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Abstract

This article reviews recent developments in Bayesian algorithms that explicitly include geo-

graphical information in the inference of population structure. Current models substantially

differ in their prior distributions and background assumptions, falling into two broad catego-

ries: models with or without admixture. To aid users of this new generation of spatially expli-

cit programs, we clarify the assumptions underlying the models, and we test these models in

situations where their assumptions are not met. We show that models without admixture are

not robust to the inclusion of admixed individuals in the sample, thus providing an incorrect

assessment of population genetic structure in many cases. In contrast, admixture models are

robust to an absence of admixture in the sample. We also give statistical and conceptual

reasons why data should be explored using spatially explicit models that include admixture.
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Introduction

Statistical methods that can describe and quantify geo-

graphic patterns of intraspecific genetic variation are

essential to many types of researcher (Endler 1977; Caval-

li-Sforza et al. 1994; Avise 2000). Inference about popula-

tion genetic structure accelerated around the 1960s with

the introduction of principal component analysis (PCA)

and tree-based clustering algorithms (Edwards & Caval-

li-Sforza 1964; Cavalli-Sforza & Edwards 1965). Those

algorithms are descriptive methods making no assump-

tions about the biological processes that generated the

data. More recently, the Bayesian revolution that has

occurred in population genetics has changed our ways of

making such inferences (Beaumont & Rannala 2004). The

Bayesian paradigm has fostered the emergence of several

new model-based parametric methods, the most influen-

tial of these being implemented in the computer program

STRUCTURE (Pritchard et al. 2000b). STRUCTURE

uses multilocus genotype data to describe population

genetic structure. The method differs from other statisti-

cal procedures for estimating genetic subdivision, such

as F-statistics or the analysis of molecular variance that

quantify the divergence among predefined subpopu-

lations (Wright 1951; Excoffier et al. 1992). Instead,

STRUCTURE assumes that there are K (K is unknown)

clusters, each of which is characterized by a set of allele

frequencies at each locus. Since its publication in 2000,

many modifications of the original models have been

proposed. These modifications include the presence of

genetic linkage (Falush et al. 2003; Hoggart et al. 2004;

Corander & Tang 2007), inbreeding (François et al. 2006;

Gao et al. 2007), migration (Zhang 2008), mutation (Shrin-

garpure & Xing 2009), dominance (Falush et al. 2007; see

Bonin et al. 2007), automate the choice of the number of

cluster (Dawson & Belkhir 2001; Corander et al. 2003;

Pella & Masuda 2006; Huelsenbeck & Andolfatto 2007)

and speed up the inference algorithm (Tang et al. 2005;

Chen et al. 2006; Wu et al. 2006; Alexander et al. 2009).

An important class of Bayesian clustering models

improves STRUCTURE by including information on

individual geographic coordinates. These models are cur-

rently implemented in the computer programs GENE-

LAND (Guillot et al. 2005), TESS (Chen et al. 2007;

Durand et al. 2009) and BAPS5 (Corander et al. 2008).

Although the programs are targeted at similar goals,

they rely on models that substantially differ in their
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background hypotheses. A recent review (Guillot et al.

2009) has referred to some of these methods in the

context of a more general overview of the whole field of

spatial statistical genetics. Our objective here is different

because we aim at providing a much more accurate dis-

cussion of Bayesian clustering methods, which represent

a rapidly developing area of research. More specifically,

the objective of this review is to clarify the assumptions

underlying spatially explicit Bayesian clustering models,

to test their robustness to departures from their primary

assumptions and to aid users in interpreting their

program outputs.

Population structure and Bayesian clustering

Genetic structures and spatial scales

Spatially explicit Bayesian models address three major

types of genetic structures that can appear, possibly at

different geographical scales: genetic clusters, clines and

patterns of isolation-by-distance. The first type, genetic

clusters, can be viewed as genetically divergent groups of

individuals that arise when gene flow is impeded by

physical or behavioural obstacles. The term ‘cline’ is used

in population genetics to refer to a large-scale spatial

trend in allele frequencies or genetic diversity (Hartl &

Clark 1997). Clines in allele frequencies may be the conse-

quence of adaptation along an environmental gradient

(Berry & Kreitman 1993), or of genetic admixture occur-

ring in secondary contact zones (Barton & Hewitt 1985).

