
Landscape genomic tests for associations between loci and

environmental gradients

Eric Frichot1 Sean Schoville1 Guillaume Bouchard2 Olivier François1
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Abstract

Adaptation to local environments often occurs through natural selection acting on a large num-
ber of alleles, each having a weak phenotypic effect. One way to detect these alleles is to identify
genetic polymorphisms that exhibit high correlation with environmental variables used as proxies
for ecological pressures. Here we propose an integrated framework based on population genetics,
ecological modeling and statistical learning techniques to screen genomes for signatures of local
adaptation. These new algorithms introduce latent factor mixed models to population genetics,
employing an approach based on probabilistic principal component analysis in which population
structure is introduced via unobserved variables. These fast, computationally efficient algorithms
detect correlations between environmental and genetic variation while simultaneously inferring
background levels of population structure. Comparing these new algorithms with related methods
provides evidence that latent factor models can efficiently estimate random effects due to popula-
tion history and isolation-by-distance patterns when computing gene-environment correlations, and
decrease the number of false-positive associations in genome scans. We then apply these models
to plant and human genetic data, identifying several genes with functions related to development
that exhibit unusual correlations with climatic gradients.

ar
X

iv
:1

20
5.

33
47

v2
  [

q-
bi

o.
PE

] 
 1

2 
Se

p 
20

12



1 Introduction

Local adaptation through natural selection plays a central role in shaping the variation of natural

populations [1, 2] and is of fundamental importance in evolutionary, conservation, and global-change

biology [3–7]. The intensity of natural selection commonly varies in space, and can result in gene-

environment interactions that have measurable effects on fitness (e.g. [8]). Adaptive divergence can

then cause local populations to evolve traits that provide advantage under local environmental condi-

tions.

In principle, identifying chromosomal regions involved in adaptive divergence can be achieved by

scanning genome-wide patterns of DNA polymorphism [9,10]. Usually, the aim of screening procedures

is to detect locus specific signatures of positive selection. In populations inhabiting spatially distinct

environments, loci that underlie adaptive divergence can be detected by comparing relative levels

of differentiation among large samples of unlinked markers [11, 12] and by using empirical tests to

compare levels of differentiation to the genomic background [13,14].

An alternative way to investigate signatures of local adaptation, especially when beneficial alleles

have weak phenotypic effects, is by identifying polymorphisms that exhibit high correlation with

environmental variables [3,15–18]. In natural populations, quantitative traits that exhibit continuous

geographic variation are often associated with specific variables reflecting selective pressures acting on

individual phenotypes [19] . This type of variation is then reflected in geographic clines or in sympatric

populations that exploit different ecological niches [20]. Evidence for local adaptation to continuous

environments can be detected if there is highly significant association with the environmental variables

at some loci compared to the background genomic variation.

However the geographical basis of both environmental and genetic variation can confound inter-

pretation of the tests [21], as local adaptation can be hindered by gene flow [22], and can be difficult

to distinguish from the effects of genetic drift and demographic history [14]. As a consequence, when

no corrections for the effects of population structure or isolation-by-distance are considered, tests for

associations between loci and environmental variables using classical regression models are prone to

high rates of false-positives [23]. Recent studies have used the background patterns of allele frequencies

to build a null model which accounts for the effects of drift and demographic history [15,18,24,25]. To



correct for population stratification, [15] used an empirical approach that estimates the covariance of

allele frequencies among populations. These authors assessed the evidence for local adaptation of each

allele by testing whether or not environmental variables explained more variance than a null model

with this particular covariance structure.

Here we argue that, unless a list of a priori selectively neutral loci are used to build the empirical

covariance matrix, empirical tests may face a problem of circularity. The need to identify neutral loci

from the genomic background before testing implies that these tests lack power to reject neutrality.

In this study, we address this problem by introducing new statistical models, called latent factor

mixed models. Using these models, we test correlations between environmental and genetic variation

while estimating the effects of hidden factors that represent background residual levels of population

structure. To perform parameter estimation, we extend probabilistic principal component analysis

and recent statistical learning approaches [26–28]. Based on low rank approximation of the residual

covariance matrix, we implement algorithms to deal with hundreds of thousands of polymorphisms

with very rapid computing times. We show that our algorithms control for random effects due to

population history and spatial autocorrelation when estimating gene-environment association, and we

provide examples of how our approach can be used to detect local adaptation in plants and humans.

2 Method

Consider the data matrix, (Gi`), where each entry records the allele frequency in population or indi-

vidual i at the genomic locus `, 1 ≤ i ≤ n, 1 ≤ ` ≤ L, and n and L represent the total sample size

and number of loci, respectively. For simplicity, we assume our loci are biallelic, e.g. single nucleotide

polymorphisms (SNPs), and data are avaiable for each individual. In this case, for each marker, there

is an ancestral and a derived allele, and Gi` is the number of derived alleles for locus ` and individual i.

For diploid data, Gi` is thus equal to 0, 1 or 2, and corresponds to the genotype at locus `. In addition

to the genotypic data, we have a vector of d geographic and environmental variables, (Xi), for each

individual. The vector of covariates could include latitude and longitude, habitat and other ecological

information, climatic variables, etc, that serve as proxies for unknown environmental pressures (For

example, see [15,21]).



Model. To evaluate associations between allele frequencies and environmental variables while

correcting for background levels of population structure, we regard the matrix G as being a response

variable in a regression mixed model

Gi` = µ` + βT` Xi + UTi V` + εi` , (1)

where µ` is a locus specific effect, β` is a d-dimensional vector of regression coefficients, Ui and V`

are scalar vectors with K dimensions (1 ≤ K ≤ n). The residuals εi` are statistically independent

Gaussian variables of mean zero and variance σ2. We use Bayesian analysis to estimate the regression

coefficients and their standard deviations. We assume Gaussian prior distributions on µ` and β`j with

means equal to zero and variances σ2
µ and σ2

βj
(β`j ∼ N(0, σ2

βj
)). Prior distributions on Ui and V`

are Gaussian distributions with means equal to zero and constant variance for each component (the

components are independent random variables). The variance of V` is set to σ2
V = 1, and all other

prior distributions on variances are non-informative. We refer to the above statistical model as a

Latent Factor Mixed Model (LFMM).

In LFMMs, environmental variables are introduced as fixed effects while population structure is

modeled via latent factors. To separate neutral variation from adaptive variation, the matrix term

UTV models the part of genetic variation that cannot be explained by the environmental pressures.

Note that the use of factorization methods is closely related to estimating population structure via

singular value decomposition, a well-established technique for identifying scores and loadings in prin-

cipal component analysis (PCA, [29]). Recently, matrix factorization methods have been generalized

to include probabilistic PCA [26] and probabilistic matrix factorization algorithms [27], which have

proven useful in analyzing population genetic data [28]. To clarify the connection between LFMM and

PCA, assume that no environmental variable is available. In this case, we set β` = 0 for all locus `.

In matrix factorization algorithms, a data matrix G with n rows and L columns can be decomposed

into a product of two matrices U and V , where U has n rows and K columns, and V is a K-by-L

matrix. Following [30], we assume that the genotypic data are centered. We consider the matrix

Yi` = Gi` − Ḡ.`, where we have substracted the mean value of each column, Ḡ.` =
∑n

i=1Gi`/n. For



each individual i and locus `, the decomposition is

Yi` = UTi V` =
K∑
k=1

UikVk` . (2)

To estimate the factor vectors Ui and V`, the squared error is minimized on the set of observed data

min
U,V

K∑
k=1

(Yi` − UikVk`)2 . (3)

With K = L, this approach is similar to computing PCA loadings and scores [29]. The number

of components K can, however, be chosen much lower than the number of loci or individuals. In

simulations, we based our choice of K on Tracy-Widom theory [30]. In real applications, this choice

of K may be replaced by other estimates of population genetic structure. When values are lower than

50, our algorithm is essentially a low-rank approximation of the covariance structure [31], which leads

to computationally fast estimation algorithms.

To simultaneously estimate scores and loadings, environmmental effects and biases, we imple-

mented a Gibbs sampler algorithm for LFMMs (File S1). The Gibbs sampler is based on computing

products of matrices of low dimension (typically, K ≤ 50), and its speed scales with the current size

of SNP data sets, around n ≈ 1, 000 and L ≈ 500, 000. In addition, we implemented a stochastic algo-

rithm to compute standard deviations and |z|-scores for the environmental effects. Using the empirical

distribution of |z|-scores obtained from all L loci, we compared each locus to the genomic background

and retained loci with |z|-scores exhibiting the highest absolute values. From a preliminary set of

experiments using data simulated from the model defined in equation (1), we found that the esti-

mates of fixed effects stabilized quickly, after 1,000 to 10,000 sweeps for n = 100 − 1, 000 individuals

and L = 1, 000 − 100, 000 loci. A 10-fold increase in the number of sweeps, however, was necessary

to recover the true values of the latent factors. Additionally, we developed numerical optimization

methods to compute maximum a posteriori (MAP) estimates for the LFMM. One of these methods,

the alternate least square method uses deterministic steps that are similar to our stochastic Gibbs

sampler [32]. When checking for convergence of the MCMC algorithm, we also found that least square

estimates of regression coefficients were close to the point estimates computed by the Gibbs sampler

method.

Theoretical considerations. Incorporating population genetic structure via estimates of admixture

proportions or principal component analysis is common in genome-wide association studies [33, 34]).



[18] developed an alternative approach to identify loci underlying local adaptation in the computer

program Bayenv. To explain the difference between our approach and Bayenv, suppose that we start

by computing PCA scores from the matrix Y for all individuals, and denote by Ũi the PCA scores for

individual i. The product matrix Ũ ŨT is thus equal to the empirical covariance matrix

Ũ ŨT = Y Y T/n . (4)

Now using the scores as covariates in a Bayesian regression model, we obtain

G = µ+ βTX + ŨTV + ε. (5)

By a change of variables, this is equivalent to fitting the model

G = µ+ βTX + ε̃ (6)

where the distribution of ε̃ is a multivariate Gaussian distribution of the covariance matrix equal to

σ2Id + σ2
V Y Y

T /n (Id is the n-dimensional identity matrix). Setting σ2
V = 1 and considering small

values of the scaling parameter σ2, the model defined in equation (6) is nearly equivalent to the model

implemented in Bayenv. In a Bayesian Gaussian regression framework, incorporating PCA scores

as covariates in an association model is equivalent to modeling residuals as Gaussian vectors with

covariance depending on the empirical covariance matrix of the genotypic data. Though the Bayenv

model uses a different link function, its residual term has the same covariance matrix as the genotypic

data. From a theoretical point of view, the main difference between the Bayenv model and LFMM is

the inference of the factor matrix U which is done in a fully Bayesian algorithm in LFMMs and in an

empirical Bayes algorithm in Bayenv (see Discussion).

