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Abstract

Approximate Bayesian computation (ABC) is a class of algorithmic methods in Bayesian
inference using statistical summaries and computer simulations. ABC has become popular in
evolutionary genetics and in other branches of biology. However, model selection under ABC
algorithms has been a subject of intense debate during the recent years. Here, we propose novel
approaches to model selection based on posterior predictive distributions and approximations of
the deviance. We argue that this framework can settle some contradictions between the
computation of model probabilities and posterior predictive checks using ABC posterior
distributions. A simulation study and an analysis of a resequencing data set of human DNA show
that the deviance criteria lead to sensible results in a number of model choice problems of interest
to population geneticists.
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Introduction

Approximate Bayesian Computation (ABC) is a class of Monte-Carlo algo-
rithms for parameter inference based on summary statistics instead of the
full data (Beaumont et al 2002, Marjoram et al 2006, Beaumont 2010). More
specifically, ABC algorithms use simulations from a stochastic model to gen-
erate random samples from an approximation of the posterior distribution of
a multidimensional parameter, θ, after reduction of the original data, y0, into
a set of summary statistics, s0 = s(y0). Here we will consider that s0 are the
only data available to ABC analyses, and will refer to (Robert et al 2011)
for discussions related to the sufficiency of the summary statistics. ABC
methods found their origin in evolutionary genetics (Pritchard et al 1999,
Tavaré 2004), where they have been fruitfully applied to the inference of de-
mographic history of several species (Lopes and Beaumont 2009, Csilléry et
al 2010a, Beaumont 2010). Examples of analyses encompass the evaluation
of alternative scenarios of human evolution (Fagundes et al 2007, Patin et al
2009, Laval et al 2010), inference in demographic models of population ex-
pansion, bottleneck or migration (Thornton et al 2006, François et al 2008),
population structure and adaptation (Bazin et al 2010).

Current ABC algorithms fall into broad subclasses of methods that ex-
tend the standard subclasses of computational algorithms used in Bayesian
statistics. The first class of algorithms makes use of the rejection algorithm
to accept parameters generating simulated data close to the observations
(Pritchard et al 1999). The rejection algorithm performs the following steps:
1) Generate a candidate value θ from a prior distribution; 2) Simulate a data
set, y, from a generating mechanism using the parameter θ, and compute
the set of summary statistics s = s(y); 3) Accept the value of θ if the (Eu-
clidean) distance between s and s0 is less than ε, a prespecified error value;
4) If rejected, go to 1). For this basic algorithm, the accepted values (θi)
form a random sample from an approximation of the posterior distribution.

The above approximation becomes exact as ε goes to zero, but the algo-
rithm is then highly inefficient. Recent techniques improve the approxima-
tion of the posterior distribution by applying linear or non-linear transforms
(Beaumont et al 2002, Wegmann et al 2009, Leuenberger and Wegmann 2010,
Blum and François 2010). In those improvements, the accepted values of the
parameter, θi, are weighted by a quantity that depends on the distance be-
tween si and s0. Then they are adjusted according to a regression transform,
for example, θ∗i = θi − bT (si − s0), where b is a vector of linear regression
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coefficients (Beaumont et al 2002). Several studies have provided evidence
that the transformed parameters form a significantly better approximation
of the posterior distribution than the non-transformed ones (Beaumont et al
2002, Blum and François 2010), and regression adjustments are now widely
used by ABC practioners (Thornton 2009, Cornuet et al 2009, Lopes and
Beaumont 2009). Two other classes of algorithms implement Markov chain
Monte Carlo methods without likelihood (Marjoram et al 2003, Bortot et
al 2007) and iterative algorithms that were originally inspired by sequential
Monte Carlo samplers (Sisson et al 2007, Beaumont et al 2009, Toni et al
2009).

An important aspect of ABC is its use for model selection in addition
to parameter estimation. In general the aim of model selection is to find
models receiving the highest posterior probabilities among a finite subset of
candidates. Bayesian statisticians have devised numerous ways to evaluate
and select models for inference (Gelman et al 2004). Assuming that there are
M models under consideration, the Bayesian paradigm includes model selec-
tion in the inference step, taking the model label as an additional parameter,
m. In decision theoretic approaches, model choice is performed on the basis
of posterior probabilities, p(m|s0), which are proportional to the marginal
probabilities, p(s0|m). In ABC, these probabilities can be crudely estimated
by counting simulations from model m that fall at a distance less than a fixed
value to the observed data. More sophisticated estimators of posterior model
probabilities can be found in (Beaumont 2008) or in (Leuenberger and Weg-
mann 2009). Alternatively sequential Monte-Carlo algorithms can also used
to estimate model probabilities via iterated importance sampling procedures
(Toni and Stumpf 2010).