The third category, described by Wright (1943) as isola-

tion-by-distance, is the pattern of local genetic differences

that can accumulate under geographically restricted dis-

persal. A classical model of isolation-by-distance is the

equilibrium stepping-stone model in which regularly

spaced subpopulations exchange migrants locally (Malé-

cot 1948; Kimura & Weiss 1964). The equilibrium model

implies a decrease in genetic correlation with distance, a

phenomenon that also occurs in nonequilibrium popula-

tions (Slatkin 1993).

Clines, clusters and patterns of isolation-by-distance

are not mutually exclusive genetic structures. A classic

example of co-occurrence of these patterns is the internal

genetic structure of the Yanomama, a tribal population

from Venezuela and Northern Brazil (Ward 1972;

Ward & Neel 1976; Smouse & Long 1992). The tribe is

hierarchically organized in villages and dialect clusters,

and several polymorphic loci show clinal variation

within the tribe in distinct spatial directions. The pro-

posed interpretation of these patterns is that those clines

and clusters are the results of centrifugal range expansion

at an earlier stage of the history of the tribe. Other exam-

ples of coexistence of the three geographical patterns are

found in ring species (Irwin et al. 2005). In a ring species,

two reproductively isolated forms are connected by a

chain of intermediate subpopulations that encircle a

geographic barrier. Isolation-by-distance and selection

against hybrids can lead to well-differentiated genetic

clusters that may be separated by a cline at the closure of

the ring (Bensch et al. 2009).

Bayesian clustering

One explanation of the great popularity of STRUCTURE

in evolutionary applications is its ability to provide a

description of clines and clusters by making use of mul-

tilocus genotypes obtained from a sample of individuals.

In this perspective, isolation-by-distance may be viewed

as an ubiquitous phenomenon that complicates the anal-

ysis. Under its generic name, the program includes many

distinct models that fall into two broad categories: mod-

els with or without admixture.

The models without admixture assume that the sam-

ple is a mixture of K diverging subpopulations. Individu-

als are then probabilistically assigned to the K genetic

clusters. The existence of clusters, and the cluster to

which each individual belongs, can be assessed because

population structure generates a Wahlund effect (an

excess of homozogosity over the Hardy–Weinberg expec-

tations for a single population) and linkage disequilib-

rium. These effects mean that the likelihood is larger if

individuals are correctly assigned to subpopulations.

In contrast, the admixture models suppose that the

data originate from the admixture of K putative parental

populations that may be unavailable to the study. The K

parental populations may have existed at unknown times

in the past. In these models, the parameters of interest are

the ancestry coefficients, also termed admixture propor-

tions, computed for each individual in the sample. These

coefficients are stored in a matrix, Q, which elements, qik,

represent the proportion of individual is genome that

originates from the parental population k. The most often

used option of STRUCTURE implements a variant of the

admixture model with correlated allele frequencies

(Falush et al. 2003). In the correlated allele frequency

model, allele frequencies in parental populations have

drifted away from frequencies in an ancestral population

(Balding & Nichols 1995). In addition to enabling infer-

ence of population structure, the Q matrix is fundamental

for correcting stratification in genome-wide association

studies, one of its primary target (Pritchard et al. 2000a).

More specifically, the models of STRUCTURE

describe the joint probability distribution of the data (the

multilocus genotypes) and the parameters, which include

all allele frequencies, latent clusters for each individual

(without admixture) or allele (with admixture), and

admixture proportions. The joint probability distribution

decomposes into the product of two terms: the likeli-
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hood, a quantity that describes the probability of the data

conditional on the parameters, and the prior distribution,

which summarizes background information about the

parameters. Posterior estimates for the parameters of

interest are computed by updating the prior distribution

based on the data using a Markov chain Monte Carlo

(MCMC) algorithm. Spatial models, which will be

described below, adopt the same individual-based likeli-

hood framework, but they rely on very different priors

distributions. The spatial clustering models fall into the

same two categories as those implemented in STRUC-

TURE: with or without admixture. We present five dis-

tinct spatial Bayesian individual-based clustering models

implemented in three software packages. While this

review is focused on individual-based methods, we

should mention that population-based methods, based

on similar Bayesian principles, can also include spatial

covariates in their prior distributions (Foll & Gaggiotti

2006; Faubet & Gaggiotti 2008; Orsini et al. 2008).

Preliminary clarifications

Before describing the Bayesian clustering approaches, it

is useful to make a number of preliminary remarks. (i)

Each program name hides a plethora of distinct models.