3 Simulation Study

We designed experiments based on simulated data to answer the following questions: 1) Are tests

based on LFMMs conservative or liberal? 2) How does the LFMM algorithm perform compared to

existing methods such as logistic or standard regression models [3], principal components regression

and other existing mixed models [18]?



Distribution of P -values under the null hypothesis. We used equation (1) with β = 0 to

generate data under a null hypothesis of no association with any environmental variables. In these

experiments, we set the number of individuals to n = 100, and the number of loci to L = 1, 000.

We used 6 values, K = 1, 3, 5, 7, 10 and 20, for the rank of the factor matrix, V . For each series of

experiments, we generated 10 replicates of this generative model, and we studied the distributions of

P -values for tests using LFMMs. In these tests, we set the rank of the factor matrix equal to the

values we used to generate simulations.
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Figure 1: Empirical cumulative distribution function (ECDF) for LFMM tests for simulations from a
generative model using A) K=5, B) K=20 latent factors.

Figure 1 reports the empirical cumulative distribution function (ecdf) for K = 5 and K = 20.

Plots for the other values of K are shown in Figure S1. For values of K lower than 5, the ecdf was

close to a uniform distribution. For K = 20, the tests were slightly conservative. Thus, for moderate

and for large values of the number of latent factors, the tests produced small numbers of false positive

associations.

Next we used equation (1) to generate data showing various levels of population structure and

association with an environmental variable. The environmental variable was uniformly generated

in the range (0, 1). Here we used 3 values for the rank of the factor matrix, K = 2, 20 and 100,



representing low, moderate and high levels of underlying population genetic structure. For each series

of experiments, we generated 20 replicates of the generative model and compared the distribution of

statistical errors for three estimation approaches: 1) LFMM, 2) standard linear regression model, 3)

PC regression model. With the notations from section 2, these models were defined as follows. The

LFMM was defined by equation

Gi` = µ` + βT` Xi + UTi V` + εi`

where we set the rank of the factor matrices equal to the values we used to generate simulations. The

standard regression model was defined as

Gi` = µ` + βT` Xi + εi` . (7)

The PC regression model was defined as

Gi` = µ` + βT` Xi + ŨTi V` + εi` , (8)

where (Ũi) are the first K PCs computed from the matrix G. To compute point estimates of environ-

mental effects and their |z|-scores, Gibbs sampler algorithms were run for 1,000 sweeps after a burnin

period of 100 sweeps. For these particular run length parameters, we checked that similar estimates

were obtained for distinct initializations of the algorithm. For each locus, we recorded both the true,

B`, and estimated environmental effects, B̂`, and evaluated the absolute error

E` =
∣∣∣β` − β̂`∣∣∣ .
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Figure 2: Quantiles of absolute errors for the standard linear regression, PC regression and LFM
models using simulations from the LFM model with A) K=2, B) K=20 and C) K=100 latent factors.

Figure 2 reports the quantiles of absolute errors for the LFMM, the standard linear regression and

PC regression models. For the LFMM, absolute errors ranged between 0 and 0.6 for K = 2 − 20,

and between 0 and 1.0 for K = 100. Mean squared errors indicated that the bias and variance

of estimates were small (Table 1). Compared to LFMMs, the relative errors of the linear and PC

regression estimates increased with the rank of the hidden factor matrix. The absolute errors of these

algorithms ranged between 0 and 1.4 for K = 2, between 0 and 3.2 for K = 20, and between 0

and 9.2 for K = 100. When linear or PC regression models were fitted to the data, the quantiles of

errors shifted to values ≈ 1.74-fold higher for K = 2, ≈ 3.8 to 4.1-fold higher for K = 20, and ≈ 5.5

to 7.7-fold higher for K = 100. Mean squared errors provide additional evidence of relatively poor

performances of the linear regression and PC regression estimates when levels of underlying structure

increase (Table 1).

Spatial coalescent simulations. In another series of experiments, we compared the LFMM esti-

mation algorithm against two methods that do not correct for population stratification, and against

two methods that use the empirical covariance matrix as a correction. The first set of methods in-

clude a linear model and generalized linear model (LM and GLM, [3]), and the second set of methods

include a PC regression model (PCRM) and the mixed model Bayenv [18]. To enable comparisons, we



simulated genotypic data from spatial coalescent models with the computer program ms [35]. Ten data

sets were generated according to a linear stepping-stone model with 40 demes, setting the effective

migration rate between pairs of adjacent demes to the value 4Nm = 25. Sampling 5 individuals in

each deme, each data set included a total of n = 200 haploid individuals genotyped at L = 1, 000

SNP loci. Using Tracy-Widom tests implemented in SmartPCA, we found that the number of principal

components with P -values smaller than 0.01 was around KTW = 7. We ran the Gibbs sampler algo-

rithm during 100 sweeps for burnin, and we used the next 900 sweeps to compute points estimates,

variances and |z|-scores.

Distribution of P -values. To examine the outcome of tests when genetic variation is neutral at all

loci, we computed the distributions of P -values under a LM, GLM, PCRM and LFMM with different

values for the number of latent factors (K ranging from 1 to 20). The distributions of P -values for

tests based on LM and GLM showed a strong departure from the uniform distribution (Figure 3A-B).

In those cases, the tests were too liberal, and produced a large number of false positive results. Using

K = 7 latent factors or PCs, the distribution of P -values for tests based on an LFMM or PCRM was

much closer to a uniform distribution (Figure 3C-D). In addition, we found that choosing K based on

Tracy-Widom theory led to slightly conservative tests for the particular simulation settings used here.

Ecdf for all values of K are shown in Figures S2 and S3, respectively.
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Figure 3: Empirical cumulative distribution function (ECDF) for A) the linear regression model (LM),
B) the generalized linear model (GLM), C) the LFM model using K = 7 latent factors (LFMM), and
D) the PC regression model using K = 7 principal components (PCRM).

Next we evaluated the ability of LFMMs to detect loci exhibiting correlations with particular

environmental gradients, and compared tests based on an LFMM with methods based on linear models

and the computer program Bayenv [18]. An environmental variable, x, was defined for each population

as the geographic identifier of the population in the linear stepping-stone model. We created an

environmental gradient using a logistic function, s(x), of x as follows

s(x) =
1

1 + eθ(x−20)
, θ > 0. (9)

For each of the 10 previously generated neutral stepping-stone simulations, we simulated binary alleles

for each deme x at 50 loci with frequency s(x), with the slope of the gradient θ = 0.2. We then obtained

10 data sets with L = 1050 loci including 50 loci correlated with the environmental gradient, s(x).

Across these datasets, smartPCA estimates between 5 and 7 significant eigenvectors (P < 0.01 in the



Tracy-Widom test). For the simulated data sets, we evaluated the percentage of false negative (FN)

and of false positive (FP) tests based on LM, GLM, PCRM and LFMM, for two values of the type I

error (Table 2).

Using θ = 0.2 in simulations of non-neutral loci, we found that linear models exhibited high

percentages of FP. In contrast, tests based on PCRMs exhibited very large percentages of FN, and

had no power to reject neutrality. Tests based on LFMM produced low numbers of FP, and had

reasonable power to reject the null hypothesis of no association.

Comparisons with Bayenv. For each of the 10 previously generated neutral stepping-stone sim-

ulations, we simulated binary alleles for each deme x at 50 loci with frequency s(x), using θ = 0.1.

To enable comparision with the program Bayenv, which returns Bayes factors instead of P -values, we

considered ranked lists recording the M loci corresponding to the strongest (true) associations (M

between 1 and 1,050). For each M , we computed the number of true positives and the number of

false negatives. Locus ranking was performed on the basis of |z|-scores in LFMM, and on the basis of

Bayes factors in Bayenv. The LFMM tests used values of K equal to K = 1, 3, 5, 7, 10 and 20, and we

used the default parameters of the Bayenv algorithm to compute Bayes factors (run length of 30,000

sweeps). Experiments were assessed by measuring the area under the receiver-operating characteristic

curve (AUC) averaged over 10 replicates. The mean AUC for tests based on LFMM with K = 5− 7

factors were around 0.95− 0.96 whereas the AUC for Bayenv was equal to 0.88. In the linear stepping

stone model simulations, the tests based on LFMM obtained better performances than Bayenv for all

values of K (Figure 4).
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4 Data Analysis

To illustrate the application of LFMMs, we analyzed genomic data sets of Loblolly Pines (Pinus taeda,

Pinaceae, [21]) and humans (Human Genome Diversity Panel, [36]).

Loblolly Pine

The Loblolly Pine is distributed throughout the southeastern USA, ranging from the arid Great Plains

to the humid Eastern Temperate Forest ecoregion. The data consisted of 1,730 SNPs selected in

expressed sequence tags (EST) for 682 individuals [21]. Following [21], we considered 5 environmental

variables representing the five first components of a PCA for 60 climatic variables. The first component

(PC1) was mainly described by latitude, longitude, temperature and winter aridity. PC2 was described

by longitude, spring-fall aridity and precipitation [21].

