragraph we report numerical

estimates of the standard deviations of Π1, and we study the power of this statis-

tic to reject the hypothesis that the mutation rate raised simultaneously with the

occurrence of the mutation ∆. The same experimental design was used as regards

the statistic θ̂1 defined in the previous section. The results closely parallel those
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obtained for θ̂1 (see Tables 6 - 7 - 8). The estimator appears to be unbiased. The

standard deviations are of the same order than those computed for θ̂1 although they

seems slighly higher. Using Π1 instead of θ̂1 to reject the existence of ∆ leads to

a 12 or 13 percent loss in power when θ1 = 100 or θ1 = 103. Reverting the two

hypotheses and using Π yields the same conclusions as for θ̂.

DISCUSSION

Genetic information must tightly regulated, and its faithful replication and repair

is the highest imperative. To this end humans have invested more than 130 genes in

DNA repair, and this number is even greater if genes dedicated to fidelity replication

were included (Wood et al., 2001; Anderson 2001). In this article we introduced a

stochastic model of mutation in tumor cells with the aim of estimating the amount of

genomic instability in cancer tissues due to the alteration of DNA repair genes. Our

approach took into account the difficulties generated by sampling within tumoral

clones, and the fact that these clones must be difficult to isolate (Anderson et al.,

2001). We provided unbiased estimators of the normalized raised mutation rates.

These quantities can be interpreted as the mean numbers of new mutations present

in daughter cells after each mitotic generation (this corresponds to an evaluation

of θ1/2 = 2µ1N). The power of these statistics to reject genomic instability was

assessed and proved to increase with the intensity of mutation. However, we showed

that large statistical errors may be associated with such estimates. Conditional on

the presence of loss of MMR within a sample of cells, no significant benefit would

be expected from large sample sizes. In addition we proved that genomic instability

can hardly be detected unless the raised mutation rates exceed the normal rates by

a factor greater than 103. These results suggest monitoring several loci in order to

increase power and reliability of tests, and give theoretically supported grounds to

current clinical guidelines (Boland et al., 1998).
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Computations were conducted under the assumptions of selective neutrality. Tu-

mors of clonal origin have long lifespan with evolutionary history that may last over

10 or 20 years, and exhibits multistep progression. At least in the early stages

of tumor progression selective neutrality is yet compatible with Loeb’s theory of

cancerogenesis. Evidence are lacking that the initiating events are neither highly

advantageous nor highly deleterious. A competing assumption explains that a cell

must exhibit a selective advantage to be converted into a pretumoral cell. Then by

a selective clonal expansion the cell becomes malignant (Tomlinson et al. 1996,

Cairns, 1975, Nowell 1976). The material presented in this article may serve

as a basis for testing such kinds of assumption. A classical way of doing so is by

computing Tajima’s D statistic (Tajima 1989). In our framework this statistic can

be defined as the difference θ̂1 − Π1. In order to apply the test, p-values can be

obtained from Monte Carlo replicates using the new simulation procedure described

in the Conditional coalescent trees section.

Genomic instability particularly affects DNA repeat sequences. It has even been

calculated to affect hundred of thousands of such sequences in each tumor cell but

very few of these events are within coding sequences (Perucho, 1996). It is widely

argumented that stepwise mutation models might be more appropriate for such DNA

sequences than the infinitely-many sites model used in this work. However, genomic

instability is not restricted to repeat sequences, and even not limited to the nucleus.

Mitochondrial DNA may also be mutated in a process that involves clonal expansion

(Polyak et al. 1998). Infinitely-many site models may thus be acceptable in several

situations.