For example, STRUCTURE encompasses (many) more

than 16 different models depending on the choice of the

admixture model (Pritchard et al. 2000b), the linkage

model (Falush et al. 2003), the dominance model (Falush

et al. 2007) or the use of population information (Hubisz

et al. 2009). This means that we should clearly indicate

which model we use in addition to the program. Here,

unless mentioned, we refer to the default options of each

program. (ii) A second distinction arises because of the

release of upgraded versions of programs and program

documentation. Consequently, comparisons of programs

are only valid on short time scales, and references to pro-

gram documentation may be more accurate than refer-

ences to original publications. Our objective here is not to

compare the relative performance of the models. For such

comparisons, see (Latch et al. 2006; Chen et al. 2007). (iii)

Some essential postprocessing methods have been devel-

oped separately from the models themselves. Examples

include model selection methods to decide which num-

ber of cluster should be retained and utilities that average

results over multiple program runs (CLUMPP, Jakobsson

& Rosenberg 2007).

Spatially explicit Bayesian models

Models without admixture

The no-admixture model implemented in BAPS5 defines

the neighbourhood of each individual based on a

Voronoi tessellation of the study area (Corander et al.

2008). In a Voronoi tessellation, each individual sampling

site, si, is surrounded by a cell made of points that are clo-

ser to si than to any other sampling site. The use of the

sampling locations to define cells is natural unless the

sampling locations are unrepresentative of the individual

spatial distribution (François et al. 2006). Two sampling

sites are neighbours if their cells share a common edge.

BAPS5 imposes a prior distribution that puts more

weight on geographically homogeneous partitions of the

sample, although this geographic trend is not explicitly

based on biological considerations. In the BAPS5 model,

the important property of the prior distribution is to

belong to the class of Markov random fields (Clifford

1990; Bishop 2006; François et al. 2006). In Markov field

models, neighbouring individuals are more likely to be

co-assigned to a cluster than individuals far apart. In

addition, the correlation between cluster labels decreases

with the distance between sampling sites, as expected

under spatially restricted dispersal (Kimura & Weiss

1964). However, although the Markov property accounts

for local dependencies, the model does not allow us to

estimate the magnitude and scale of spatial correlations

in presence of patterns of isolation-by-distance. The

model without admixture is implemented through a

greedy stochastic split and merge algorithm. The

algorithm is faster and requires less tuning than MCMC

algorithms (Corander et al. 2008). In practice, the only

parameter, a user of BAPS5 needs to tune, is the maximal

number of cluster, Kmax, to be explored by the program

(but many other options are available).

In the without-admixture model of TESS, the prior

distribution on cluster labels is similar to the model used

in BAPS5 (Chen et al. 2007). Again, TESS builds a neigh-

bourhood for each individual based on a Voronoi tessel-

lation where each cell is centred on a sampled site. The

prior distribution on cluster labels corresponds to the

Potts model, which is widely used in epidemiology,

image analysis and statistical physics. The Potts model is

a statistical model where the state of each individual is

influenced only by the states of its neighbours. In other

words, neighbouring individuals are genetically closer to

each other than to distant individuals (but again, the

model does not allow us to infer the magnitude of spatial

correlations in presence of isolation-by-distance). If sam-

pling is geographically irregular, TESS can use a modi-

fied version of the Potts model in which the Delaunay

graph is weighted by an inverse function of geometric

distance so that long edges in the graph have virtually no

influence.

In contrast, the prior distribution on cluster labels

implemented in GENELAND is based on a biologically

motivated probabilistic model inspired by landscape

genetics (Manel et al. 2003; Guillot et al. 2005). GENE-

� 2010 Blackwell Publishing Ltd

S P A T I A L C L U S T E R I N G M O D E L S 3



LAND attempts to detect genetic boundaries, considering

that these boundaries separate K random mating subpop-

ulations. So it differs from BAPS and TESS, which instead

attempt to minimize the Walhund effect by incorporating

local dependencies in their model. Unlike BAPS5 or

TESS, Voronoi cells in GENELAND are not associated

with individuals, but with ‘territories’. Each territory can

group several individuals within a single Voronoi cell.

The geographic locations of the cells as well as their num-

ber are considered as parameters of the model and are

estimated using an MCMC algorithm. The number of

cells is controlled by a fixed parameter (k) that influences

both the posterior estimates and the convergence rate of

the algorithm.