For each of the 5 environmental variables, we applied the LFMM algorithm using 100 sweeps

for burnin and 400 additional sweeps to compute |z|-scores for all loci. Based on a prior analysis

of the genotypic data with the program SmartPCA, we used K = 10 latent factors. A total of 392,



113 and 30 SNPs obtained |z|-scores greater than 3, 4 or 5 for at least one environmental variable,

respectively. Based on this result, we considered that a SNP effect was significant when its |z|-score

was greater than 4 (two-sided test). Among the 50 loci with the highest |z|-scores, 17 were shared with

those detected by [21] using Bayenv. Seven of the 10 SNPs with Bayes factors greater than 103 were

confirmed by the LFMM analysis. For the first and second enviromnental variables, the two SNPs

which obtained the highest Bayes factors using Bayenv were recovered by the LFMM analysis. Table 3

provides a list of SNPs associated with climatic gradients and their functional annotation. Compared

to the analysis of [21], the LFMM analysis discovered new significant and interesting associations

with climatic gradients, for example, the chloroplast lumen 19 kDA protein involved in photosynthesis

(|z| = 6.42), a pentatricopeptide repeat protein involved in oxidative stress and salt stress (|z| = 5.90),

and the heat shock transcription factor hsf5 (|z| = 5.60) involved in regulation of transcription and

response to temperature stress (Table 3 and Table S1).

Human data analysis

We applied an LFMM analysis to a worldwide sample of genomic DNA from 1,043 individuals in

52 populations, referred to as the Human Genome Diversity Project – Centre Etude Polymorphism

Humain (HGDP-CEPH) Human Genome Diversity Cell Line Panel (hagsc.org/hgdp/). The genotypes

were generated on Illumina 650K arrays [36], and the data were filtered to remove low quality SNPs

included in the original files.

We extracted climatic data for each of the 52 population samples using the WorldClim data set

at 30 arcsecond (1km2) resolution [37]. These data include 11 bioclimatic variables interpolated from

global weather station data collected during a 50 year period (1950-2000). The climatic variables

included annual mean temperature, mean diurnal range, maximum temperature of warmest month,

minimum temperature of coldest month, annual precipitation, etc (Table S2). We summarized the

climatic variables by using the first axis of a principal component analysis. For this first principal

component, we applied the LFMM algorithm to compute |z|-scores for each locus with K = 50 latent

factors, using 100 sweeps for burnin and 900 additional sweeps to warrant convergence.

A total of 2,624 (0.4%), 508 (0.08%) and 65 (0.007%) SNPs obtained |z|-scores greater than 5, 6

or 7, respectively (Figure S3). Among loci with |z|-scores greater than 5, 28 GWAS-SNPs with known



disease or trait association were found [38]). These include several SNPs discovered by [24]. For

example the SNPs rs12913832 and rs28777, |z|-scores greater than 6, are associated with genes OCA2

and SLC45A2 (Table 4). Among the SNPs significantly correlated with climatic gradients, several

notable examples include genes associated with celiac disease (ICOSLG), height (LHX3-QSOX2 and

IGF1), and vitamin D synthesis or activation (NADSYN1 encoding nicotinamide adenine dinucleotide

synthetase and DHCR7 the gene encoding 7-dehydrocholesterol reductase, an enzyme catalyzing the

production in skin of cholesterol from 7-dehydrocholesterol (Table 4). Among the 65 SNPs with |z|-

scores greater than 7, 31 were located within genes (Table S3). One interesting result is that several

genes are associated with multicellular organismal development. EPHB4 (|z| = 8.90) is involved in

heart morphogenesis and angiogenesis, NRG1 (|z| = 7.15) involved with nervous system development

and cell proliferation, RBM19 (|z| = 7.04) involved with positive regulation of embryonic development,

EYA2 (|z| = 7.09) involved with eye development and DNA repair, and POLA1 (|z| = 7.63) involved

with the mitotic cell cycle and cell proliferation [39,40].

5 Discussion

Interpretation of LFMM results and other methods. Based on a matrix factorization ap-

proach, LFMMs incorporate a unified framework for estimating effects of environmental and demo-

graphic factors on genetic variation. Without environmental variables, LFMMs are equivalent to

performing a probabilistic PCA of allele frequencies [26]. When environmental variables are included,

hidden factors capture the part of genetic variation that cannot be explained by the set of measured

environmental variables. This fraction of genetic variation could result from the demographic history

of the species, unknown environmental pressures or from IBD patterns.

While a plethora of statistical tests have been proposed for detecting genes evolving under positive

selection and local adaptation [10,14], the development of tests based on correlations with habitat or

landscape variables is still recent [3, 15]. Compared to methods based on summary statistics, tests

based on environmental association have increased power to detect selection from standing genetic

variation and soft sweeps in a species genome [6, 17]. However, simple implementation of these tests,

for example simple linear or logistic regression models, can be misleading in the presence of IBD



patterns [23]. Our simulation results provide clear evidence that tests based on LFMMs significantly

reduce the rates of false positive associations in the presence of IBD.

While both the mixed model approach of the computer program Bayenv and the LFMM approach

includes a covariance structure in a regression model, there are important differences between the two

approaches. A first improvement is that LFMMs estimate latent factors and regression coefficients

simultaneously, while Bayenv first estimates a covariance matrix, and then uses it when estimating

(random) environmental effects. To apply Bayenv, the authors suggest utilizing selectively neutral

SNPs to estimate the covariance matrix. This approach requires separating neutral from adaptive

variation a priori, and is difficult to apply when selection acts on phenotype at a large number of loci.

Inclusion of adaptive markers in the ”neutral set” is sometimes unavoidable, and in this case, Bayenv

may overlook interesting associations. This distinction between approaches explains the observed

differences in the lists of outlier loci for Loblolly pines, where 1,730 SNPs were genotyped in expressed

sequences. For these data it was extremely difficult to select neutral SNPs from the background a priori.

Another distinction between LFM and Bayenv approaches is our use of low rank approximations of the

covariance matrix. LFMMs actually estimate correlations between environmental predictors and allele

frequencies while K hidden factors explain residual genetic variation, where K is much smaller than

the sample size. The low rank approximation is computationally faster than Bayenv when analyzing

large data sets.

Number of latent factors. In the LFM modeling approach, the choice of low values for K is

important for optimizing the computational performances of the estimation algorithm. This choice is

reminiscent of selecting the number of components in PCA or in Bayesian clustering programs, and it

has also an impact on test outcomes. For values of K taken too large, the tests are highly conservative,

and the power to reject neutrality declines. Values of K that minimize the trade-off between the bias

and variance for our statistical estimates could be obtained by using cross-validation procedures, but

cross-validation procedures are computationally intensive, so instead we use Tracy-Widom theory to

select K [30]. We evaluated this choice during our simulation analysis, and found that it led to slightly

conservative tests. Although the choice of Tracy-Widom estimates is suboptimal, the performances

of LFMMs were still superior to those of Bayenv in simulations of IBD patterns. In the analysis of



human data, we restricted K to be less than 50 (approximately the number of population samples).

We suggest that, when there is a reasonable estimate of the number of genetic cluster for a species, it

can be used in LFMM tests directly. While finer grain population structure could be evaluated [41],

our choice was again motivated by a trade-off between accuracy and run-time. A future development

of our LFMM approach will be to develop fast numerical optimization procedures based on variational

approximations of the likelihood, which will allow us to implement cross-validation algorithms and

increase the power of tests.

Plant and human data. For Pinus taeda, the LFMM results confirmed that several ESTs previ-

ously discovered with Bayenv had functions linked to climate [21]. In addition, the LFMM analysis

discovered new interesting candidate SNPs. Those variants include functions associated with wound

repair and immunity, photosynthetic activity and carotenoid biosynthesis, cellular respiration and car-

bohydrate metabolism, heat, salt and oxidative stress responses (Table 3). Applying LFMMs to the

HGDP data, we found that a total of 0.4% of all polymorphisms (2,624 SNPs) exhibited significant

associations with temperature gradients (|z| > 5). For example, we identified SNPs associated with

the gene OCA2 that may be functionally linked to blue or brown eye color and the gene SLC45A2 that

may be associated with skin pigmentation [24]. This list also contained SNPs associated with height

and vitamin D synthesis and diseases such as gluten intolerance and Crohn’s disease. Our list of genic

SNPs with |z|-scores greater than 7 (|z| > 7) was enriched in genes involved in organismal develop-

ment. For example, the genes EPHB4, BOK, and NRG1 −with functions related to heart and brain

development− were associated with climatic gradients. Overall, the analysis confirmed that many loci

are associated with climatic gradients or to correlated evolutionary pressures (for example, pathogenic

environment). This result supports the hypothesis that soft sweeps may have been common in recent

human evolution [17].

Conclusion. With ever increasing amounts of genetic data generated by high-throughput sequenc-

ing technologies, population genetic methods have shifted from traditional statistical approaches to

approaches that use statistical learning techniques. Estimates of ancestry and other population param-

eters are commonly obtained from mixture models [42–44], principal component analyses [30], hidden



Markov models [45] and factor analysis [28]. Our study contributes to the machine learning toolbox

for population and landscape genomic analysis by implementing new gene-environment association

tests based on matrix factorization methods.

Software availability. Source codes and computer programs for fitting LFMMs are available from

the authors web-sites.
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[21] A J Eckert, A D Bower, S C Gonzàlez-Mart̀ınez, J L Wegrzyn, G Coop, and D B Neale. Back

to nature: Ecological genomics of loblolly pine (Pinus taeda, pinaceae). Molecular Ecology,

19(17):3789–3805, 2010.

[22] T Lenormand. Gene flow and the limits to natural selection. Trends in Ecology & Evolution,

17(4):183–189, 2002.

[23] P G Meirmans. The trouble with isolation by distance. Molecular Ecology, 21(12):2839–46, 2012.

[24] A M Hancock, D B Witonsky, G Alkorta-Aranburu, C M Beall, A Gebremedhin, R Sukernik,

G Utermann, J K Pritchard, G Coop, and A Di Rienzo. Adaptations to climate-mediated selective

pressures in humans. PLoS Genetics, 7(4):16, 2011.

[25] M Fumagalli, M Sironi, U Pozzoli, A Ferrer-Admettla, L Pattini, and R Nielsen. Signatures

of environmental genetic adaptation pinpoint pathogens as the main selective pressure through

human evolution. PLoS Genetics, 7(11):e1002355, 2011.

[26] M E Tipping and C M Bishop. Probabilistic principal component analysis. BMC Bioinformatics,

61(3):611–622, 1999.

[27] R Salakhutdinov and A Mnih. Bayesian probabilistic matrix factorization using Markov chain

Monte Carlo. Proceedings of the 25th International Conference on Machine Learning (2008),

25(6):880–887, 2008.