Anderson et al. (2001) reported several difficulties with measuring the amount

of instability in cancer cell genomes. The ideal measurement would be how many

genomic events occur per cell generation because this number would allow evaluating

the rate of tumor progression. Regardless the fact that this seems yet difficult to
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approach in clinical application, a rigorous way of calculating unbiased estimates of

the amount of genomic instability in pretumoral tissues would nevertheless require

the correction coefficients described in this article.
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APPENDIX

Proof of Theorem 1. The proof follows the same lines as Tavaré (2004, Chap. 8,

p. 110). Let s = (s2, . . . , sn) and X = (X2, . . . , Xn), we have

s.X =
n∑

i=2

siXi

Conditional on E, the multidimensional Laplace transform of X is equal to

E[e−s.X | E] =
n−b+1∑

k=2

E[e−s.X11J∆=k | E]

=
n−b+1∑

k=2

E[E[e−s.X11J∆=k | X, E]]

=
n−b+1∑

k=2

E[e−s.XP(J∆ = k | X, E)]

=
n−b+1∑

k=2

E[e−s.XXk
δ

2
e−

Lnδ
2 ]λk

 n− k

b− 1

 n

b + 1

−1

=
δ

2

n−b+1∑
k=2

E[es.XXk]λk

 n− k

b− 1

 n

b + 1

−1

+ o(δ)

=
δ

2

n−b+1∑
k=2

E[e−s.X ]
λk

sk + λk

 n− k

b− 1

 n

b + 1

−1

+ o(δ)

Further conditioning on M , and taking the limit as δ tends to zero leads to

E[e−s.X | E ∩M ] =
n−b+1∑

k=2

E[e−s.X ]
λk

sk + λk

 n− k

b− 1


 n− 1

b


The Theorem follows from the fact that the multidimensional Laplace transform of the

density given in Equation (4) coincides with the above formula.
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Proof of Corollary 1. Let n ≥ 2. Assuming that ∆ has b descendants (1 ≤ b ≤ n−

1) and using Theorem 1 we obtain the marginal distribution of each inter-coalescence time.

For ` = 2, . . . , n we have

f(x`) =

 n−b+1∑
k=2, k 6=`

p∆
k + p∆

` λ`x`

 f`(x`)

if ` ≤ n− b + 1, otherwise, it is equal to

f(x`) = f`(x`)

where f` is the density of the exponential G(1, λ`) distribution. Taking expectations it

comes

E[X` | E ∩M ] =


(
1 + p∆

`

)
/λ` if ` ≤ n− b + 1

1/λ` otherwise.

Lemma 1 Let n ≥ 2. We have

1
2
E[L∆

n ] = Hn−1 +
1

Hn−1

n−1∑
b=1

n−b+1∑
k=2

p∆
k

b(k − 1)

Proof. Let b = 1, . . . , n− 1. From corollary 1 we have

E[L∆
n |B = b] =

n∑
k=2

kE[Xk]

= 2Hn−1 + 2
n−b+1∑

k=2

p∆
k

k − 1

Then

E[L∆
n ] =

n−1∑
b=1

1
bHn−1

E[L∆
n |B = b]

= 2

(
Hn−1 +

1
Hn−1

n−1∑
b=1

n−b+1∑
k=2

p∆
k

b(k − 1)

)
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Lemma 2 Let n ≥ 2 and assume that ∆ has b descendants. Let r = 1, . . . , b − 1 and

k ∈ [2, n− b + 1]. For j ∈ [k + r − 1, n− b + r], we have

P(Jr = j | J∆ = k ; E ∩M) =

 j − k

r − 1

 n− j − 1

b− r − 1


 n− k

b− 1



Proof. Let k ∈ [2, n − b + 1] and r ∈ [1, b − 1]. For all j ∈ [k + r − 1, n − b + r] it is

known that for k ≤ j1 < . . . < jr−1 < j we have (Tavaré, 2004)

P(J1 = j1, . . . , Jr−1 = jr−1, Jr = j | J∆ = k; E ∩M) =

 n− j − 1

b− r − 1

 n− k

b− 1

−1

Note that the above formula is independent on j1, . . . , jr−1. We have

P(Jr = j | J∆ = k ; E ∩M)