Models with admixture

The admixture model of BAPS5 searches for admixture

events given some source populations (Corander & Mart-

tinen 2006). The model assumes that every source popu-

lation has been sampled before inferring potential

admixture events. Thus, the admixture model is by itself

not spatially explicit. Note that only if the admixture

event was recent are the parental populations or closely

related populations likely to be sampled. With this

assumption in mind, Corander & Marttinen (2006) rec-

ommend starting the analysis by partitioning the sam-

pled individuals using their mixture model. To compute

admixture proportions, BAPS5 runs a Monte Carlo algo-

rithm over allele frequency parameters while using an

optimization algorithm for inferring the admixture coeffi-

cients at each iteration.

TESS implements a spatially explicit admixture model

that does not require that the source populations have

been sampled (Durand et al. 2009). Individual ancestry

proportions are estimated by incorporating spatial trends

and spatial autocorrelation in the prior distribution of the

Q matrix. In TESS, individual admixture proportions are

allowed to vary over space, and the variation is decom-

posed into effects at both regional and local scales. In this

model, trend surfaces account for clines in all geographic

directions, and autocorrelated residuals account for isola-

tion-by-distance. More importantly, the parameters that

specify the shape of the clines are also estimated from the

data, as well as the magnitude of spatial autocorrelation

(using noninformative prior distributions on those

hyper-parameters). The models – implemented in an

MCMC algorithm – have the potential to simultaneously

detect clines and clusters by examining the inferred vari-

ation of admixture proportions. Table 1 summarizes the

main features of the computer programs discussed in this

study.

Choosing the number of clusters

Distinct approaches have been proposed to estimate the

number of cluster in each model. To avoid errors and

misuses, it is important to remark that Kmax does not have

the same meaning in each program. In BAPS5 and

GENELAND, Kmax represents a bound on the number of

clusters to be explored by the algorithm. In TESS (and

STRUCTURE), Kmax (like K) is a fixed value, and the mod-

els have to be run for a range of values of Kmax (or K).

To estimate the number of clusters, STRUCTURE

relies on ln P(D|K): the logarithm of the probability of

the data given K. This statistic can be viewed as a penal-

ized measure of fit based on a Gaussian approximation of

the model deviance. Typically, STRUCTURE is run for

several values of K, ln P(D|K) is computed for each of

them and plotted against K. The value of K is then chosen

Table 1 Summary of four Bayesian clustering software packages and their underlying model

Software Admixture

Parental

populations Rationale Prior distribution Algorithm Choice of K

STRUCTURE Yes Not required Infers ancestry coefficients

Minimizes departures from

HW and LD disequilibria

Non spatial MCMC Multiple runs

ln P(D|K)

GENELAND No Not relevant Delineates populations

under Hardy–Weinberg

equilibrium

Colored Voronoi tiling RJMCMC Single run

Reversible jump

BAPS Yes Required or

provided

by the

mixture model

Seeks spatially smooth and

genetically homogeneous

clusters

Inspired from Markov

Random fields (mixture)

Non spatial (admixture)

Stochastic

optimization

Multiple runs

Split and merge

TESS Yes Not required Models spatial trends

and autocorrelation

Markov random field

(mixture)

Log-Gaussian random

field (admixture)

MCMC Multiple runs

Information

theoretic

criterion

MCMC, Markov chain Monte Carlo.
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to correspond to the point at which the curve plateaus.

The DK criterion of Evanno et al. (2005) aims to automate

this process.

To decide which values of the number of clusters are

best supported by the genetic data, GENELAND esti-

mates the posterior probabilities of each K via a reversible

jump algorithm. The algorithm visits each value of K

between 1 and Kmax within a single long run. It can

increase or decrease K of one unit by splitting an existing

cluster or by merging two existing clusters. Similarly,

BAPS5 implements a split and merge algorithm that

allows K to be automatically estimated. Because, in large

dimensions, the posterior distribution is likely to be mul-

timodal, the MCMC algorithms may visit only the vicin-

ity of a few modes of the posterior distribution. Thus, it

may be necessary to run those programs several times.

TESS computes the deviance information criterion (DIC)

to choose K (Spiegelhalter et al. 2002): a generalization of

the Akaike information criterion for hierarchical models

(Akaike 1974). DIC is a measure of model fit penalized by

an estimate of model complexity. In practice, this crite-

rion is similar to that used by STRUCTURE because ln

P(D|K), up to a factor ½, has been proposed as an alter-

native to the calculation of the DIC (Gelman et al. 2003).

To choose Kmax (and K) or any internal model, TESS can

be run for distinct values of Kmax. In practice, we suggest

plotting DIC against Kmax and choosing the values of

Kmax that correspond to a plateau of the curve (Durand

et al. 2009).

