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ABSTRACT

We introduce a new Bayesian clustering algorithm for studying population structure using individually
geo-referenced multilocus data sets. The algorithm is based on the concept of hidden Markov random
field, which models the spatial dependencies at the cluster membership level. We argue that (i) a Markov
chain Monte Carlo procedure can implement the algorithm efficiently, (ii) it can detect significant
geographical discontinuities in allele frequencies and regulate the number of clusters, (iii) it can check
whether the clusters obtained without the use of spatial priors are robust to the hypothesis of dis-
continuous geographical variation in allele frequencies, and (iv) it can reduce the number of loci
required to obtain accurate assignments. We illustrate and discuss the implementation issues with the
Scandinavian brown bear and the human CEPH diversity panel data set.

IT has been a recent matter of debate to decide
whether clusters identified by Bayesian algorithms

were artificially detected structures emerging from
uneven sampling along clines or were actually well-
differentiated groups (Serre and Pääbo 2004; Rosenberg

et al. 2005). It has indeed been suggested that uneven
sampling during the experimental design might in-
fluence clustering patterns and that the degree of clus-
tering might be diminished by use of samples with
greater spatial homogeneity. This dilemma has even
introduced doubt about whether Bayesian clustering
algorithms are appropriate tools for studying genetic
structure in populations with continuous variation of
allele frequencies.

Such issues have been reported after a study of ge-
netic structure of human populations by Rosenberg

et al. (2002). Without the use of predefined populations,
this study inferred the geographical ancestries of in-
dividuals from 52 worldwide samples with individuals
genotyped at 377 microsatellite loci. Using the Bayesian
clustering program STRUCTURE (Pritchard et al.
2000) and increasing the number of loci from 377 to
993, Rosenberg et al. (2005) have shown that the six
clusters found in their previous study are robust and, at
the notable exception of the genetic isolate Kalash, that
they match with the major geographic regions in the
world. These clusters were interpreted as arising from
small discontinuities in allele frequencies when geo-
graphical barriers are crossed.

In the latter and other applications of clustering al-
gorithms, the spatial data are actually treated off line
and are not part of the modeling. Bayesian models such
as those developed by Pritchard et al. (2000), Dawson

and Belkhir (2001), or Corander et al. (2003) never-
theless offer a natural and appropriate framework for
including spatial prior information when assigning an
individual to a fixed number of clusters. For example,
a recent study by Guillot et al. (2005) used spatial
explicit priors in a full-Bayes perspective and success-
fully identified genetic barriers in a wolverine popula-
tion. An assignment method was also used by Wasser

et al. (2004) to infer the spatial origin of African ele-
phants. Here we argue that modified Bayesian algo-
rithms can provide additional evidence to solve cline/
cluster dilemmas such as those discussed in Rosenberg

et al. (2005). A natural way to proceed is to include
priors on continuous variation of genetic diversity in
the Bayesian model used by STRUCTURE and check
whether or not the previously discussed clusters are
robust.

In this study, we present a new hierarchical Bayes
algorithm that incorporates models for geographical
continuity of allele frequencies. This is achieved by
using hidden Markov random fields (HMRFs) as prior
distributions on cluster membership. An informal defi-
nition of HMRFs states that allele frequencies at a spe-
cific geographical site are more likely to be close to the
allele frequencies at neighboring sites than at distant
sites. The problem of local differentiation may also
be studied in terms of change in correlation with dis-
tance as considered by Malécot (1948), where ‘‘indi-
viduals living nearby tend to be more alike than those
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living far apart’’ (Kimura and Weiss 1964, p. 561). The
HMRF is basically another formulation of the same idea
with statistical correlation hidden at the cluster mem-
bership level.

We illustrate some applications of HMRFs in a Bayes-
ian context. First, in populations with presumed con-
tinuous variation in allele frequencies, we argue that
HMRFs are powerful when detecting geographical dis-
continuities in allele frequencies and regulating the
number of clusters. Then, we address the cline/cluster
dilemma with HMRFs using a subsample of the CEPH
human polymorphism data set and check that the main
clusters obtained with STRUCTURE are robust to the
inclusion of continuous variation in allele frequencies
through space. In addition, we show that an accuracy
similar to the one obtained with nonspatial methods can
be achieved while using a smaller number of genetic
markers.

THE POTTS–DIRICHLET MODEL

In this study we borrow from the toolbox of statistical
physics the concept of Markov random field (MRF), also
called the Potts model (Potts 1952; Preston 1974; Wu

1982. The model has been coined to handle stochastic
networks where particles in identical states evolve in
patches larger than expected under an absence of in-
teractions. Guttorp (1995) gives a recent review of the
Potts model at a fairly introductory level. Since the
1970s, MRFs have a long tradition in image analysis,
where the color of pixels is correlated to the color of
neighboring pixels (see, e.g., Geman and Geman 1984;
Besag 1986; Ripley 1988). In this context MRFs ac-
count for the property that adjacent pixels are more
likely to be of the same color than nonadjacent pixels.
HMRFs are relatively recent, but they have been suc-
cessfully applied in several domains (Zhang et al. 2001;
Green and Richardson 2002; Destrempes et al. 2005).
Ideas from Bayesian spatial genetics were also used in
association studies (Thomas et al. 2003). In analogy
with image analysis, MRF can model the fact that in-
dividuals from spatially continuous populations are
more likely to share cluster membership with their close
neighbors than with distant representatives. They seem
therefore relevant to study populations for which
continuous variation of allele frequencies may be used
as a postulate.