[28] B E Engelhardt and M Stephens. Analysis of population structure: A unifying framework and

novel methods based on sparse factor analysis. PLoS Genetics, 6(9):12, 2010.



[29] I T Jolliffe. Principal Component Analysis. Springer Verlag New York, 1986.

[30] N Patterson, A L Price, and D Reich. Population structure and eigenanalysis. PLoS Genetics,

2:20, 2006.

[31] C Eckart and G Young. The approximation of one matrix by another of lower rank. Psychometrika,

1(3):211–218, 1936.

[32] R M Bell and Y Koren. Scalable collaborative filtering with jointly derived neighborhood interpo-

lation weights. Seventh IEEE International Conference on Data Mining ICDM 2007, 07(1):43–52,

2007.

[33] Alkes L Price, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A Shadick, and

David Reich. Principal components analysis corrects for stratification in genome-wide association

studies. Nature Genetics, 38(8):904–909, 2006.

[34] J Yu, G Pressoir, W H Briggs, I Vroh Bi, M Yamasaki, J F Doebley, M D McMullen, B S Gaut,

D M Nielsen, J B Holland, S Kresovich, and E S Buckler. A unified mixed-model method for

association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38(2):203–

208, 2006.

[35] R R Hudson. Generating samples under a wright-fisher neutral model of genetic variation. Bioin-

formatics, 18(2):337–338, 2002.

[36] J Z Li, D M Absher, H Tang, A M Southwick, A M Casto, S Ramachandran, H M Cann, G S

Barsh, M Feldman, L L Cavalli-Sforza, and Feldman M. Worldwide human relationships inferred

from genome-wide patterns of variation. Science, 319(5866):1100–1104, 2008.

[37] R J Hijmans, S E Cameron, J L Parra, P G Jones, and A Jarvis. Very high resolution interpolated

climate surfaces for global land areas. International Journal of Climatology, 25(15):1965–1978,

2005.

[38] L A Hindorff, P Sethupathy, H A Junkins, E M Ramos, J P Mehta, F S Collins, and T A Manolio.

Potential etiologic and functional implications of genome-wide association loci for human diseases



and traits. Proceedings of the National Academy of Sciences of the United States of America,

106(23):9362–9367, 2009.

[39] S F Saccone, J Quan, G Mehta, R Bolze, P Thomas, E Deelman, J A Tischfield, and J P Rice.

New tools and methods for direct programmatic access to the dbSNP relational database. Nucleic

Acids Research, 39(Database issue):D901–D907, 2011.

[40] P V Hornbeck, J M Kornhauser, S Tkachev, B Zhang, E Skrzypek, B Murray, V Latham, and

M Sullivan. Phosphositeplus: a comprehensive resource for investigating the structure and func-

tion of experimentally determined post-translational modifications in man and mouse. Nucleic

Acids Research, 40(D1):D261–D270, 2012.

[41] D J Lawson, G Hellenthal, S Myers, and D Falush. Inference of population structure using dense

haplotype data. PLoS Genetics, 8(1):e1002453, 2012.

[42] J K Pritchard, M Stephens, and P Donnelly. Inference of population structure using multilocus

genotype data. Genetics, 155(2):945–959, 2000.

[43] E Durand, F Jay, O E Gaggiotti, and O François. Spatial inference of admixture proportions and

secondary contact zones. Molecular Biology and Evolution, 26(9):1963–1973, 2009.

[44] D H Alexander and K Lange. Enhancements to the admixture algorithm for individual ancestry

estimation. BMC Bioinformatics, 12(1):246, 2011.

[45] A L Price, A Tandon, N Patterson, K C Barnes, N Rafaels, I Ruczinski, T H Beaty, R Mathias,

D Reich, and S Myers. Sensitive detection of chromosomal segments of distinct ancestry in

admixed populations. PLoS Genetics, 5(6):e1000519, 2009.



Supplementary Text 2

FIGURE S1: Empirical cumulative distribution function for LFMM tests for simu- lations from gen-
erative models with K = 1, 3, 5, 10, and 20 latent factors.
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FIGURE S2: Empirical cumulative distribution function for the LFMM using K = 1, 3, 5, 7, 10, and
20 latent factors.
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FIGURE S3: Empirical cumulative distribution function for the PC regression model using K =
1, 3, 5, 7, 10, and 20 latent factors.
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Â

D
is

ea
se

re
sp

on
se

6
.5

6
H

ea
t

sh
o
ck

tr
an

sc
ri

p
ti

on
fa

ct
or

h
sf

5
R

eg
u

la
ti

on
of

tr
an

sc
ri

p
ti

on
;

R
es

p
on

se
to

st
re

ss
6
.1

5
Z

in
c

fi
n

ge
r

T
ra

n
sc

ri
p

ti
on

;
D

N
A

b
in

d
in

g;
Z

in
c

io
n

b
in

d
in

g
5
.8

4
P

ro
b

ab
le

n
-a

ce
ty

lt
ra

n
sf

er
as

e
h

o
ok

le
ss

1
A

u
x
in

si
gn

al
in

g;
P

h
ot

om
or

p
h

og
en

es
is

;
E

th
y
le

n
e

re
sp

o
n

se
5
.7

8
C
a
lc
iu
m
-b

in
d
in
g
p
o
ll
e
n

a
ll
e
rg

e
n

P
ol

ca
lc

in
;

C
al

ci
u

m
io

n
b

in
d

in
g

4
.6

1
G

er
an

y
lg

er
an

y
l

d
ip

h
os

p
h

at
e

sy
n
th

as
e

C
h

ol
es

te
ro

l
B

io
sy

n
th

es
is

;
Is

op
re

n
oi

d
b

io
sy

n
th

es
is

4
.5

9
H
y
p
o
th

e
ti
c
a
l
p
ro

te
in

O
sI

0
4
3
9
3

T
re

h
al

os
e-

6-
p

h
os

p
h

at
e

p
h

os
p

h
at

as
e

4
.5

9

P
o
ta

ss
iu
m

p
ro

to
n

a
n
ti
p
o
rt
e
r

P
ot

as
si

u
m

io
n

tr
an

sp
or

t;
S

ol
u

te
:h

y
d

ro
ge

n
an

ti
p

or
te

r
5
.5

4
D
N
A

m
is
m
a
tc
h

re
p
a
ir

D
N

A
re

p
ai

r;
R

eg
u

la
ti

on
of

D
N

A
re

co
m

b
in

at
io

n
5
.4

4



T
A

B
L

E
4:

H
u

m
an

d
at

a.
H

G
D

P
S

N
P

s
w

it
h

th
e

h
ig

h
es

t
z
-s

co
re

s
am

on
g

th
os

e
as

so
ci

at
ed

w
it

h
p

h
en

o
ty

p
ic

tr
a
it

s
in

G
W

A
S

.

L
a
n
d
sc
a
p
e
-T

ra
it

c
a
te

g
o
ry

R
e
f
S
N
P

ID
N
e
a
rb

y
g
e
n
e

D
is
e
a
se

o
r
tr
a
it

a
ss
o
c
ia
ti
o
n

−
lo

g
1
0
(P

-v
a
lu

e)

P
ig

m
en

ta
ti

o
n

rs
3
2
5
7
9

P
P

A
R

G
C

1
T

a
n
n
in

g
9
.4

2
a
n
d

ta
n
n
in

g
rs

1
2
9
1
3
8
3
2

O
C

A
2
/
H

E
R

C
2

E
y
e

co
lo

r,
E

y
e

co
lo

r
tr

a
it

s,
H

a
ir

co
lo

r,
9
.1

5
B

la
ck

v
s.

b
lo

n
d

h
a
ir

co
lo

r,
B

la
ck

v
s.

re
d

h
a
ir

co
lo

r
rs

1
1
2
3
4
0
2
7

D
H

C
R

7
V

it
a
m

in
D

le
v
el

s
7
.7

8
rs

3
1
2
9
8
8
2

H
L

A
-D

R
A

P
a
rk

in
so

n
’s

d
is

ea
se

6
.9

7
rs

2
8
7
7
7

S
L

C
4
5
A

2
B

la
ck

v
s.

b
lo

n
d

h
a
ir

co
lo

r
6
.9

0
B

la
ck

v
s.

re
d

h
a
ir

co
lo

r
Im

m
u
n
e

a
n
d

rs
1
2
5
0
5
5
0

Z
M

IZ
1

C
ro

h
n
’s

d
is

ea
se

8
.7

7
a
u
to

im
m

u
n
e

In
fl
a
m

m
a
to

ry
b

ow
el

d
is

ea
se

(e
a
rl

y
o
n
se

t)
rs

2
7
3
5
8
3
9

K
L

K
3

P
ro

st
a
te

ca
n
ce

r
8
.1

6
rs

9
2
6
4
9
4
2

R
P

L
3
P

2
H

IV
-1

co
n
tr

o
l

8
.0

2
rs

2
1
7
9
3
6
7

In
te

rg
en

ic
b

et
w

ee
n

S
U

M
O

4
a
n
d

Z
C

3
H

1
2
D

D
u
p
u
y
tr

en
’s

d
is

ea
se

7
.5

7
rs

1
5
5
1
3
9
8

In
te

rg
en

ic
b

et
w

ee
n

T
R

IB
1

a
n
d

L
O

C
1
0
0
1
3
0
2
3
1

C
ro

h
n
’s

d
is

ea
se

7
.4

5
rs

2
2
8
9
7
0
0

C
T

S
H

B
ip

o
la

r
d
is

o
rd

er
6
.9

8
rs

4
8
1
9
3
8
8

IC
O

S
L

G
C

el
ia

c
d
is

ea
se

6
.6

7
rs

7
0
3
8
4
2

C
Y

P
2
7
B

1
/
M

E
T

T
L

1
M

u
lt

ip
le

sc
le

ro
si

s
6
.5

9
rs

1
2
5
9
3
8
1
3

M
A

P
2
K

5
R

es
tl

es
s

le
g
s

sy
n
d
ro

m
e

6
.4

0
rs

4
6
6
4
3
0
8

P
L

A
2
R

1
N

ep
h
ro

p
a
th

y
(i

d
io

p
a
th

ic
m

em
b
ra

n
o
u
s)