The number of genetic clusters detected by Bayesian

clustering algorithms does not necessarily correspond to

the number of biologically meaningful populations in

our sample (cf. Waples & Gaggiotti 2006). For example,

inference of population structure can be biased by the

choice of a particular sampling strategy (Schwartz &

McKelvey 2009). For PCA and STRUCTURE, the ability

to detect population structure also depends on the sam-

ple size and on the number of markers (Patterson et al.

2006; Fogelqvist et al. 2010). In particular, finer structure

might be detected with a larger sample size. The choice

of a particular value of K in Bayesian clustering models

will also depend on the information contained in the

data, rather than on biological grounds. We ought to be

aware that when we determine an optimal value of K, it

is optimal only for the particular model we are using.

Because the models differ in their prior assumptions,

there is no reason why values of K should be congruent

in every model (see Discussion). It follows that choosing

K based on a consensus of outputs may not always be jus-

tified. Resorting to model selection criteria to choose K by

comparing distinct models overcomes these issues.

Robustness of models

In this section, we evaluate the robustness of the models

to departures from their basic assumptions, we test the

Bayesian clustering programs under three distinct sce-

narios: (i) A scenario of recent divergence (or fission) of

five subpopulations. (ii) A fusion scenario in which

source populations are lost, but the relative proportions

of each individual genome originating in each source

population are variable across space. (iii) A spatially

realistic scenario of the colonization of Europe from two

refugia.

Models with admixture are robust in diverging
subpopulations

In first series of simulations, we consider a simulated

data set that consists of recently diverged genetic clusters

(Latch et al. 2006). The simulation process mimics an

instantaneous fission of a large reference population,

such that the clusters are created by drawing a random

set of founders from the reference population. One data-

set is created in which FST = 2% and another in which

FST = 3%. Spatial coordinates are then associated with

each individual such that the individuals group into geo-

graphically coherent partially connected units (Chen

et al. 2007). In this simulation scenario, five genetic clus-

ters are represented in the sample and contribute to the

global gene pool with no admixture.

For the data set with an FST = 3%, the models without

admixture correctly inferred the number of clusters, and

misclassification rates were less than 12% (Table 2).

Table 2 Data set without admixture (five clusters, Fst = 0.03). Selected number of clusters (K), average value and standard deviation of

missclassification rates or fraction of genome incorrectly assigned (p). For STRUCTURE and TESS, Kmax was varied from 2 to 8, and for

each Kmax, 10 independent runs of 10 000 sweeps were performed (700 000 sweeps allocated to STRUCTURE and TESS). Because

GENELAND and BAPS5 infer K automatically, their maximum number of cluster was set to Kmax = 8, and 10 independent runs of

100 000 sweeps were performed (allocating 1 000 000 sweeps to each program)

STRUCTURE GENELAND BAPS5 TESS

K P SD K P SD K P SD K P SD

Without admixture 5 0.081 0.001 5 0.126 0.023 5 0.039 0.032 5 0.044 0.001

Admixture 5 0.215 0.001 N.A. 5 0.044 0.030 5 0.213 0.018
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Though producing larger error rates, admixture models

still exactly detected that there were five clusters in the

data. As expected, BAPS5 had the most accurate model

for the admixture analysis of those simulated data

because its reference populations were inferred with its

mixture version (no admixture). For the data set with an

FST = 2%, all but one model without admixture correctly

inferred the number of cluster (Table S1). The misclassifi-

cation rates were lower for GENELAND and TESS than

for STRUCTURE. Admixture models correctly detected

five clusters, but they produced noisier estimates of

ancestry proportions than for the previous data set. Over-

all, spatial models performed better than the nonspatial

model, and thus including spatial information was bene-

ficial to the analysis.

Models without admixture are not robust to fusion
events

To simulate admixture, we assume two weakly differen-

tiated parental populations (A,B) in migration-drift equi-

librium, and an instantaneous admixture event. To

include a spatial framework, spatial coordinates are asso-

ciated to each individual in each population along a lon-

gitudinal axis. Then, the fraction of an individual’s

genome originating in population A is proportional to its

distance to A (Durand et al. 2009). As a consequence, the

individual coefficients of ancestry vary continuously

along a longitudinal gradient (Fig. 1).

For these simulations, none of the models without

admixture was able to uncover population structure, all

leading to the inference of a single cluster in the sample.