Devising MRF models raises a difficulty when the
study design is irregular. While the definition of neigh-
borhood is immediate in the case of lattice observations,
it is less obvious in the case of irregular sampling, be-
cause many choices are available. In this study, we use
the natural neighborhood structure obtained from the
so-called Dirichlet tiling. Denoting by (si), i ¼ 1; . . . ; n,
the set of observation sites for n individuals, each si is
surrounded by points that are closer to si than to any

other sampling site. This set of points is known as the
Dirichlet cell (or tile). Two sampling sites are neighbors
if their cells share a common edge. The use of the
sampling locations to define cells is natural unless the
sampling locations are unrepresentative of the individ-
ual spatial distribution. However, the method works in
principle for any fixed tiling, as soon as the user can
define a neighborhood structure to incorporate in the
Potts model. In the sequel, we refer to the Potts model
build on the Dirichlet tiling generated by sampling sites
as the Potts–Dirichlet model.

We denote by ci the cluster from which the individual i
originates, and we assume the existence of at most Kmax

clusters. As we shall see later, the constant Kmax should
indeed be considered to be larger than the true (or
presumed true) number of clusters, K. We let c ¼ (ci)
denote the cluster configuration, i.e., a map that takes
all cells and specifies the clusters to which they belong.
In addition we let U(c) denote the number of neigh-
boring pairs with the same labels in c. Formally, we have

U ðcÞ ¼
X
i�j

dci ;cj
; ð1Þ

where i � j indicates that i and j are neighbors, and the
Kronecker symbol dci ;cj

takes the value 1 if ci ¼ cj and
otherwise 0. Large values of U(c) correspond to spatial
patterns with large patches of individuals belonging to
the same cluster. Small values of U(c) (maybe equal to 0)
correspond to patterns that do not display any sort of
spatial organization.

The Potts model is a probability distribution on the
set of cluster configurations. Given n observation sites,
the probability of configuration c is written as

pðcÞ} expðcU ðcÞÞ; c 2 f1; . . . ; K maxgn; ð2Þ

where c is a nonnegative parameter called the interac-
tion parameter. The value c ¼ 0 corresponds to the
uniform distribution on the configuration space. Large
values of c make more likely the observation of largely
clustered configurations corresponding to large U(c).
Two simulations of the Potts–Dirichlet model are dis-
played in Figure 1 for Kmax ¼ 3, c ¼ 0.1, c ¼ 0.9, where
the sites were generated from the uniform distribution
on a square domain. For Kmax ¼ 3–6, simulations (not
reported) showed that the value c ¼ 1.0 can be con-
sidered a high level of spatial interaction, for which
the probability that pairs of neighbors are in the same
cluster is close to one. In contrast, values of c # 0.4
correspond to weak interactions. In this case the prob-
ability that pairs of neighbors are in the same cluster
is ,0.3. Values of c around c � 0.6–0.7 are suitable
for observing the coexistence of several clusters, while
for larger values the model has a tendency to form a
single cluster. We also note that the Potts model does
not assume connected clusters, and the number K of
observed clusters may be lower than Kmax.
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To work with a well-defined probability distribution,
the requirement that probabilities sum to one must be
fulfilled. This is achieved by taking

pðcÞ ¼ ecU ðcÞ

Zðc; KmaxÞ
; ð3Þ

where Z(c, Kmax) is a normalizing constant called the
partition function:

Zðc; KmaxÞ ¼
X

c

ecU ðcÞ: ð4Þ

Computing the partition function of the Potts model
and performing perfect sampling for an arbitrary
graph is feasible if there are only a few sampling sites;
otherwise it is a highly difficult problem. Historically
the Metropolis algorithm got around the issue by us-
ing an ingenious cancellation of this constant term
(Metropolis et al. 1953).

In addition to providing a flexible way to model a
spatially organized population, the Potts model satisfies
a spatial Markov property that states that the conditional

probability for membership in ci given the configuration
at all other sites c�i ¼ (cj)j 6¼i is equal to the conditional
probability given the state of its neighbors c@i ¼ (cj)j�i.
Mathematically, this property can be written as

pðci j c�iÞ ¼ pðci j c@iÞ: ð5Þ

More specifically, we have

pðci j c@iÞ} exp

�
c
X
j�i

dci ;cj

�
: ð6Þ

The above conditional probabilities involve local com-
putations only, and the sum

P
j�i dci ;cj

can be inter-
preted as the sum of influences of all neighbors of i.
The Markov property is a basis for implementing fast
simulation and inference algorithms.

HIERARCHICAL BAYES

Model: In this section, we present the hierarchical
Bayes model based on an HMRF. With c¼ 0, the HMRF
model assumes a noninformative spatial prior and then

Figure 1.—Two cluster configurations from
the three-states Potts–Dirichlet model. For c ¼
0.1, no spatial structure can be observed (the sit-
uation is close to the noninformative prior used
by STRUCTURE). For c ¼ 0.9, a number of non-
necessarily connected random clusters can be
observed.
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encompasses the classical Bayesian clustering models of
Pritchard et al. (2000), Dawson and Belkhir (2001),
and Corander et al. (2003), which can be seen as
particular cases. In addition to a spatial prior, a second
modification of the standard Bayesian clustering model
includes departures from the HW equilibrium caused
by inbreeding. Inbreeding coefficients represent the
probability that two homologous genes are identical by
descent. To implement the modification, inbreeding
coefficients can be considered as additional statistical
parameters fk. We use notations similar to those used in
the previous works: L is the number of loci, J‘ is the
number of alleles at locus ‘, and z is the collection of
all genotypes (the data). Given that the individual i
originates from the cluster ci ¼ k and given the allele
frequencies fk.. in this cluster, the conditional probabil-
ity of observing the genotype zi

‘ ¼ (ai
‘, bi

‘) at locus ‘ is

pðz‘i j k; fk‘:; fkÞ ¼ Lkð fk‘a‘i ; fk‘b‘i Þ; ð7Þ

where Lkð f ; f Þ ¼ f 2 1 fk f and Lkð f ; g Þ ¼ 2fg ð1� fkÞ
for f 6¼ g (see, e.g., Hartl and Clark 1997). Diploidy
is also assumed.