6
.2

8
M

et
a
b

o
li
sm

rs
1
0
9
0
8
9
0
7

In
te

rg
en

ic
M

U
C

7
A

lc
o
h
o
li
sm

(h
ea

v
in

es
s

o
f

d
ri

n
k
in

g
)

8
.9

1
rs

1
5
6
6
0
3
9

In
te

rg
en

ic
b

et
w

ee
n

P
A

P
D

7
a
n
d

M
IR

4
2
7
8

S
p
h
in

g
o
li
p
id

le
v
el

s
6
.8

9
rs

7
6
6
5
0
9
0

M
A

N
B

A
P

ri
m

a
ry

b
il
ia

ry
ci

rr
h
o
si

s
6
.4

8
C

a
rd

io
va

sc
u
la

r
rs

8
6
9
2
4
4

A
D

R
A

2
A

P
la

te
le

t
a
g
g
re

g
a
ti

o
n

7
.2

0
rs

1
2
0
3
4
3
8
3

C
R

1
E

ry
th

ro
cy

te
se

d
im

en
ta

ti
o
n

ra
te

7
.1

5
rs

3
1
2
9
8
8
2

H
L

A
-D

R
A

S
y
st

em
ic

sc
le

ro
si

s
6
.9

7
rs

1
1
8
9
7
1
1
9

M
E

IS
1

P
R

in
te

rv
a
l

6
.7

1
H

ei
g
h
t

rs
7
6
7
8
4
3
6

N
C

A
P

G
-L

C
O

R
L

H
ei

g
h
t

9
.4

3
O

th
er

rs
1
2
4
7
9
2
5
4

B
O

K
B

ra
in

st
ru

ct
u
re

9
.4

3



T
A

B
L

E
S

1:
L

ob
lo

ll
y

p
in

es
.

S
N

P
id

en
ti

fi
er

an
d

an
n

ot
at

io
n

fo
r

S
N

P
s

w
it

h
z
-s

co
re

s
w

it
h

ab
so

lu
te

va
lu

e
g
re

a
te

r
th

a
n

4
fo

r
th

e
fi

rs
t

tw
o

co
m

p
on

en
ts

of
60

cl
im

at
ic

va
ri

ab
le

s.

S
N

P
A

n
n
o
ta

ti
o
n

−
lo

g
1
0
(P

-v
a
lu

e)

2
-4

1
0
7
-0

1
-4

3
8

th
y
la

k
o
id

lu
m

en
a
l

1
9

k
d
a

ch
lo

ro
p
la

st
9
.8

7
0
-1

0
7
1
9
-0

1
-9

5
p

en
ta

tr
ic

o
p

ep
ti

d
e

re
p

ea
t

p
ro

te
in

8
.4

4
2
-1
0
8
7
-0
1
-8
6

co
n
se

rv
ed

h
y
p

o
th

et
ic

a
l

p
ro

te
in

[R
ic

in
u
s

co
m

m
u
n
is

]
8
.2

8
2
-1

8
1
8
-0

1
-1

6
8

ch
a
lc

o
n
e

sy
n
th

a
se

7
.8

0
C

L
1
7
C

o
n
ti

g
1
-0

3
-4

4
3

h
ea

t
sh

o
ck

7
.6

7
0
-9

4
4
9
-0

2
-2

9
2

d
ir

ig
en

t
p
ro

te
in

p
d
ir

1
8

6
.5

6
0
-1

8
3
1
7
-0

1
-4

9
5

p
o
ta

ss
iu

m
p
ro

to
n

a
n
ti

p
o
rt

er
6
.4

6
U

M
N

-C
L

1
9
4
C

o
n
ti

g
1
-0

4
-1

3
0

d
n
a

m
is

m
a
tc

h
re

p
a
ir

6
.2

4
0
-1
7
2
3
8
-0
1
-2
9
4

N
o
d
u
li
n

M
tN

2
1

fa
m

il
y

p
ro

te
in

6
.2

0
0
-1

7
7
7
6
-0

1
-9

6
h
ea

t
sh

o
ck

tr
a
n
sc

ri
p
ti

o
n

fa
ct

o
r

h
sf

5
6
.1

5
0
-8

8
2
3
-0

1
-3

0
6

sq
u
a
m

o
sa

p
ro

m
o
te

r-
b
in

d
in

g
5
.9

1
2
-4

8
5
6
-0

1
-1

6
2

zi
n
c

fi
n
g
er

5
.8

4
0
-4

8
3
8
-0

1
-3

0
7

p
ro

b
a
b
le

n
-a

ce
ty

lt
ra

n
sf

er
a
se

h
o
o
k
le

ss
1

5
.7

8
2
-3

2
3
6
-0

1
-2

2
5

a
ra

b
in

o
g
a
la

ct
a
n
-l

ik
e

p
ro

te
in

5
.7

6
0
-7

6
8
-0

2
-4

0
0

p
ro

te
in

k
in

a
se

fa
m

il
y

p
ro

te
in

5
.7

2
U

M
N

-5
2
9
9
-0

1
-2

0
1

im
p

o
rt

in
-a

lp
h
a

re
-

5
.3

3
2
-4

7
2
4
-0

1
-1

3
6

p
ro

te
in

k
in

a
se

4
.9

8
0
-1

8
8
8
7
-0

2
-6

3
3

a
m

in
o

a
ci

d
tr

a
n
sp

o
rt

er
4
.9

4
C

L
9
9
6
C

o
n
ti

g
1
-0

3
-6

8
a
f4

4
8
2
0
1

1
a
lp

h
a
-x

y
lo

si
d
a
se

4
.9

3
2
-3

8
8
4
-0

2
-4

1
3

sf
2
1
d
1

sp
li
ce

va
ri

a
n
t

p
ro

te
in

4
.9

2
U

M
N

-C
L

1
4
8
C

o
n
ti

g
1
-0

2
-2

2
0

H
is

to
n
e

2
4
.8

2
C

L
3
8
5
1
C

o
n
ti

g
1
-0

5
-6

8
p
ro

li
fe

ra
ti

n
g

ce
ll

n
u
cl

ea
r

a
n
ti

g
en

4
.8

1
C

L
2
1
2
1
C

o
n
ti

g
1
-0

5
-6

5
8

g
ly

co
li
p
id

tr
a
n
sf

er
4
.7

4
C
L
7
6
3
C
o
n
ti
g
1
-0
6
-1
4
1

ca
lc

iu
m

-b
in

d
in

g
p

o
ll
en

P
o
lc

a
lc

in
4
.6

1
0
-1

6
6
6
4
-0

1
-5

8
g
er

a
n
y
lg

er
a
n
y
l

d
ip

h
o
sp

h
a
te

sy
n
th

a
se

4
.5

9
U
M

N
-1
5
9
8
-0
2
-6
4
7

h
y
p

o
th

et
ic

a
l

p
ro

te
in

O
sI

0
4
3
9
3

[O
ry

za
sa

ti
va

In
d
ic

a
G

ro
u
p
]

4
.5

9
2
-7

6
1
9
-0

1
-1

9
3

ta
rg

et
o
f

m
y
b
1

4
.5

7
2
-2

1
2
5
-0

1
-2

7
4

n
o
d
u
la

ti
o
n

re
ce

p
to

r
k
in

a
se

4
.4

0
C

L
3
1
6
2
C

o
n
ti

g
1
-0

2
-2

5
7

sm
a
ll

g
tp

-b
in

d
in

g
p
ro

te
in

4
.3

2
0
-1

3
7
2
2
-0

1
-3

4
3

d
ir

ig
en

t-
li
k
e

p
ro

te
in

4
.2

2

0
-8
9
2
2
-0
1
-6
5
5

T
IF

Y
d
o
m

a
in

co
n
ta

in
in

g
p
ro

te
in

6
.0

1
0
-1
8
3
1
7
-0
1
-4
9
5

p
o
ta

ss
iu

m
p
ro

to
n

a
n
ti

p
o
rt

er
5
.5

4
U
M

N
-C

L
1
9
4
C
o
n
ti
g
1
-0
4
-1
3
0

d
n
a

m
is

m
a
tc

h
re

p
a
ir

5
.4

4
C

L
1
3
8
1
C

o
n
ti

g
1
-0

1
-1

8
8

a
in

te
g
u
m

en
ta

-l
ik

e
p
ro

te
in

5
.2

6
C

L
3
8
5
1
C

o
n
ti

g
1
-0

5
-6

8
p
ro

li
fe

ra
ti

n
g

ce
ll

n
u
cl

ea
r

a
n
ti

g
en

4
.5

2
2
-2

1
2
5
-0

1
-2

7
4

n
o
d
u
la

ti
o
n

re
ce

p
to

r
k
in

a
se

4
.2

7



T
A

B
L

E
S

2:
C

li
m

at
ic

va
ri

ab
le

s
u

se
d

in
th

e
an

al
y
si

s
of

th
e

H
G

D
P

d
at

a
se

t.

B
IO

1
A

n
n
u

al
M

ea
n

T
em

p
er

at
u

re
B

IO
2

M
ea

n
D

iu
rn

al
R

an
ge

(M
ea

n
of

m
on

th
ly

(m
ax

-
m

in
)

B
IO

3
Is

ot
h

er
m

al
it

y
(B

IO
2/

B
IO

7)
B

IO
4

T
em

p
er

at
u
re

S
ea

so
n

al
it

y
(s

ta
n

d
ar

d
d

ev
ia

ti
on

*
10

0)
B

IO
5

M
ax

T
em

p
er

at
u

re
of

W
ar

m
es

t
M

on
th

B
IO

6
M

in
T

em
p

er
at

u
re

of
C

ol
d

es
t

M
on

th
B

IO
7

T
em

p
er

at
u

re
A

n
n
u

al
R

an
ge

(B
IO

5-
B

IO
6)

B
IO

8
M

ea
n

T
em

p
er

at
u

re
of

W
et

te
st

Q
u

ar
te

r
B

IO
9

M
ea

n
T

em
p

er
at

u
re

of
D

ri
es

t
Q

u
ar

te
r

B
IO

10
M

ea
n

T
em

p
er

at
u

re
of

W
ar

m
es

t
Q

u
ar

te
r

B
IO

11
M

ea
n

T
em

p
er

at
u

re
of

C
ol

d
es

t
Q

u
ar

te
r



T
A

B
L

E
S

3:
H

u
m

an
d

at
a.