With the exception of the models of BAPS, which

assumes known source populations, the situation was

most favourable to admixture algorithms (Fig. 2). For an

FST of 4% between the ancestral populations, both

STRUCTURE and TESS admixture models performed

very well. The Pearson correlation between the estimated

and the true coefficients was greater than 90%. The bene-

fit of including spatial information is visible when the

ancestral level of differentiation was decreased, as

STRUCTURE failed to detect the cline (Fig. 2B).

Next, we used realistic simulations to generate data

from a scenario that mimics the postglacial re-coloniza-

tion of Europe for many taxa, implying the co-occurrence

of clusters, clines and local patterns of isolation-by-dis-

tance in the data (Hewitt 2000). The simulation takes

place in a two-dimensional nonequilibrium stepping-

stone model defined on a lattice of demes covering Eur-

ope. The parameters used in this simulation are

described in (Durand et al. 2009). In short, Europe is colo-

nized from two distant southern refugia, one in the Ibe-

rian Peninsula and the other close to the Black Sea

(Fig. 3). The simulation involves genetic divergence

between parental populations (�600 generations), range

expansion (during �500 generations) and secondary con-

tact that occurred �500 generation ago. The simulation

was performed with the program SPLATCHE (Currat

et al. 2004). For these data, the admixture models imple-

mented in TESS and STRUCTURE inferred K = 3 (Fig. 4),

which corresponded to a east-west cline and one cluster

that arose from a founder effect in Scandinavia. Both

models detected spatial variation of ancestry coefficients

in an area that unambiguously corresponds to the contact

zone. In contrast, models without admixture and BAPS

admixture models detected four clusters, corresponding

Fig. 1 Schematic representation of the fusion scenario. Two

weakly differentiated populations admixed in a recent past, cre-

ating a cline in allele frequencies and variable admixture propor-

tions along a longitudinal gradient.

(a)

(b)

Fig. 2 Inferred admixture coefficients for data sets generated

under a pure fusion scenario with two parental populations. (a)

Admixture model implemented in TESS. The correlation coeffi-

cient R between estimated and true admixture coefficients is

greater than 90% for both data sets. (b) Admixture model imple-

mented in STRUCTURE. For an FST of 3% between the parental

populations, the cline is not uncovered; otherwise, the estimates

are similar to TESS. The data sets contain n = 400 genotypes at

L = 100 diploid loci. For each program, we performed 100 inde-

pendent runs of 10 000 sweeps with K = 2 and we kept the 10

runs that had the lowest DIC or lnP(D|K) values. We averaged

the outputs of these 10 runs using CLUMPP.
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to artificial genetic discontinuities located both sides of

the contact zone.

Discussion

Model assumptions

In models without admixture, the sample is assumed to

consist of K genetically divergent groups of individuals,

and the analysis uses the genetic data to classify each

individual in a sample into a specific group. The models

may be appropriate if we have prior knowledge on repro-

ductive isolation or on a fragmented habitat. Thus, in

applications of spatial Bayesian models, a frequent focus

is on detecting genetic discontinuities associated with

barriers to gene flow or habitat loss and fragmentation

(e.g. Spear and Storfer 2008; Fedy et al. 2008; Quéméré

et al. 2009; Gardner-Santana et al. 2009; Richmond et al.

2009; Dudgeon et al. 2009). In models without admixture,

the allele frequencies are assumed to be constant over

space within each cluster. Consequently, in the presence

of clines, the sample may be either wrongly classified as

a single homogeneous population as in our simulations

of recent admixture or partitioned into geographic

regions where the allele frequencies stay approximately

constant as in Fig. 4B and in Fig. S1. In the latter case, the

results of the program may confound the detection of

actual boundaries.

In admixture models, individuals are not given a clus-

ter label (Note that the terminology of ‘clustering’ can be

misleading here). In fact the ‘clusters’ detected by the

models are interpretable as source populations that had

diverged in the past, had reached equilibrium and could

have been brought into contact again at a later date.

Examples of spatial admixture analyses are found in

(François et al. 2008; Lindsay et al. 2008; Cullingham et al.

2009; Dépraz et al. 2009; Henry et al. 2009). In admixture

models, the allele frequencies are less constrained than in

mixture models, because there is no assumption that

there are K random mating populations in the sample. As

a consequence, the model can detect geographic clines in

allele frequencies and ancestry coefficients as in Fig. 2.