We write the set of all parameters as u¼ (c, c, f, f) with
c the interaction parameter; c the cluster configura-
tion; f ¼ ( fk‘j), k ¼ 1, . . . , Kmax, ‘ ¼ 1, . . . , L, j ¼ 1, . . . , J‘,
the allele frequencies; and f ¼ ðf1; . . . ; fKmax

Þ the in-
breeding coefficients in each subpopulation. As in
STRUCTURE, the priors on allele frequencies are
Dirichlet distributions Dða; . . . ; aÞ. The prior distribu-
tions on the fk’s are beta Bðl; mÞ distributions. Al-
though we have included c in the parameter list to
implement a full-Bayes approach, the estimation of c

nevertheless generates specific computational difficul-
ties due to the exponential number of terms involved in
the partition function Z (Gelman and Meng 1998). For
this reason, we often consider fixed values for this pa-
rameter with typical values within the range (0.1, 1.0).
This can be formulated with prior distributions on the
rescaled interaction parameters c/cmax being either
beta distributions or constant (Dirac) distributions. The
prior distribution on u reflects the hierarchy of the
model and takes the following form:

pðuÞ ¼ pðc;f; c; f Þ ¼ pðfÞpðc j fÞpðc j f;cÞpð f j c;c;fÞ
¼ pðfÞpðcÞpðc j cÞpð f j cÞ: ð8Þ

Assuming linkage equilibrium between loci, the like-
lihood is defined as

pðz j uÞ ¼
Yn
i¼1

YL
‘¼1

pðz‘i j ci ; fci ;‘;:; fci
Þ

¼
Yn
i¼1

YL
‘¼1

Lci ð fci‘a
‘
i
; fci‘b

‘
i
Þ; ð9Þ

where Lk is defined in Equation 7.

Inference using Markov chain Monte Carlo: Infer-
ences on u are carried out by simulating the posterior
distribution p(u j z) through a Markov chain Monte
Carlo (MCMC) sampling algorithm. In this algorithm,
we combine sequential updates of blocks of parameters,
each block of parameters being either fully or partially
updated. The description of the MCMC steps is detailed
in the appendix. A complete update of all blocks of
parameters is referred to as a cycle.

Estimating the number of clusters: As other Bayesian
clustering methods do, the HMRF model refers implic-
itly to an unknown number of clusters K. In practice
this number K has to be estimated. Previous approaches
typically fall into two categories: (1) maximizing the
likelihood modified with a penalty that decreases with
model complexity (e.g., Bayes information criteria and
deviance information criteria) and (2) choosing a prior
distribution on K and maximizing the posterior distri-
bution using transdimensional MCMC computations
(which are usually time-consuming to develop and to
run). Although these methods have proved effective
in many cases, we use an alternative approach known
as regularization in statistics. For this terminology, we
refer to the book by Ripley (1996, Chap. 4.3, p. 136).
The rationale for regularization and the relationship
with the algorithm implemented in STRUCTURE can
be explained as follows. Let Ls(z, f, c) denote the log-
probability for the complete data (observed plus un-
observed) in the original approach of Pritchard et al.
(2000). When we refer to this approach, we mean the
no-admixture model with uncorrelated allele frequen-
cies. Assuming absence of inbreeding, the log-probability
of the HMRF model can be expressed as

Lðz; f ; cÞ ¼ Lsðz; f ; cÞ1 cU ðcÞ1 C c; ð10Þ

where the term U(c) represents the contribution from
the spatial prior, and Cc is a constant that depends
on c. For the value c ¼ 0, the model implemented
in STRUCTURE is then recovered. In fact, Equation
10 corresponds to the Lagrangian formulation of an
optimization problem where c can be viewed as the
Lagrange multiplier. With the data in hand, the opti-
mization problem seeks the most likely cluster assign-
ments under the constraint that a maximal number of
neighboring pairs should fall in the same clusters. For
small c’s (c , 0.3), the constraint is weak, and the
results are expected to be close to those produced by
STRUCTURE. For larger values the results are generally
expected to differ.

In the regularization approach, Kmax is a value pre-
sumed larger than the true number of clusters K. When
the algorithm is started, the cluster configuration c
spans arbitrary values between 1 and Kmax. As the chain
runs, the program attempts to reduce the number of
nonempty clusters that is finally considered as an esti-
mate of K. In practice, one starts with runs with small
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values of Kmax and increases Kmax unless the estimated
K is strictly lower than Kmax. Then, one checks that
the result remains identical when higher values of Kmax

are used. Practice also shows that repeating shorter
runs and performing estimation from the runs with the
highest likelihood is a reasonable strategy.

The connections between model selection and regu-
larization have been emphasized several times in the
statistical literature. Indeed, regularization is a key
argument in statistical procedures such as ridge re-
gression (Hoerl and Kennard 1970), lasso estimators
(Tibshirani 1996), and feedforward neural networks
weight decay (Bishop 1995). Such methods were suc-
cessful in various areas such as text mining or gene
selection from large transcriptomic data sets. Never-
theless, we are not aware of any published statistical
methods that have used regularization in a hidden con-
text as is done here. The relevance of the regularization
principle is carefully assessed in simulation study.

SIMULATION STUDY

In this section we report results from an intensive
simulation study. The goals of our experiments are (i)
to give evidence that the MCMC implementation is
correct, (ii) to assess the value of predictions obtained
from the HMRF model with particular attention paid
to estimation of the unknown number of populations
K and the cluster configuration c, and (iii) to compare
the HMRF model with a nonspatial approach and to a
lesser extent with the Bayesian clustering algorithm
GENELAND developed by Guillot et al. (2005).