Model selection using ABC algorithms has been recently questioned (Tem-
pleton 2009, Beaumont et al 2010, Csilléry et al 2010a, Didelot et al 2011,
Robert et al 2011). Here we point out a potentially serious concern when
selecting models on the basis of approximate posterior model probabilities.
Because approximate model probability estimates are based on the rejection
algorithm and ignore regression adjustments on parameter samples, we ar-
gue that model choice based on these probabilities does not apply to the
(approximate) models in which we eventually make inference. To see this,
assume θ|m = θm, and let

pε(θm|s0) ∝ Pr(‖s− s0‖ ≤ ε|θ,m)p(θm) , (1)

be the approximation of the posterior distribution obtained from the rejection
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algorithm, where p(θm) denotes the prior distribution on the parameter θm
for model m. The joint distribution defining model m is then equal to

pε(θm, s0|m) = pε(θm|s0)pε(s0|m) . (2)

Regression adjustments replace pε(θm|s0) with another distribution preg(θm|s0)
which is generally closer to the exact posterior distribution. Clearly this
change modifies the joint distribution in equation (2). Thus a model cho-
sen on the basis of pε(m|s0) can be different from the model in which we
eventually estimate parameter uncertainty.

In the next section, we define two information theoretic criteria for model
selection based on measures of model fit penalized by an estimate of the model
complexity. While our focus in on regression methods, the ideas introduced
in the present study apply to any ABC algorithm. The approach shares sim-
ilarities with the popular Akaike information criterion (AIC, Akaike 1974)
which is valid for the comparison of nested models (Burnham and Anderson
2002, Johnson and Omland 2004, Ripley 2004, Carsten et al 2009). The as-
sumption of nested models is seldom appropriate to ABC, and we develop a
statistical theory of approximate deviance information criteria (DIC), which
are generalizations of AIC that do not require the assumption of nested mod-
els (Spiegelhalter et al 2002, Gelman et al 2004). Then we provide an example
of ABC analysis where model choice based on approximate probabilities dis-
agree with the prediction of adjusted models and DICs. Using simulations,
we study the relevance of the proposed information criteria to inference in
population genetics under various models of demographic history and pop-
ulation structure. In the last part of the study, we present an application
to an empirical genetic data set of 20 noncoding DNA regions resequenced
from 213 humans from distinct continents (Laval et al 2010), and we use the
approximate deviance and DIC to question the replacement of Neanderthals
by modern humans.

Theory

In this section we describe model selection criteria based on posterior pre-
dictive distributions and approximations of the deviance.

Information theoretic criteria In Bayesian analyses, the deviance infor-
mation criterion summarizes the fit of a model by the posterior expectation
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of the deviance,

¯

D, and the complexity of a model by its effective number
of parameters, pD (Spiegelhalter et al 2002). The models that receive the
highest support from the data are those with the lowest values of the DIC.
More specifically, the definition of DIC is

DIC = D̄ + pD, (3)

where the deviance is minus twice the logarithm of the likelihood, D(θ) =
−2 log p(s0|θ), D̄ is the expected deviance

D̄ = Eθ|s0 [D(θ)] , (4)

and pD is the difference between D̄ and the deviance evaluated at a particular
point estimate, D(θ̂). An example of θ̂ often used in applications is the
estimate of the posterior mean of the model parameter.

A complication arises when models are defined hierarchically. In hierar-
chical models there is a hidden parameter ϕ, and the posterior distribution
decomposes as follows

p(θ, ϕ|s0) ∝ p(s0|ϕ)p(ϕ|θ)p(θ) . (5)

In this situation, several definitions of the deviance and DIC have been pro-
posed depending on the focus of the model (Spiegelhalter et al 2002; Celeux
et al 2006). For example focusing on θ, the deviance can be taken equal to

D(θ) = −2 log

(∫
ϕ

p(s0|ϕ)p(ϕ|θ)dϕ
)
, (6)

and the computation of DIC should be modified accordingly.