Spatial models of admixture are useful in this respect,

because they explicitly take the spatial dependencies into

account at local and global scales and improve inference

(Durand et al. 2009). In summary, admixture models are

more flexible than models without admixture, and they

may be more useful in interpreting population structure

resulting from fission and fusion events and for correct-

(a)

(b)

Fig. 4 Secondary contact in Europe. (a) Clusters inferred by the

model without admixture implemented in GENELAND. The

Reversible Jump Markov Chain Monte Carlo (RJMCMC) algo-

rithm chooses K = 4 clusters. (b) Posterior prediction of admix-

ture proportions inferred by TESS (admixture model). The DIC

leads to select a model with K = 3 parental populations. For

TESS, we varied K from 2 to 8, performing 100 runs of length

10 000 for each value of K; we kept the 10 runs that obtained the

lowest DICs. For GENELAND, we performed 10 independent

runs each of length 100 000 sweeps.

Fig. 3 Schematic representation of a realistic secondary contact

scenario implemented with SPLATCHE. Two waves of expan-

sion started from two distinct southern refugia �1000 genera-

tions ago and the two waves met in central Europe �500

generation ago. For details on the simulation, see (Durand et al.

2009). Three individuals are genotyped at each of the 60 sample

locations represented by empty circles (20 microsatellite loci).
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ing biases in association studies (Pritchard et al. 2000a;

Falush et al. 2003). Furthermore, the likelihood frame-

work of Bayesian clustering models make no explicit

assumptions about the timing of divergence or admixture

events.

Robustness of models

In scenarios of diverging populations, genetic groups are

the results of random drift. Although we set the level of

differentiation to low values, the models without admix-

ture detected population structure accurately, and spa-

tially explicit programs performed better where there

was indeed spatial structure (Latch et al. 2006; Chen et al.

2007). Models with admixture incorrectly assigned a non-

negligible fraction of individual genomes to wrong clus-

ters. However, the admixture models usually inferred

the number of cluster correctly, and their results actually

suggest that the levels of admixture in the sample were

low. Not surprisingly, models without admixture failed

to uncover population structure in scenarios of fusion of

two weakly differentiated populations, leading to the

erroneous conclusion that the sample is genetically

homogeneous. When K = 2, the admixture models imple-

mented in STRUCTURE and TESS revealed themselves

efficient at detecting the cline, in which the allele frequen-

cies vary along a longitudinal gradient. The failure of the

admixture model of BAPS5 occurred because this model

requires the presence of nonadmixed individuals in the

sample; whereas in this case, no close descendant of the

parental populations was sampled. Under spatially real-

istic scenarios, in which a species colonizes Europe from

two southern refugia and exhibits a contact zone in the

centre of the area, models without admixture identified a

cluster in Scandinavia, but they partitioned the continen-

tal cline into three artificial compartments, producing

spurious delineations that could be misinterpreted as

genetic discontinuities.

Model checking and model choice

Our short simulation study does not answer two funda-

mental questions that might be asked of a particular data

set: which models are best supported by our particular

data and do spatial models provide a better description

of the sample than nonspatial ones? Systematic answers

to these two questions have perhaps been hindered by

the hegemony of STRUCTURE in population genetic

analyses. Here, we argue that it is possible to answer

these questions by the techniques of model checking and

model choice (Gelman et al. 2003).

One way to check an inferred population structure is

by visualizing the posterior distribution on individual

cluster labels or ancestry coefficients. In models with

admixture, point estimates of the ancestry coefficients are

routinely reported in a graphical way. In models without

admixture, a graphical representation is obtained by the

plotting marginal distributions of the inferred sample

partition (the membership probabilities). For models

without admixture, Dawson & Belkhir (2009) suggested

to improve visualization of the posterior distribution on

sample partitions by associating co-assignment probabili-

ties with the height of nodes in a hierarchical clustering

tree structure, a format which is easy to view and inter-

pret. Another way to check an inferred population struc-

ture is by applying an independent inference method,

like PCA, which has recently re-gained in popularity

owing to its ease of use and its speed in analysing large

genomic datasets. In addition, PCA can be modified to

account for spatial autocorrelation (Jombart et al. 2008).

The results of PCA can provide a useful validation of

Bayesian clustering outputs in particular if admixture

models are used (Patterson et al. 2006; McVean 2009).