Estimating the number of clusters: To check the
validity of the HMRF model, we performed inferences
for 300 simulated data sets obtained as replicates from
the model prior distributions. Individual geographical
coordinates were generated from a two-dimensional
uniform distribution on a square domain. Genotypes
with 10 loci and 10 alleles per locus were simulated using
multinomial sampling from the Dirichlet Dð1; . . . ; 1Þ

distribution. The interaction parameter c was simulated
according to a uniform distribution on f0; 0:1; . . . ; 1g.
The inbreeding coefficients were simulated according
to a beta Bð4; 40Þ distribution. The hidden cluster con-
figurations c were generated from the Potts–Dirichlet
model with K ¼ Kmax ¼ 1, 2, 3 classes. Replicates with
K ¼ 1, 2, 3 classes were simulated for n ¼ 50, 100, 150
individuals, respectively.

In the full-Bayes inference method (inference of c),
the computation of the partition function Z(c, Kmax)
involved preliminary off-line runs. They were carried
out with 20,000 cycles of a Gibbs sampler with a thinning
period of 10 cycles. The maximal number of clusters was
fixed to Kmax¼ 5, and 30,000 cycles, a burn-in period of
20,000, and a thinning period of 10 cycles were used.
The parameter c was kept equal to 0 during the first
5000 cycles (see Updating the interaction parameter c in
the appendix for more details).

The estimation errors are summarized in Figure 2.
This figure displays histograms for the three types of
data sets K ¼ 1, 2, 3. For data sets made of a single
population, the HMRF model estimated K̂ ¼ 1 in almost
all replicates. Data sets made of K ¼ 2 clusters were also
identified as being so for .80 replicates (of 100), and, in
the data sets for which we had K̂ ¼ 3 instead of K̂ ¼ 2,
the third cluster consisted of less than two individuals.
For data sets made of K ¼ 3 populations, perfect esti-
mation dropped to 55%, but a closer look at the results
for which we had K̂ ¼ 4 instead of K̂ ¼ 3 revealed that
the third cluster consisted of less than four individuals.
In these cases, a longer run might empty the spurious
cluster (but we did not evaluate how long this might
take). In all simulations, each extra cluster consisted of
at most six individuals. Furthermore, K was never un-
derestimated. These results are summarized in Table 1.

Estimating cluster membership probabilities: We now
turn to the accuracy of inference in terms of correct
assignments. We denote by (xij) the n 3 n matrix whose
entries are xij ¼ 1 if ci ¼ cj and 0 otherwise. Similarly we
denote by ðx̂ijÞ the corresponding matrix obtained from
the estimated cluster configuration ĉ. We assessed the

Figure 2.—Distributions of the number of clusters estimated by the HRMF model. Data sets were simulated from the prior
distributions of the HMRF model. The vertical lines indicate the true number of populations.
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accuracy of cluster assignment through the error rate
in coassignment (ERCA) defined as

ERCA ¼ 2

nðn 1 1Þ
Xn

i;j¼1

1� dxi;j ;x̂i;j
:

This pair-based measure has the advantage over indi-
vidual-based indexes of being insensitive to the issue of
(cluster) label switching.

To assess the benefit of our approach as compared
to models accounting neither for inbreeding nor for
spatial structure, we carried out additional experiments
from the HMRF model at c ¼ 0 and f ¼ 0 (Hardy–
Weinberg equilibrium assumed). The assumptions of
this simpler model (referred to as the nonspatial
model) were similar to those made in the programs
STRUCTURE (Pritchard et al. 2000), PARTITION
(Dawson and Belkhir 2001), and BAPS (Corander

et al. 2003). The HMRF model with fixed parameters

c ¼ 0 and f ¼ 0 was used instead of these programs to
avoid potential biases due to specific computer imple-
mentations. Typical cluster configurations at low and
high c’s are portrayed in Figure 1 for K ¼ 3. They cor-
respond to low and high levels of spatial organization
(c ¼ 0.1 and 0.9). In this section similar situations were
reproduced with K ¼ 2.

We simulated 200 data sets from the HMRF model
prior distributions with Kmax ¼ 2, using simulations
from the MCMC program without data (1000 cycles).
Running the program for a fixed number of cycles did
not warrant the convergence of the MCMC sampler.
As the aim of the simulation study was the retrieval of
previously stored allele frequencies and cluster mem-
berships, this shortcoming did not affect the perfor-
mance study. In the sampled data, individuals were
occasionally grouped in a single cluster (for values of
c . 0.8). The clusters had no predefined size and might
consist of very few (,10) individuals. The ERCA rates
are reported in Table 2. In this table, the rates were
averaged either over all data sets or over subsets of data
that corresponded to different levels of pairwise FST,
interaction parameter c, and inbreeding coefficients
(f1, f2).

The results provided evidence that the HMRF model
increased the number of correct assignments compared
to the nonspatial model. A more detailed look at subsets
of simulated data revealed that the HMRF model always
performed better than the other models whatever the
levels of spatial interaction or inbreeding. The highest

TABLE 2

Error rate in coassignments (ERCA) for 200 simulated data sets (n ¼ 100, L ¼ 10, J‘ ¼ 10) with Kmax ¼ 2

Genetic structure: Spatial structure: Inbreeding
FST c (f1, f2) Nonspatial model HMRF model GENELAND

All All All 16.1 0.7 3.2

FST # 0.08 All All 26.3 1.6 6.6
0.08 , FST # 0.09 All All 7.6 0.6 1.4
0.09 , FST # 0.1 All All 8 0.6 1.4
FST . 0.1 All All 8.3 0.2 1.1

All c # 0.2 All 1.1 1 1.1
All 0.2 , c # 0.4 All 1 0.8 1.6
All 0.4 , c # 0.6 All 2.7 0.7 0.9
All 0.6 , c # 0.8 All 28.2 0.4 4.7
All c . 0.8 All 42.4 0.5 6.9

All All (,0.06, ,0.06) 17.2 0.3 0.7
All All (,0.06, .0.1) or (.0.1, ,0.06) 10 0.5 1.9
All All (.0.1, .0.1) 12.3 1 1.5

FST # 0.08 c # 0.4 All 2.7 2.1 2.8
FST # 0.08 0.6 , c # 1 All 41.8 0.9 9.4
FST . 0.1 c # 0.4 All 0.2 0.1 0.4
FST . 0.1 0.6 , c # 1 All 23.7 0.3 2.4

The three models were initialized at Kmax ¼ 2.