=
∑

k≤j1<...<jr−1<j

P(J1 = j1, . . . , Jr−1 = jr−1, Jr = j | J∆ = k; E ∩M)

=

 j − k

r − 1

 n− j − 1

b− r − 1

 n− k

b− 1

−1

Lemma 3 Let n ≥ 2 and assume that ∆ has b descendants. Let J0 be defined as in the

conditional coalescent trees section. For j = 1, · · · , n− b, we have

P(J0 = j | E ∩M) = 2j
n−b+1∑
k=j+1

p∆
k

k(k − 1)

Proof. Thanks to a straighforward combinatorial argument, for j = 1, · · · , n − b we

have

P(J0 = j | J∆ = k ; E ∩M) =
2j

k(k − 1)
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Then intregrating over J∆’s implies that

P(J0 = j | E ∩M) = 2j
n−b+1∑
k=j+1

p∆
k

k(k − 1)
, k = j + 1, . . . , n− b + 1

Lemma 4 Let n ≥ 2, assume that ∆ has b descendants and denote c = n − b. Let

r = j, . . . , c − 1 and Kr be defined as in the conditional coalescent trees section.

For k ∈ [r + 1, r + b], we have

P(Kr = k | J0 = j ; E ∩M) =

 k − j − 1

r − j

 n− k − 1

c− r − 1


 n− j − 1

b


Proof. Note that the vector (J0, . . . , Jb−1,K0, . . . ,Kc−1) is obtained from a permu-

tation of the labels (1, 2, . . . , n−1), where Jr’s and Kr’s are defined as in the conditional

coalescent trees section. Conditional on J0 = j, the vector (J1, . . . , Jb−1,Kj , . . . ,Kc−1)

is also a permutation of the labels (j + 1, . . . , n − 1). Then Equation 1 implies that for

j < kj < . . . < kc−1 < n, we have

P(Kr = kr, r = 1, . . . , c− 1 | J0 = j ; E ∩M) =

 n− j − 1

b

−1

Note that the above formula is independent on k1, . . . , kc−1. We have

P(Kr = k | J0 = j ; E ∩M)

=
∑

j<kj<...<kr−1<r

∑
r<kr+1<...<kc−1<n

P(Kr = kr, r = 1, . . . , c− 1 | J0 = j ; E ∩M)

=

 k − j − 1

r − j

 n− k − 1

c− r − 1


 n− j − 1

b


.
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Table 1: Correction coefficients for θ̂1. Numerical values for the correcting

coefficients An and Bn in the statistic θ̂1 = (S−Anθ0)/Bn for n in the range 5− 50.

n 5 10 15 20 25 30 35 40 45 50

An 2.171 2.693 3.024 3.265 3.455 3.612 3.747 3.864 3.967 4.061

Bn 0.595 0.68 0.713 0.732 0.746 0.756 0.764 0.771 0.776 0.781
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Table 2: Statistical errors for θ̂1. Bias and standard deviation for the estimator

θ̂1 for sample size n = 10− 50. The normal rate was set to the value θ0 = 1 and the

raised rates varied from θ1 = 10 to θ1 = 1, 000.

θ1 = 10 θ1 = 100 θ1 = 1, 000

n E SD E SD E SD

10 9.9 12.0 97.4 112.4 947.5 1109.7

20 10.3 12.5 99.7 122.4 991.9 1211.1

30 10.2 12.8 102.9 126.1 1060.3 1286.1

40 10.2 13.2 100.9 128.9 1018.2 1286.2

50 10.4 13.5 102.0 131.7 1045.7 1235.9
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Table 3: Powers for θ̂1. Power of the test based on the statistic θ̂1 where the null

hypothesis H0 is the existence of ∆ and θ1 > θ0 whereas the alternative hypothesis