Model checking can also be performed by simulating rep-

licates from the posterior predictive distribution (Gelman

et al. 2003). In this setting, model checking is performed

to test whether a previously fitted model can reproduce

the observed data or not. When applying techniques of

model checking, an important point to keep in mind is

that models are wrong (but some are useful). For exam-

ple, it is rather unlikely that any sample contains K ran-

dom mating subpopulations as we assume in models

without admixture (such an ideal partitioning of a sam-

ple into Hardy–Weinberg equilibrium clusters can never-

theless be useful for understanding population

structure). Model checking is a way to explore and

understand differences between data and models, to

improve them, but not to reject them. With Bayesian clus-

tering models, posterior simulations of multilocus geno-

types can be easily generated given the estimated

assignment probabilities and the allele frequencies in

each cluster. Hoggart et al. (2004) proposed that model

checking can be performed by computing the percentage

of variance explained by the first PCs of simulated geno-

types and by comparing the distribution of these values

to those computed from the data.

Although the Bayesian models considered here are

based on a common likelihood framework, they make

different assumptions. Thus, even though we would be

able to find values of K that optimally describe our data

set for each algorithm, those optimal values of K could

still disagree with each other. The choice of K and more

generally the decision of which models are best

supported by the data can be addressed on the basis of

information theoretic criteria, like the deviance informa-

tion criterion (Fig. 5; François et al. 2008; Garcia-Gil et al.

2009; Keller et al. 2010). Like the more familiar Akaike

information criterion values, lower values of DIC can be
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used to indicate better models in the sense that they are

parsimonious and explain the data well. For example,

Durand et al. (2009) used DIC to choose between three

distinct prior distributions on ancestry coefficients for

data from the killifish Fundulus heteroclitus. One of the

tested models was nonspatial and equivalent to the un-

correlated allele frequency admixture model of STRUC-

TURE. According to the DIC, there were five clusters in

the sample with the nonspatial model. The five clusters

were checked to be almost identical to those obtained

with the default options of STRUCTURE, for which the

DK criterion also selected five clusters. A spatially explicit

admixture version of TESS obtained lower DIC scores

than the nonspatial model, indicating that a cline better

described the data than the five clusters inferred by

STRUCTURE. Where models have similar levels of

support, model averaging – using for example the

program CLUMPP (Jakobsson & Rosenberg 2007) – can

also produce robust estimates of cluster membership or

ancestry coefficients.

Conclusions

There are many cases where the inference of population

structure can benefit from the modelling of the various

geographic scales at which spatial genetic variation

arises. Models can account for local dispersal that gener-

ates patches of covarying allele frequencies by including

spatial autocorrelation (Epperson & Li 1996). In addition,

they can also account for global trends in allele frequen-

cies and admixture proportions created by range expan-

sions and secondary contact at regional scales (Durand

et al. 2009). Answering the ‘with or without admixture’

question, we urge users of Bayesian clustering programs

to run admixture models on their data, because these

models are more flexible and more robust than models

without admixture. We suggest running more than one

model, and using statistical model selection, for example

based on information-theoretic criteria, to decide which

results should be retained. We also suggest that these

results may not necessarily correspond to a consensus of

program outputs. Using spatial models, Lavandero et al.

(2009) and Barr et al. (2008) detected biologically mean-

ingful clusters in cases where STRUCTURE failed to

detect any population structure. Yoshino et al. (2008)

detected two clusters in their data using STRUCTURE

and TESS, but this was not consistent with the other

methods which returned less interpretable results. Using

STRUCTURE, Sahlsten et al. (2008) detected a cline in

Scandinavian populations of Bonasa bonasia which

seemed more plausible than the genetic boundaries found

by GENELAND. Using the spatial admixture model of

TESS in Arabidopsis thaliana, we detected a cline of varia-

tion at the scale of Europe. For these data, STRUCTURE

further stratified the cline into smaller clusters (Nordborg

et al. 2005). As in the case of a PCA, we should keep in

mind that Bayesian clustering models are tools for explor-

ing the data (Patterson et al. 2006; McVean 2009; François

et al. 2010). Because their assumptions make an obvious

simplification of the biological reality and because several

demographic scenarios can result in similar clustering

outputs, genealogical interpretations of those outputs

remain difficult. Efforts to develop improved model-

based clustering methods are still necessary.
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Fig. S1 Inference of membership probabilities and ancestry coef-

ficients in a simulation of a multilocus cline. In the simulation,

200 individuals are genotyped at seven bi-allelic loci at which

allele frequencies display regular logistic variation along a longi-

tudinal axis. (A) BAPS5 used with or without its admixture

model partition the cline in four clusters. (B) STRUCTURE and

TESS find two clusters and the interpolated ancestry coefficients

mimic the cline.
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with low levels of differentiation.
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