TABLE 1

Proportions of individuals assigned to extra clusters given the
number of estimated clusters K̂ and their true number K

K̂ ¼ 1 K̂ ¼ 2 K̂ ¼ 3 K̂ ¼ 4 K̂ ¼ 5

True K ¼ 1 0 0.02 0 0 0
True K ¼ 2 — 0 0.0136 — 0.03
True K ¼ 3 — — 0 0.0096 0.0267

— indicates cases that never occurred during the simula-
tion study.

810 O. Francxois, S. Ancelet and G. Guillot



improvements were obtained at low levels of differenti-
ation (FST # 0.08) and high levels of spatial structure
(c . 0.6). The HMRF model achieved the smallest im-
provements over the other models for high levels of in-
breeding, although it still gave very accurate results. In
these cases, the inbreeding coefficients were correctly
estimated (results not shown).

The error rates of the nonspatial model were in some
cases very high. This was indeed the case for large val-
ues of c. These results may be explained as data sets
generated from large c sometimes contained a single
cluster. Due to the regularization procedure, this cluster
was successfully detected by the HMRF model (and also
by GENELAND) but not by the nonspatial model, which
split the unique population into two arbitrary parts.

These results carried information about the perfor-
mance of the HMRF model when the initial number of
clusters was close to the true number (Kmax¼ 2, K¼ 1 or
2). We repeated the inference study on the same 200
data sets with Kmax ¼ 5. The global ERCA was �10%,
which was still a low misclassification rate.

REAL DATA ANALYSIS

Scandinavian brown bears: The Scandinavian brown
bear (Ursus arctos) is an example of a wild population
with strong female phylopatry and male-mediated gene
flows. We analyzed the same data set as in two previous
studies (Waits et al. 2000; Manel et al. 2004) from 366
geo-referenced individuals genotyped at 19 microsat-
ellite loci. We first used the full-Bayes HMRF model
implemented with the same prior distributions as in the
simulation study and ran the algorithm with Kmax¼ 4–7.
After 30,000 cycles, the HMRF model with Kmax ¼ 4
converged to the same clusters as described in the pre-
vious study. We referred to these clusters as the south
(S), middle (M), north–west–north (NWN), and north–
north (NN) areas. With Kmax ¼ 5–7, the HMRF model
yielded five clusters, three of which coincided with the
Kmax ¼ 4 run while the fourth (S) was split into two
subsets with random shapes. The spatial interaction
parameter c had posterior mode within the range (0.6,
0.8) (95% credible interval). However, the random
shapes of the two S subclusters were an indicator that
the MCMC runs might have not converged, perhaps due
to the large amount of computational resource spent
in the estimation of c. Therefore we performed 10
additional runs of the algorithm for two values of the
interaction parameter c¼ 0.7–0.8. The runs that reached
the highest likelihood resulted in the same four clus-
ters as previously observed (see Figure 3). Inferences
carried out under a fixed large value of c usually favor
cluster configurations made of few large clusters. The
fact that the HRMF model obtained the same clusters
as STRUCTURE gave evidence that these original clus-
ters were robust to the inclusion of a spatial prior. A
by-product of the HMRF model is its ability to infer

inbreeding coefficients. The inbreeding coefficients pos-
terior estimates were computed as fNN¼ 0.022, fNWN¼
0.006, fM ¼ 0.013, and fS ¼ 0.007. These small values
were consistent with the observation that STRUCTURE
worked well for this data set. The HMRF model with
fixed parameter setting converged faster than the full-
Bayes version. (We used 1000 cycles for Kmax ¼ 4 and
20,000 cycles for Kmax ¼ 7.) GENELAND runs at fixed
K ¼ 4–6 produced the same assignment results as the
HMRF model (5000 cycles). Using reversible jumps, the
posterior distribution of K exhibited a mode at K ¼ 5
and a 95% credible interval K 2 (4, 8) (50,000 cycles).

Human data: We used the Human Genome Diversity
Panel–Centre d’Etude du Polymorphisme Humain
(HGDP–CEPH) (Cann et al. 2002) to further assess the
influence and the benefit of including spatial continuity
prior hypotheses in the analysis of multilocus genotypes.
The HGDP–CEPH diversity panel data set contains 1056
individuals genotyped at 377 autosomal microsatellite
loci. It was first studied with the software STRUCTURE
by Rosenberg et al. (2002). Without using predefined
populations, six main genetic clusters were identified,
five of which corresponded to major geographic regions.
Here we restricted the study to the Eurasian and East
Asian populations, including samples with distinct ori-
gins, 8 from Pakistan, 16 from China, and 1 from Siberia,
Japan, and Cambodia (451 individuals). Two reasons
could be given for limiting the study to Eurasian and East
Asian populations. First, these populations contained
two of the five main clusters as well as the sixth cluster
found by Rosenberg et al. (2002). Second, the 27 pop-
ulations live on a same mainland, which justified using
the Dirichlet tiling without modifying the neighborhood
structure (although our computer program makes this

Figure 3.—Estimated cluster configuration for the Scandi-
navian brown bear data set in North Sweden using the HMRF
model (four clusters).
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possible). Coordinates of individuals in each sample
were not known explicitly. Instead they were available as
sample intervals from Cann et al. (2002). For instance,
the Kalash from Pakistan have longitudes in the range
35�–37� E and latitudes in the range 71�–72� N. In-
dividual coordinates were generated randomly within
the specified intervals. We checked that the results
presented here were rather independent of the individ-
ual coordinates within each sample (not reported).