H
G

D
P

S
N

P
s

w
it

h
z
-s

co
re

s
w

it
h

ab
so

lu
te

va
lu

e
gr

ea
te

r
th

an
7

in
ge

n
es

w
it

h
m

o
le

cu
la

r
(M

o
l)

,
a
n

d
b

io
lo

g
ic

a
l

(B
io

)
fu

n
ct

io
n

s
as

so
ci

at
ed

w
it

h
th

es
e

ge
n

es
.

S
N

P
C

H
R

B
P

G
en

e
—

z—
-s

co
re

G
en

e
fu

n
ct

io
n

7
5
2
9
4
8
2

1
2
0
3
6
5
9
3
5
5

A
T

P
2
B

4
/
in

tr
o
n

7
.1

5
(M

o
l)

ca
lm

o
d

u
li
n

b
in

d
in

g
;

p
ro

te
in

b
in

d
in

g
;

h
y
d

ro
la

se
a
ct

iv
it

y
;

ca
lc

iu
m

-t
ra

n
sp

o
rt

in
g

A
T

P
a
se

a
ct

iv
it

y
;

m
et

a
l

io
n

b
in

d
in

g
;

n
u

cl
eo

ti
d

e
b

in
d
in

g
;

A
T

P
b

in
d

in
g
;

h
y
d

ro
la

se
a
ct

iv
it

y,
a
ct

in
g

o
n

a
ci

d
a
n

h
y
d

ri
d

es
,

ca
ta

ly
zi

n
g

tr
a
n

sm
em

b
ra

n
e

m
o
v
em

en
t

o
f

su
b

st
a
n

ce
s;

P
D

Z
d

o
m

a
in

b
in

d
in

g
(B

io
)

p
la

te
le

t
a
ct

iv
a
ti

o
n

;
tr

a
n

sp
o
rt

;
A

T
P

b
io

sy
n
th

et
ic

p
ro

ce
ss

;
b

lo
o
d

co
a
g
u

la
ti

o
n

;
tr

a
n

sm
em

-
b

ra
n

e
tr

a
n

sp
o
rt

;
ca

ti
o
n

tr
a
n

sp
o
rt

3
8
1
6
1
8
6

2
4
2
9
3
6
5
4
7

M
T

A
3
/
n

ea
rG

en
e-

3
7
.3

5
(M

o
l)

zi
n

c
io

n
b

in
d

in
g
;

se
q
u

en
ce

-s
p

ec
ifi

c
D

N
A

b
in

d
in

g
;

m
et

a
l

io
n

b
in

d
in

g
;

tr
a
n

sc
ri

p
ti

o
n

fa
ct

o
r

a
ct

iv
it

y
4
6
8
1
6
1
8

3
1
5
0
1
4
6
0
2
6

T
S

C
2
2
D

2
/
in

tr
o
n

7
.2

5
(M

o
l)

tr
a
n

sc
ri

p
ti

o
n

fa
ct

o
r

a
ct

iv
it

y
9
7
8
4
3
3
5

3
1
5
0
1
5
9
7
6
7

T
S

C
2
2
D

2
/
in

tr
o
n

7
.2

1
(B

io
)

re
sp

o
n

se
to

o
sm

o
ti

c
st

re
ss

1
0
9
3
5
8
0
0

3
1
5
0
1
4
9
6
9
6

T
S

C
2
2
D

2
/
in

tr
o
n

7
.3

6
1
1
7
0
8
7
7
9

3
5
5
9
3
4
9
3
9

E
R

C
2
/
in

tr
o
n

7
.4

0
(M

o
l)

p
ro

te
in

b
in

d
in

g
1
4
4
1
7
3

7
1
0
0
4
1
6
2
5
0

E
P

H
B

4
/
cd

s-
sy

n
o
n

8
.9

0
(M

o
l)

p
ro

te
in

b
in

d
in

g
;

p
ro

te
in

-t
y
ro

si
n

e
k
in

a
se

a
ct

iv
it

y
;

ep
h

ri
n

re
ce

p
to

r
a
ct

iv
it

y
;

n
u

cl
eo

ti
d

e
b

in
d

in
g
;

tr
a
n

sm
em

b
ra

n
e

re
ce

p
to

r
p

ro
te

in
ty

ro
si

n
e

k
in

a
se

a
ct

iv
it

y
;

re
ce

p
to

r
a
ct

iv
it

y
;

A
T

P
b

in
d

in
g

h
ea

rt
m

o
rp

h
o
g
en

es
is

;
ce

ll
m

ig
ra

ti
o
n

d
u

ri
n

g
sp

ro
u

ti
n

g
a
n

g
io

g
en

es
is

;
p

ro
te

in
a
m

in
o

a
ci

d
a
u

-
to

p
h

o
sp

h
o
ry

la
ti

o
n

;
m

u
lt

ic
el

lu
la

r
o
rg

a
n

is
m

a
l
d

ev
el

o
p

m
en

t;
ep

h
ri

n
re

ce
p

to
r

si
g
n

a
li
n

g
p

a
th

w
a
y
;

a
n

g
io

g
en

es
is

;
ce

ll
a
d

h
es

io
n

3
8
0
7
4
9
6

7
1
6
8
2
1
3
5
5

T
S

P
A

N
1
3
/
in

tr
o
n

7
.4

6
–

4
7
2
9
6
1
6

7
1
0
0
4
6
2
5
6
5

S
L

C
1
2
A

9
/
in

tr
o
n

7
.3

5
(M

o
l)

ca
ti

o
n

:c
h

lo
ri

d
e

sy
m

p
o
rt

er
a
ct

iv
it

y
(B

io
)

tr
a
n

sm
em

b
ra

n
e

tr
a
n

sp
o
rt

6
9
4
2
7
3
3

7
1
0
0
3
5
0
7
6
3

Z
A

N
/
m

is
se

n
se

7
.4

1
(B

io
)

ce
ll
-c

el
l

a
d

h
es

io
n

;
b

in
d

in
g

o
f

sp
er

m
to

zo
n

a
p

el
lu

ci
d

a
1
0
9
5
3
3
0
3

7
1
0
0
3
6
5
6
1
3

Z
A

N
/
m

is
se

n
se

7
.3

7
9
8
9
4
6
5

8
3
2
1
0
5
3
3
4

N
R

G
1
/
in

tr
o
n

7
.0

4
(M

o
l)

p
ro

te
in

b
in

d
in

g
;

tr
a
n

sm
em

b
ra

n
e

re
ce

p
to

r
p

ro
te

in
ty

ro
si

n
e

k
in

a
se

a
ct

iv
a
to

r
a
ct

iv
it

y
;

g
ro

w
th

fa
ct

o
r

a
ct

iv
it

y
;
E

rb
B

-3
cl

a
ss

re
ce

p
to

r
b

in
d
in

g
;
cy

to
k
in

e
a
ct

iv
it

y
;
tr

a
n

sc
ri

p
ti

o
n

co
fa

ct
o
r

a
ct

iv
it

y
;

p
ro

te
in

ty
ro

si
n

e
k
in

a
se

a
ct

iv
a
to

r
a
ct

iv
it

y
;

re
ce

p
to

r
ty

ro
si

n
e

k
in

a
se

b
in

d
in

g
;

re
ce

p
to

r
b

in
d

in
g

1
0
0
9
6
2
3
3

8
3
2
1
1
5
2
5
6

N
R

G
1
/
in

tr
o
n

7
.1

5
(B

io
)

n
er

v
o
u

s
sy

st
em

d
ev

el
o
p

m
en

t;
re

g
u

la
ti

o
n

o
f

p
ro

te
in

h
et

er
o
d

im
er

iz
a
ti

o
n

a
ct

iv
it

y
;

N
o
tc

h
si

g
n

a
li
n

g
p

a
th

w
a
y
;

p
o
si

ti
v
e

re
g
u

la
ti

o
n

o
f

ce
ll

a
d

h
es

io
n

;
tr

a
n

sm
em

b
ra

n
e

re
ce

p
to

r
p

ro
te

in
ty

ro
-

si
n

e
k
in

a
se

a
ct

iv
a
ti

o
n

(d
im

er
iz

a
ti

o
n

);
n

eu
ra

l
cr

es
t

ce
ll

d
ev

el
o
p

m
en

t;
ce

ll
u

la
r

p
ro

te
in

co
m

p
le

x
d

is
a
ss

em
b

ly
;

w
o
u

n
d

h
ea

li
n

g
;

re
g
u

la
ti

o
n

o
f

p
ro

te
in

h
o
m

o
d

im
er

iz
a
ti

o
n

a
ct

iv
it

y
;

v
en

tr
ic

u
la

r
ca

r-
d

ia
c

m
u

sc
le

ce
ll

d
iff

er
en

ti
a
ti

o
n

;
p

o
si

ti
v
e

re
g
u

la
ti

o
n

o
f

st
ri

a
te

d
m

u
sc

le
ce

ll
d

iff
er

en
ti

a
ti

o
n

;
p

o
si

-
ti

v
e

re
g
u

la
ti

o
n

o
f

ce
ll

g
ro

w
th

;
ca

rd
ia

c
m

u
sc

le
ce

ll
d

iff
er

en
ti

a
ti

o
n

;
ce

ll
p

ro
li
fe

ra
ti

o
n

;
em

b
ry

o
n

ic
d

ev
el

o
p

m
en

t;
m

a
m

m
a
ry

g
la

n
d

d
ev

el
o
p

m
en

t;
a
n
ti

-a
p

o
p

to
si

s;
ce

ll
co

m
m

u
n

ic
a
ti

o
n

;
n

eg
a
ti

v
e

re
g
u

la
ti

o
n

o
f
se

cr
et

io
n

;
n

eg
a
ti

v
e

re
g
u

la
ti

o
n

o
f
tr

a
n

sc
ri

p
ti

o
n

,
D

N
A

-d
ep

en
d

en
t;