H1 is the absence of ∆. The normal rate was set to the value θ0 = 1 and the raised

rates varied from θ1 = 10 to θ1 = 1, 000.

n θ1 = 10 θ1 = 100 θ1 = 1, 000

10 0.10 0.29 0.90

20 0.06 0.18 0.70

30 0.13 0.29 0.65

40 0.11 0.24 0.59

50 0.09 0.21 0.55
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Table 4: Powers for θ̂. Power of the test based on the statistic θ̂ where the null

hypothesis H0 is the absence of ∆ whereas the alternative hypothesis H1 is the

existence of ∆ associated with θ1 > θ0. The normal rate was set to the value θ0 = 1

and the raised rates varied from θ1 = 10 to θ1 = 1, 000.

n θ1 = 10 θ1 = 100 θ1 = 1, 000

10 0.44 0.75 0.93

20 0.44 0.74 0.90

30 0.48 0.75 0.89

40 0.42 0.73 0.88

50 0.43 0.72 0.87
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Table 5: Correction coefficients for Π1. Numerical values for the correcting

coefficients Cn and Dn in the statistic Π1 = (Π−Cnθ0)/Dn for n in the range 5−50.

n 5 10 15 20 25 30 35 40 45 50

Cn 0.996 1.019 1.021 1.02 1.02 1.019 1.019 1.018 1.018 1.018

Dn 0.253 0.218 0.199 0.187 0.178 0.171 0.166 0.161 0.156 0.154
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Table 6: Statistical errors for Π1. Bias and standard deviation for the estimator

Π1 for sample size n = 10 − 50. The normal rate was set to the value θ0 = 1 and

the raised rates varied from θ1 = 10 to θ1 = 1, 000.

θ1 = 10 θ1 = 100 θ1 = 1, 000

n E SD E SD E SD

10 9.9 13.7 107.342 133.9 1006.2 1243.5

20 10.2 14.7 100.91 136.2 1030.5 1458.9

30 9.5 15.5 100.875 147.9 1040.0 1589.5

40 10.7 17.8 95.763 159.0 998.4 1538.1

50 10.3 17.6 106.478 164.6 1039.7 1598.1
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Table 7: Powers for Π1. Power of the test based on the statistic Π1 where the null

hypothesis H0 is the existence of ∆ and θ1 > θ0 whereas the alternative hypothesis

H1 is the absence of ∆. The normal rate was set to the value θ0 = 1 and the raised

rates varied from θ1 = 10 to θ1 = 1, 000.

n θ1 = 10 θ1 = 100 θ1 = 1000

10 0.09 0.32 0.72

20 0.12 0.29 0.54

30 0.14 0.24 0.44

40 0.12 0.19 0.35

50 0.13 0.20 0.40
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Table 8: Powers for Π. Power of the test based on the statistic Π where the

null hypothesis H0 is the absence of ∆ whereas the alternative hypothesis H1 is the

existence of ∆ associated with θ1 > θ0. The normal rate was set to the value θ0 = 1

and the raised rates varied from θ1 = 10 to θ1 = 1, 000.

n θ1 = 10 θ1 = 100 θ1 = 1000

10 0.44 0.73 0.91

20 0.44 0.69 0.84

30 0.39 0.64 0.80

40 0.34 0.64 0.79

50 0.34 0.62 0.76
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Figure 1: Conditional coalescent tree with n = 8 leaves. The mutation ∆ has B = 4

descendants.

39



Figure 2: Coalescence levels in B and C with their notations Jr and Kr. Here we

have n = 8, B = 4, J3 = 7, J2 = 5, J1 = 4, J0 = 2 and K3 = 6, K2 = 3, K1 = 1.
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Figure 3: Numerical values for An for n in the range 5− 50.
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Figure 4: Numerical values for Bn for n in the range 5− 50.
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Figure 5: Numerical values for Cn for n in the range 5− 50.
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Figure 6: Numerical values for Dn for n in the range 5− 50.
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