To evaluate the inclusion of geographic continuity
prior, subsets of data containing 20, 10, and 5 random
loci were extracted from the original data set (20 sub-
samples for each number of loci). The HMRF model
was initialized with Kmax ¼ 3 clusters and then run for
50,000 cycles, with a burn-in period of 500 cycles and a
thinning interval of 5 cycles. The interaction parameter
c was either estimated from the same prior distributions
as in the simulation study (full Bayes) or fixed to c¼ 0.6.
With 20 loci, all outputs contained two clusters (Pakistan
including Kalash, 8 samples, against the other Asian
populations) regardless of the estimation strategy of the
interaction parameter c. With 10 loci the HMRF model
identified the two main clusters in 18 of the 20 runs.
With 5 loci no successful run was observed. The non-
spatial version (c¼ 0) led to the same outputs when the
number of clusters was set to Kmax ¼ 2.

To further highlight the potential of the HMRF model,
we focused on the Pakistan data set and the retrieval of the
Kalash cluster. The Kalash sample contains 25 of the 200
individuals from the eight Pakistan samples. Ranges for
sample spatial coordinates are reported in Table 3 (Cann

et al. 2002), and a representation of the resampled
individual locations is displayed in Figure 4. In this study,
data sets with 40, 30, and 20 randomly chosen loci were
extracted from the Pakistan data set. The idea here is to
use the results from a large number of loci as the ‘‘correct’’
answer and then see which methods are able to get this
correct answer with fewer loci. Because all the extracted
data sets did not contain the same amount of information
about genetic structure, we distinguished three distinct
levels of potential difficulty (strong clustering, SC; weak
clustering, WC; and no cluster, NC) according to the
following classification. For each subset, we preliminarily

computed a neighbor-joining (NJ) tree using the shared
allele distance (see Nei and Kumar 2000), which sep-
arated the Pakistan samples in two sister clades. Data
sets for which one clade contained .20 Kalash grouped
against the remaining Pakistan representatives were clas-
sified as SC. Such data sets were expected to be easy for
Bayesian clustering algorithms, because a more basic
analysis gives a correct answer. As well there were data
sets for which no obvious clusters could be directly
inferred from the NJ tree. These data sets were classi-
fied as NC, and they were expected to be difficult for
Bayesian clustering algorithms. We added an interme-
diate class, WC, for which the Kalash sample generally
formed a cluster in the NJ tree, but this was done in as-
sociation with other samples such as Pathan or Balochi/
Brahui. With 40 randomly chosen loci,�38% of all data
sets were in the SC category, 24% were classified as WC,
and the remaining 38% were NC. One NJ tree clustered
the Balochi/Brahui against the rest of Pakistan. With
30 loci, these numbers changed to SC 1 WC¼ 42% and
NC ¼ 58%, and NC increased to 76% in the 20-loci
data sets. These ratios were obtained from 300 distinct
data sets.

We performed 10 runs of the HMRF model for 42
subsets (21 subsets with 40 loci and 21 subsets with 30
loci). The HMRF model was first run for 200 cycles at
c ¼ 0.4, and these cycles were followed by a further
500–1000 cycles at c¼ 0.6. For the CEPH diversity panel
data set, this strategy appeared more efficient than the
full-Bayes approach, which was statistically unable to
identify the Kalash (we attributed this failure to the algo-
rithmic complications and the approximations made

TABLE 3

Latitudes and longitudes for the eight Pakistan samples
(from CANN et al. 2002)

Sample name Latitude Longitude Sample size

Brahui 30�–31� N 66�–67� E 25
Balochi 30�–31� N 66�–67� E 25
Hazara 33�–34� N 70� E 25
Makrani 26� N 62�–66� E 25
Shindi 24�–27� N 68�–70� E 25
Pathan 32�–35� N 69�–72� E 25
Kalash 35�–37� N 71�–72� E 25
Burusho 36�–37� N 73�–75� E 25

Figure 4.—Sampled geographical coordinates of 70 indi-
viduals from the Pakistan data set and the associated Dirichlet
tiling. (The full sample was not shown but a similar spatial dis-
tribution was assumed for the 200 individuals.)
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in estimating c). The run with the highest likelihood was
saved as the final result. The same strategy was also used
at c¼ 0 with a larger total number of cycles (up to 2000).
Small burn-in (10 cycles) and thinning (1 cycle) periods
were implemented. We first used Kmax ¼ 2 in both the
HMRF and nonspatial versions. To compare with pub-
lished results, we also assumed absence of inbreeding.

For SC data sets with 40 loci, the HMRF model and the
nonspatial versions performed similarly and retrieved
the Kalash sample. Similar results were reported for
STRUCTURE in the literature (Bamshad et al. 2003;
Ramachandran et al. 2004). The HMRF model failed to
identify the Kalash in a single WC subset whereas the
nonspatial version failed twice in this category. The
HMRF model identified the Kalash successfully in 75%
of NC samples whereas the nonspatial version failed
in the same ratio (75%). The divergence between the
spatial and nonspatial version increased as we repro-
duced the study with 30 loci. The HMRF algorithm
failed to identify the Kalash in 37% of the NC cases. The
global success rate of the HMRF model was, however,
.85% (including SC, WC, and NC cases) whereas this
global rate dropped to 47% in the nonspatial algorithm.
With 20 loci, both algorithms failed in a majority of the
NC cases. For all loci, the Kmax ¼ 3 results were in strict
concordance with the Kmax ¼ 2 results for the spatial
version although .10 runs were sometimes necessary in
the NC cases.