tr
a
n

sm
em

b
ra

n
e

re
ce

p
to

r
p

ro
te

in
ty

ro
si

n
e

k
in

a
se

si
g
n

a
li
n

g
p

a
th

w
a
y
;

p
o
si

ti
v
e

re
g
u

la
ti

o
n

o
f

ca
rd

ia
c

m
u

sc
le

ce
ll

p
ro

li
fe

ra
ti

o
n

1
0
7
5
6
4
6
1

9
1
3
1
8
5
1
4
9

M
P

D
Z

/
in

tr
o
n

7
.7

9
(M

o
l)

p
ro

te
in

C
-t

er
m

in
u

s
b

in
d

in
g
;

p
ro

te
in

b
in

d
in

g
(B

io
)

in
te

rs
p

ec
ie

s
in

te
ra

ct
io

n
b

et
w

ee
n

o
rg

a
n

is
m

s
1
5
3
8
6
7
7

1
0

7
2
5
4
3
5
7
9

C
1
0
o
rf

2
7
/
in

tr
o
n

8
.1

1
(B

io
)

m
u

lt
ic

el
lu

la
r

o
rg

a
n

is
m

a
l

d
ev

el
o
p

m
en

t;
sp

er
m

a
to

g
en

es
is

;
ce

ll
d

iff
er

en
ti

a
ti

o
n

1
2
4
1
5
0
5
1

1
0

7
2
5
4
3
9
1
3

C
1
0
o
rf

2
7
/
in

tr
o
n

8
.3

6
1
0
9
9
8
3
4
0

1
0

7
0
3
8
3
5
9
3

T
E

T
1
/
in

tr
o
n

8
.2

4
(M

o
l)

o
x
id

o
re

d
u

ct
a
se

a
ct

iv
it

y,
a
ct

in
g

o
n

si
n

g
le

d
o
n

o
rs

w
it

h
in

co
rp

o
ra

ti
o
n

o
f
m

o
le

cu
la

r
o
x
y
g
en

,
in

co
rp

o
ra

ti
o
n

o
f

tw
o

a
to

m
s

o
f

o
x
y
g
en

;
st

ru
ct

u
re

-s
p

ec
ifi

c
D

N
A

b
in

d
in

g
;

zi
n

c
io

n
b

in
d

in
g
;

ir
o
n

io
n

b
in

d
in

g
;

m
et

a
l

io
n

b
in

d
in

g
;

o
x
id

o
re

d
u

ct
a
se

a
ct

iv
it

y
(B

io
)

in
n

er
ce

ll
m

a
ss

ce
ll

d
iff

er
en

ti
a
ti

o
n

;
re

g
u

la
ti

o
n

o
f

tr
a
n

sc
ri

p
ti

o
n

,
D

N
A

-d
ep

en
d

en
t;

st
em

ce
ll

m
a
in

te
n

a
n

ce
;

ch
ro

m
a
ti

n
m

o
d

ifi
ca

ti
o
n



T
A

B
L

E
S

3:
(b

is
)

S
N

P
C

H
R

B
P

G
en

e
—

z—
-s

co
re

G
en

e
fu

n
ct

io
n

2
4
0
3
2
2
1

1
1

9
8
5
2
4
7
5

S
B

F
2
/
in

tr
o
n

8
.3

3
(M

o
l)

p
ro

te
in

b
in

d
in

g
;

p
ro

te
in

h
o
m

o
d

im
er

iz
a
ti

o
n

a
ct

iv
it

y
;

p
h

o
sp

h
a
ta

se
re

g
u

la
to

r
a
ct

iv
it

y
;

p
h

o
sp

h
o
in

o
si

ti
d

e
b

in
d

in
g
;

p
h

o
sp

h
a
ta

se
b

in
d

in
g

(B
io

)
m

y
el

in
a
ti

o
n

;
p

ro
te

in
te

tr
a
m

er
iz

a
ti

o
n

4
9
1
0
2
9
5

1
1

1
1
3
1
1
7
4
3

G
A

L
N

T
L

4
/
in

tr
o
n

7
.2

7
(M

o
l)

tr
a
n

sf
er

a
se

a
ct

iv
it

y,
tr

a
n

sf
er

ri
n

g
g
ly

co
sy

l
g
ro

u
p

s;
p

o
ly

p
ep

ti
d

e
N

-
a
ce

ty
lg

a
la

ct
o
sa

m
in

y
lt

ra
n

sf
er

a
se

a
ct

iv
it

y
;

su
g
a
r

b
in

d
in

g
1
1
0
6
6
7
7
6

1
2

1
1
4
2
6
4
8
2
7

R
B

M
1
9
/
in

tr
o
n

7
.0

4
(M

o
l)

R
N

A
b
in

d
in

g
;

n
u

cl
eo

ti
d

e
b

in
d

in
g

(B
io

)
p

o
si

ti
v
e

re
g
u

la
ti

o
n

o
f

em
b

ry
o
n
ic

d
ev

el
o
p

m
en

t;
m

u
lt

ic
el

lu
la

r
o
rg

a
n

is
m

a
l

d
ev

el
o
p

m
en

t
9
5
4
3
4
7
6

1
3

7
4
4
2
5
2
2
8

K
L

F
1
2
/
in

tr
o
n

7
.1

6
(M

o
l)

D
N

A
b

in
d

in
g
;

zi
n

c
io

n
b

in
d

in
g
;

m
et

a
l

io
n

b
in

d
in

g
;

tr
a
n

sc
ri

p
ti

o
n

co
re

p
re

ss
o
r

a
ct

iv
it

y
;

tr
a
n

sc
ri

p
ti

o
n

fa
ct

o
r

a
ct

iv
it

y
(B

io
)

re
g
u

la
ti

o
n

o
f

tr
a
n

sc
ri

p
ti

o
n

fr
o
m

R
N

A
p

o
ly

m
er

a
se

II
p

ro
m

o
te

r;
p

o
si

ti
v
e

re
g
u

la
ti

o
n

o
f

tr
a
n

sc
ri

p
ti

o
n

fr
o
m

R
N

A
p

o
ly

m
er

a
se

II
p

ro
m

o
te

r;
n

eg
a
ti

v
e

re
g
u

la
ti

o
n

o
f

tr
a
n

sc
ri

p
ti

o
n

fr
o
m

R
N

A
p

o
ly

m
er

a
se

II
p

ro
m

o
te

r
1
7
6
0
9
0
7

1
4

2
0
8
4
4
8
5
9

T
E

P
1
/
in

tr
o
n

7
.1

5
(M

o
l)

te
lo

m
er

a
se

a
ct

iv
it

y
;

R
N

A
b

in
d

in
g
;

n
u

cl
eo

ti
d

e
b

in
d

in
g
;

A
T

P
b

in
d

in
g

(B
io

)
te

lo
m

er
e

m
a
in

te
n

a
n

ce
v
ia

re
co

m
b

in
a
ti

o
n

6
0
6
3
0
7
1

2
0

4
5
7
3
7
7
6
3

E
Y

A
2
/
in

tr
o
n

7
.0

9
(M

o
l)

p
ro

te
in

b
in

d
in

g
;

h
y
d

ro
la

se
a
ct

iv
it

y
;

m
a
g
n

es
iu

m
io

n
b

in
d

in
g
;

p
ro

te
in

ty
ro

si
n

e
p

h
o
s-

p
h

a
ta

se
a
ct

iv
it

y
(B

io
)

is
to

n
e

d
ep

h
o
sp

h
o
ry

la
ti

o
n

;
st

ri
a
te

d
m

u
sc

le
d

ev
el

o
p

m
en

t;
re

g
u

la
ti

o
n

o
f

tr
a
n

sc
ri

p
ti

o
n

,
D

N
A

-d
ep

en
d

en
t;

a
p

o
p

to
si

s;
m

u
lt

ic
el

lu
la

r
o
rg

a
n

is
m

a
l
d

ev
el

o
p

m
en

t;
m

es
o
d

er
m

a
l
ce

ll
fa

te
sp

ec
-

ifi
ca

ti
o
n

;
ch

ro
m

a
ti

n
m

o
d

ifi
ca

ti
o
n

;
D

N
A

re
p

a
ir

2
2
9
4
3
5
2

2
2

4
0
8
2
7
3
1
9

M
K

L
1
/
in

tr
o
n

7
.9

6
(M

o
l)

a
ct

in
m

o
n

o
m

er
b

in
d

in
g
;

le
u

ci
n

e
zi

p
p

er
d

o
m

a
in

b
in

d
in

g
;

p
ro

te
in

b
in

d
in

g
;

n
u

cl
ei

c
a
ci

d
b

in
d

in
g
;

tr
a
n

sc
ri

p
ti

o
n

co
a
ct

iv
a
to

r
a
ct

iv
it

y
3
8
2
7
3
8
2

2
2

4
0
8
8
1
4
0
3

M
K

L
1
/
in

tr
o
n

7
.7

3
(B

io
)

p
o
si

ti
v
e

re
g
u

la
ti

o
n

o
f

tr
a
n

sc
ri

p
ti

o
n

,
D

N
A

-d
ep

en
d

en
t;

a
n
ti

-a
p

o
p

to
si

s;
sm

o
o
th

m
u

sc
le

ce
ll

d
iff

er
en

ti
a
ti

o
n

;
p

o
si

ti
v
e

re
g
u

la
ti

o
n

o
f

tr
a
n

sc
ri

p
ti

o
n

fr
o
m

R
N

A
p

o
ly

m
er

a
se

II
p

ro
m

o
te

r
6
0
0
1
9
1
2

2
2

4
0
8
2
8
3
6
1

M
K

L
1
/
in

tr
o
n

7
.2

6
6
0
0
1
9
1
3

2
2

4
0
8
3
6
7
5
3

M
K

L
1
/
in

tr
o
n

7
.5

1
1
7
0
0
2
0
3
4

2
2

4
0
9
9
6
3
6
7

M
K

L
1
/
in

tr
o
n

8
.0

1
5
9
1
7
4
7
1

X
3
7
6
5
2
5
1
8

C
Y

B
B

/
in

tr
o
n

7
.0

4
(M

o
l)

p
ro

te
in

b
in

d
in

g
;