DISCUSSION

Detecting population subdivision is a subject of great
interest to population geneticists, and a large body of
approaches have been developed for this. In this study,
we have presented a Bayesian clustering algorithm that
incorporates hidden Markov random fields as prior dis-
tributions on cluster configurations. Markov random
fields are mathematical models that account for the
‘‘continuity’’ of discrete random variables on a graph
or a network (for a rigorous definition of continuity in
this context, refer to Preston 1974). The term hidden
means that the cluster configuration is unobserved and
is instead reconstructed from an MCMC algorithm. In
spatial population genetics the term continuous pop-
ulation usually refers to S. Wright’s famous concept of
isolation by distance (Wright 1943), which can in turn
be understood in terms of the stepping-stone model
(Kimura and Weiss 1964; Rousset 2004). Because it
considers interacting demes on a lattice, the stepping-
stone model exhibits the same type of spatial Markov
property as does the Potts model. Inserting the stepping-
stone model into a Bayesian framework generates con-
ceptual difficulties because its stationary distribution
has no known formulation. However, the HMRF model
may capture its essential properties.

While STRUCTURE has recently become prominent
among clustering algorithms, another recent approach

includes spatially explicit priors in a highly structured
statistical framework (Guillot et al. 2005). The ap-
proach developed by Guillot et al. (2005) nevertheless
differs from the HMRF model significantly. In Guillot

et al. (2005), population territories are viewed as unions
of polygons. A full-Bayes algorithm estimates the num-
ber of populations using the reversible-jump MCMC
machinery. The simulation study carried out by Guillot

et al. (2005) suggests that their model performs well
when genetic discontinuities occur as very simple poly-
gonal lines are crossed (e.g., straight lines). A field
study and a subsequent analysis by Coulon et al. (2006)
also support these observations. Although simple
shaped territories are likely to be quite common, there
are also important cases where these assumptions do not
hold (for example, limited gene flows in areas with
complex geography, mountain ranges, worldwide stud-
ies). In the HMRF model, spatial dependencies are
prescribed at the individual level directly. The advan-
tage of the HRMF approach is that it can assign in-
dividuals when the hidden cluster configurations are
too complex to be summarized by simple polygonal
regions.

The HMRF model involves an interaction parameter
c that corresponds to the intensity with which two neigh-
bors belong to the same cluster. Estimates of c may be
interpreted as local measures of spatial clusteredness
for the studied sample. The higher c is the more likely
that the population may consist of a unique cluster with
a high level of genetic continuity (e.g., slow clinal vari-
ation). Estimates of c found in the studied (real) data
sets were generally .0.5, which indicated the presence
of continuous organization. Nevertheless, interpreta-
tions of such parameters would lead us far beyond the
scope of this study, because the connection to statistical
physics is not so direct in this context. In addition, we
have also claimed that c may play a more important role
as a Lagrange multiplier in a constrained optimization
problem where the nonspatial likelihood is optimized
while the algorithm attempts to assign a maximal
number of neighbor pairs to a same cluster. We have
indeed argued that the HMRF algorithm then contains
an implicit way for deciding the number of clusters, a
major issue in such statistical mixtures algorithms. From
this perspective, maintaining fixed values of the in-
teraction parameter c may be preferable to estimating
this parameter and has the additional advantage of
avoiding difficult computational issues (Gelman and
Meng 1998). The simulation study evaluated the use of
the full-Bayes HRMF algorithm (estimation of c) only.
This was done because simulations and inferences with
fixed c would have biased the results toward very low
ERCAs and very optimistic conclusions. During the
analysis of real data, versions of the HMRF model at
fixed values of c (�0.5–0.7) nevertheless achieved
better performances and were considerably faster than
the full-Bayes version.
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The use of the HMRF model has been illustrated in
two previously published data sets. The Scandinavian
brown bear is an example of a population with a strong
female phylopatry. Scandinavian bears were almost ex-
terminated at the beginning of the 20th century. After
efforts to protect the species in Sweden, the bear pop-
ulation has recovered from four female concentra-
tion areas. Until recently these areas were believed to
represent the surviving relict subpopulations after the
1930s bottleneck (see, e.g., Waits et al. 2000). Using two
independent methods (neighbor-joining trees and the
Bayesian clustering algorithm STRUCTURE), Manel

et al. (2004) found four genetic clusters that matched
with geographical clusters, but two of them were distinct
from the original female concentration areas. Using a
coalescent approach, Blum et al. (2004) computed the
female dispersal rate and found an estimate of 9 km per
generation. Because of the low dispersal rate in this
population, local genetic similarities can be considered
as a reasonable assumption to be included in a Bayes-
ian model for brown bear genetic diversity. The HMRF
model has been used for detecting geographical dis-
continuities in allele frequencies. The results confirmed
previously published results and provided reasonable
estimates for the number of clusters.

Using the human CEPH diversity panel data set, we
checked whether the clusters obtained without spatial
priors were robust to the hypothesis of continuous geo-
graphical variation in allele frequencies. The results
presented here reconciled the two apparently divergent
perspectives of Rosenberg et al. (2002, 2005) and Serre

and Pääbo (2004), which brought into conflict clines and
clusters regarding variation of human diversity. Re-
stricting to Eurasian and Asian populations and work-
ing with a prior on continuous variation (c � 0.6), we
recovered the three main clusters found by the algorithm
STRUCTURE. Some important facts must be mentioned
at this stage:

1. The two main clusters (Pakistan/non-Pakistan) were
identified with ,20 randomly chosen loci. The Kalash
cluster was identified using ,50 loci.

2. More importantly, the algorithm was unable to con-
firm the presence of other clusters in the Pakistan
and East Asia areas, perhaps due to the simultaneous
effects of reducing the number of loci (,120 loci)
and imposing the continuity prior. The combination
of these effects may have led to the neglect of some
very small discontinuities that were previously de-
tected when STRUCTURE was used with large values
of K and a larger number of loci. We performed 10
additional runs of the HMRF model using the full
set of loci. Regarding the Pakistan data, we were also
not able to retrieve other clusters. Regarding the East
Asia data set, we identified one additional cluster in
the northeastern area that matched with the Yakut–
Japanese samples. This cluster was also apparent in
the NJ tree.

3. The weight given to the prior distribution was a
moderate value that also corresponded to the poste-
rior mean estimated from the full-Bayes algorithm
when it converged [c � 0.6, 95% credible interval
(0.5, 0.9)].

4. A stronger level of prior interaction (e.g., c � 1) led
to a unique cluster and gave strong support to Serre
and Pääbo’s hypothesis of clinal variation within a
unique cluster.

5. Weaker levels of prior interaction (e.g., c � 0.2) led
to the same results as STRUCTURE and supported
Rosenberg’s small discontinuities hypothesis.

6. Here we supported the intermediate view of clinal
variation of allele frequencies with a number of
discontinuities smaller than those estimated by
Rosenberg et al. (2002). See Figure 5 for a picture
of the reconciliation.

In conclusion we have shown that the HMRF model
can achieve accuracy similar to that obtained with
nonspatial methods while using a smaller number of
genetic markers. Consequently the use of HMRF algo-
rithms could be advocated in cases where the number of
polymorphic loci available to the study is limited, and
a prior knowledge about continuous spatial structure
could be incorporated with certainty.

Figure 5.—The reconciliation
illustrated. At the left of the c-axis,
a clustering analysis does not ac-
count for the spatial continuity
of allele frequencies and may de-
tect more clusters than actually
exist. At the right, the pure conti-
nuity hypothesis assumes no clus-
ter. Here the vision is intermediate,
with the main discontinuities con-
firmed, but some small clusters
may be considered nonsignificant.
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The source codes used in this study are available as an
R package that also provides additional visual displays
and the data sets used during this study. The R package
was mainly developed by S. Ancelet, and a version sup-
porting Linux OS and R 3.1.1. can be downloaded
from S. Ancelet’s or O. Francxois’s website. A multiple-
platform software will be made available within a few
months.
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APPENDIX: DETAILS OF MARKOV CHAIN MONTE
CARLO COMPUTATIONS

We iterated updates of blocks of parameters where
the basic update was as follows.

Updating allele frequencies fk‘j : We used a compo-
nentwise Metropolis–Hastings Markov chain simulation
algorithm. For the cluster labeled k and locus labeled
‘, an update of ð fk‘1; . . . ; jk‘J‘Þ selected two alleles at
random with indexes j and j9 and proposed to change
their frequencies fk‘j and fk‘j9 as follows. Denoting
a ¼ 1�

P
m 6¼j

m 6¼j9

fk‘m , new frequencies fk‘j* and fk‘j 9* are
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proposed as fk‘j* ¼ aBf and fk‘j 9* ¼ a � fk‘j* , where Bf is
sampled from a beta Bða;aÞ distribution (often a ¼ 1).
This move was accepted with probability

1 ^ pðz j u*Þ
pðz j uÞ

fk‘jð1� fk‘jÞ
fk‘j*ð1� fk‘j*Þ : ðA1Þ

The update was based on the conditional distribution of
the Dirichlet distribution (Gibbs sampler). The com-
plete update of allele frequencies replicated this basic
step for each locus and in all clusters. Typical values of a

were a ¼ 1 or 2.
Updating inbreeding coefficients fk: We implemented

a componentwise independent Metropolis–Hastings
sampler. For each population we iterated the follow-
ing basic update. A new inbreeding coefficient fk* was
sampled from a U½0; 1� distribution. We assumed a beta
Bð4; 40Þ prior distribution on each fk; hence fk* was
accepted with probability

1 ^ pðz j u*Þfk*
3ð1� fk*Þ39

pðz j uÞf3
kð1� fkÞ39 ðA2Þ

as we assumed a uniform prior on fk and made a sym-
metric proposal.

Updating the cluster configuration c: We used sequen-
tial updates for all i 2 {1, . . . , n}, where all sites were vis-
ited in order. At the ith step, a new value ci* was drawn
from a uniform distribution over all possible cluster
labels {1, . . . , Kmax}. This new state was accepted with
probability

1 ^ pðz j u*Þ
pðz j uÞ

pðc*Þ
pðcÞ ðA3Þ

and then it replaced the current cluster label ci. The
ratio p(c*)/p(c) can be calculated from a local variation
of the function U(c) very easily as

pðc*Þ
pðcÞ ¼ ecDUiðcÞ;

where

DUiðcÞ ¼
X
j�i

dcj ;ci* � dcj ;ci
:

Although this has not received much space in this
article, we also conducted numerical checks on the
correctness of the MCMC sampler. In particular we
checked that the results were consistent with those
obtained with STRUCTURE at c ¼ 0, and we checked
that prior distributions were well recovered when the
algorithm was implemented without data.

Updating the interaction parameter c (full-Bayes
only): Metropolis–Hastings updates of c required eval-
uating ratios of distributions of the form p(c jc*)/
p(c jc) for c* the new value. From Equation 3, this
computation involved the ratio Z c=Z c*, which was
computationally intractable. To avoid this difficulty, we
implemented a statistical physics approach known as
thermodynamic integration (Gelman and Meng 1998)
previously used by Green and Richardson (2002) in
the context of spatial epidemiology studies and also
described in detail in Hurn et al. (2003). The method
consisted of approximating the continuous interval (0,
cmax) by a discrete set of values {d, 2d, . . . , cmax} and
evaluating Z(c, Kmax) for each c using importance
sampling. Here, we used d ¼ 0.1 and the maximal value
of the interaction parameter was cmax ¼ 1. The im-
portance sampling method used MCMC computa-
tions based on the simulation of the Potts model with
50,000 cycles (thinning period of 100 cycles).

The values Z(c, Kmax) were stored in a look-up table
and were used in all additional computations with the
same graph topology. Updates of c were then carried
out by a standard Metropolis–Hastings Markov chain.
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