F
A

D
b

in
d

in
g
;

el
ec

tr
o
n

ca
rr

ie
r

a
ct

iv
it

y
;

p
ro

te
in

h
et

er
o
d

im
er

iz
a
ti

o
n

a
ct

iv
it

y
;

m
et

a
l

io
n

b
in

d
in

g
;

su
p

er
o
x
id

e-
g
en

er
a
ti

n
g

N
A

D
P

H
o
x
id

a
se

a
ct

iv
it

y
;

h
em

e
b

in
d

in
g
;

v
o
lt

a
g
e-

g
a
te

d
io

n
ch

a
n

n
el

a
ct

iv
it

y
;

o
x
id

o
re

d
u

ct
a
se

a
ct

iv
it

y
(B

io
)

re
sp

ir
a
to

ry
b

u
rs

t;
su

p
er

o
x
id

e
m

et
a
b

o
li
c

p
ro

ce
ss

;
in

n
a
te

im
m

u
n

e
re

sp
o
n

se
;
io

n
tr

a
n

sp
o
rt

;
in

fl
a
m

m
a
to

ry
re

sp
o
n

se
;

su
p

er
o
x
id

e
re

le
a
se

;
h
y
d

ro
g
en

p
er

o
x
id

e
b

io
sy

n
th

et
ic

p
ro

ce
ss

5
9
4
4
7
0
8

X
2
5
0
0
0
8
4
2

P
O

L
A

1
/
in

tr
o
n

7
.6

3
(M

o
l)

D
N

A
p

ri
m

a
se

a
ct

iv
it

y
;
m

et
a
l
io

n
b

in
d

in
g
;
n
u

cl
eo

ti
d

e
b

in
d

in
g
;
D

N
A

-d
ir

ec
te

d
D

N
A

p
o
ly

-
m

er
a
se

a
ct

iv
it

y
;

n
u

cl
eo

ti
d

y
lt

ra
n

sf
er

a
se

a
ct

iv
it

y
;

tr
a
n

sf
er

a
se

a
ct

iv
it

y
;

p
ro

te
in

b
in

d
in

g
;

D
N

A
b

in
d

in
g
;

p
ro

te
in

h
et

er
o
d

im
er

iz
a
ti

o
n

a
ct

iv
it

y
;

p
u

ri
n

e
n
u

cl
eo

ti
d

e
b

in
d

in
g
;

d
o
u

b
le

-s
tr

a
n

d
ed

D
N

A
b

in
d

in
g
;

n
u

cl
eo

si
d

e
b

in
d

in
g
;

ch
ro

m
a
ti

n
b

in
d

in
g
;

p
y
ri

m
id

in
e

n
u
cl

eo
ti

d
e

b
in

d
in

g
(B

io
)

D
N

A
re

p
li

ca
ti

o
n

in
it

ia
ti

o
n

;
M

/
G

1
tr

a
n

si
ti

o
n

o
f

m
it

o
ti

c
ce

ll
cy

cl
e;

in
te

rs
p

ec
ie

s
in

te
ra

c-
ti

o
n

b
et

w
ee

n
o
rg

a
n

is
m

s;
D

N
A

re
p
li

ca
ti

o
n

,
sy

n
th

es
is

o
f

R
N

A
p

ri
m

er
;

D
N

A
st

ra
n

d
el

o
n

g
a
ti

o
n

d
u

ri
n

g
D

N
A

re
p

li
ca

ti
o
n

;
le

a
d

in
g

st
ra

n
d

el
o
n

g
a
ti

o
n

;
D

N
A

re
p

a
ir

;
la

g
g
in

g
st

ra
n

d
el

o
n

g
a
ti

o
n

;
d

o
u

b
le

-s
tr

a
n

d
b

re
a
k

re
p

a
ir

v
ia

n
o
n

h
o
m

o
lo

g
o
u

s
en

d
jo

in
in

g
;

te
lo

m
er

e
m

a
in

te
n

a
n

ce
v
ia

se
m

i-
co

n
se

rv
a
ti

v
e

re
p

li
ca

ti
o
n

;
G

1
/
S

-s
p

ec
ifi

c
tr

a
n

sc
ri

p
ti

o
n

in
m

it
o
ti

c
ce

ll
cy

cl
e;

ce
ll

p
ro

li
fe

ra
ti

o
n

;
D

N
A

sy
n
th

es
is

d
u

ri
n

g
D

N
A

re
p

a
ir

;
te

lo
m

er
e

m
a
in

te
n

a
n

ce
v
ia

re
co

m
b

in
a
ti

o
n

;
n
u

cl
eo

b
a
se

,
n
u
cl

eo
si

d
e,

n
u

cl
eo

ti
d

e
a
n

d
n
u

cl
ei

c
a
ci

d
m

et
a
b

o
li
c

p
ro

ce
ss

;
m

it
o
ti

c
ce

ll
cy

cl
e;

D
N

A
re

p
li
ca

-
ti

o
n

ch
ec

k
p

o
in

t;
S

p
h
a
se

o
f

m
it

o
ti

c
ce

ll
cy

cl
e;

D
N

A
re

p
li
ca

ti
o
n

;
te

lo
m

er
e

m
a
in

te
n

a
n

ce
;

G
1
/
S

tr
a
n

si
ti

o
n

o
f

m
it

o
ti

c
ce

ll
cy

cl
e

6
6
4
3
6
4
7

X
1
5
3
0
8
6
3
7
2

P
D

Z
D

4
/
in

tr
o
n

7
.9

5
–



Gibbs Sampling algorithm for the LFMM

5.1 Prior Distribution

Let D is the number of environmental variables. Ii,` is the indicator variable equal to 0 if the data are missing
and 1 otherwise. N(µ,Σ) is the normal distribution of mean µ and of covariance matrix Σ. Γ−1(a, b) is the
inverse-gamma distribution of shape a and of rate b (ie of scale 1

b ).
The prior distributions on the LFMM parameters are given by:

for all i, ` Gi,`|Ui, V`, β`, µ`, σ2 ∼ N(Xiβ` + µ` + UTi V`, σ
2)Ii,` (10)

for all i Ui|σ2
U ∼ N(0, σ2

UIK) (11)

for all ` V`|σ2
V ∼ N(0, σ2

V IK) (12)

for all `, d βd,`|σ2
β(d) ∼ N(0, σ2

β(d)) (13)

for all ` µ`|σ2
µ ∼ N(0, σ2

µ) (14)

σ2
V = 1 and σ2 is updated at each iteration by the current residual variance.

for all d σ2
β(d), σ

2
µ and σ2

U follow an inverse-gamma distribution Γ−1(η, η) where η = 103.

5.2 Conditional Distribution

The LFM Model is a hierarchical model which conditional distributions can be described as follows:

p(σ2
U |U, η) = Γ−1(η +

NK

2
,

1

2

∑
i

UTi Ui + η) (15)

p(σ2
β(d)|β, η) = Γ−1(η +

M

2
,

1

2

∑
l

β2
d,` + η) (16)

p(σ2
µ|µ, η) = Γ−1(η +

M

2
,

1

2

∑
`

µ2
` + η) (17)

p(Ui|G,V, β, µ, σ2
U , σ

2) = N(µiU ,∆
i
U

−1
) (18)

where
∆i
U = σ2

U
−1
IK + σ2−1∑

`

V`V
T
` and µiU = σ2−1

(∆i
U )−1

∑
`

(Gi,` −Xiβ` − µ`)V` (19)

p(V`|G,U, β, µ, αG) = N(µ`V ,∆
`
V

−1
) (20)

where
∆`
V = σ2

V
−1
IK + σ2−1∑

i

UiU
T
i and µ`V = σ2−1

(∆`
V )−1

∑
i

(Gi,` −Xiβ` − µ`)Ui (21)

p(β`|G,U, V, µ, σβ(1)2, . . . , σβ(d)2, σ2) = N(µ`β ,∆
`
β

−1
) (22)

where

∆`
β = diag(σβ(1)2

−1
, . . . , σβ(d)2

−1
) + σ2−1∑

i

XT
i Xi and µ

`
β = σ2−1

(∆`
β)−1

∑
i

(Gi,` − UTi V` − µ`)XT
i (23)

p(µ`|G,U, V, β, σ2
µ, σ

2) = N(µ`µ,∆
`
µ

−1
) (24)

where
∆`
µ = σ2

µ
−1

+ σ2−1
N and µ`µ = σ2−1

(∆`
µ)−1

∑
i

(Gi,` − UTi V` −Xiβ`) (25)



5.3 Main algorithm

nIter is the number of iterations and burn is the number of iterations for burning.

1. Initialize model parameters
U = 0K,N

V = 0K,M

β = 0M,D

µ = 0M,1

2. For n = 1 . . . nIter

• input missing values at locus ` for individu i,

Gi,` ← Ui
(n−1)TV

(n−1)
` +X

(n−1)
i β

(n−1)
`

• update the residual variance

σ2(n) = var(G− U (n−1)TV (n−1) −X(n−1)β(n−1))

• sample the hyperparameters

σ2
U
(n) ∼ p(σ2

U |U (n−1), η)

σ2
β
(n) ∼ p(σ2

β |β(n−1), η)

σ2
µ
(n) ∼ p(σ2

µ|µ(n−1), η)

• for each locus `, sample

µ
(n)
` ∼ p(µ`|U (n−1), V (n−1), β(n−1), σ2

µ
(n)
, σ2(n))

β
(n)
` ∼ p(β`|U (n−1), V (n−1), µ(n), σβ(1)2

(n)
, . . . , σβ(d)2

(n)
, σ2(n))

• for each individu i, sample

U
(n)
i ∼ p(Ui|µ(n), V (n−1), β(n), σ2

U
(n)
, σ2(n))

• for each locus l, sample

V
(n)
` ∼ p(V`|µ(n), U (n), β(n), σ2(n))

3. compute the parameters
U = mean(U (burn+1), . . . , U (nIter))

V = mean(V (burn+1), . . . , V (nIter))

β = mean(β(burn+1), . . . , β(nIter))

µ = mean(µ(burn+1), . . . , µ(nIter))

Z = mean(β(burn+1), . . . , β(nIter))/var(β(burn+1), . . . , β(nIter))
1
2
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