A hierarchical model approach to ABC Without regression adjust-
ments, one way to define ABC is as a hierarchical Bayesian model in which
the simulated summary statistics are viewed as latent variables. In this hi-
erarchical model, the posterior distribution decomposes as

p(θ, s|s0) ∝ p(s0|s)p(s|θ)p(θ) (7)

where s are the simulated statistics, and θ becomes the “hyper-prior” pa-
rameter.
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In this model, p(s|θ) is the probability of generating the summary statis-
tics, s, with parameter θ. To make use of a hierarchical framework, we define
a surrogate likelihood function

p(s0|s) ≡ Kε(s0 − s) =
1

ε
K

(
s0 − s

ε

)
, (8)

where K is a density function, called the kernel, and ε is the error parameter.
The distribution p(s0|s) can be viewed as a model for the observation error,
and ABC performs exact inference under the assumption of model error
(Wilkinson 2008). The hierarchical model reformulation of ABC dates to
the work of Marjoram et al (2003) who used it as a rationale for defining
MCMC algorithms without likelihood. This point of view has also proven
useful in a variety of theoretical works on ABC (Bortot et al 2007, Ratmann
et al 2009, Wilkinson 2008). Regarding the basic rejection algorithm, the
definition amounts to choosing a uniform density function over the interval
(0, 1) for the kernel. In this case, we obtain

p(s0|θ) ≈
∫
s

p(s0|s)p(s|θ)ds = Pr(‖s0 − s‖ < ε|θ) . (9)

Extensions of the rejection algorithm use non-uniform kernels. For exam-
ple, Beaumont et al (2002) implemented the Epanechnikov function which
is popular in density estimation. Because we want to relate the quantity
logKε(s0− s) to a natural measure of model fit, we take the Gaussian kernel

K(u) =
1√
2π
e−u

2/2 , u ∈ R. (10)

With this choice, the quantity −2 logK1(s0 − s) has a natural interpreta-
tion as the sum of squares error between observed and simulated summary
statistics.

The surrogate model presented above has a two-level hierarchy. Following
Spiegelhalter et al (2002) or Celeux et al (2006), distinct definitions of DIC
can be proposed, depending on whether the focus is on the fit of the sum-
mary statistics to the observed ones or on the model parameters themselves.
Focusing on the parameter level allows us to better evaluate the predictive
power of the fitted models, and we next introduce two definitions for an
approximate deviance at this level.
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A first way to define a Bayesian deviance is by considering a posterior
predictive average of a “low level” deviance

dev(θ) = −2 Es|θ[log p(s0|s)] = −2

∫
s

log p(s0|s)p(s|θ)ds . (11)

In this case, the expected Bayesian deviance is

D̄1 = Eθ|s0 [dev(θ)] = −2 Es|s0 [log p(s0|s)]

With this definition, a Monte-Carlo estimate of the expected deviance can
be easily computed from the simulated data as follows

D̄1 ≈ −
2

n

n∑
j=1

log
(
Kε(s

j − s0)
)
, (12)

where the sj are summary statistics obtained from the posterior predictive
distribution p(s|s0). To compute the penalty pD,1, we generate n summary

statistics sj from p(s|θ̂), where θ̂ is a point estimate of θ, for example an
estimate of the posterior mean, E[θ|s0]. Applying the same formula as above,
we come with an estimate D̄1(θ̂) that we use to define pD,1

pD,1 = D̄1 − D̄1(θ̂) . (13)

Though the focus is on the parameter θ, the previous definition of a
deviance is not equivalent to equation (6). A definition of the deviance in a
hierarchical model consistent with this equation is as follows

D(θ) = −2 log p(s0|θ) = −2 log

(∫
s

p(s0|s)p(s|θ)ds
)
, (14)

which is also equal to

D(θ) = −2 log
(
Es|θ[Kε(s− s0)]

)
. (15)

With this definition, an estimate of the expected deviance requires two levels
of Monte Carlo integration

D̄2 = Eθ|s0 [D(θ)] ≈ − 2

m

m∑
i=1

log
1

n

n∑
j=1

Kε(s
j
i − s0)

)
(16)
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where we have m replicates, (θi)i=1,...,m, from the approximate posterior dis-
tribution, p(θ|s0), and each sji is sampled from p(s|θi), j = 1, . . . , n. To
compute pD,2, we generate n summary statistics, sj, from the conditional

distribution p(s|θ̂), where θ̂ is a point estimate of θ, and we set

D̄2(θ̂) ≈ −2 log

(
1

n

n∑
j=1

Kε(s
j − s0)

)
. (17)

Then we define
pD,2 = D̄2 − D̄2(θ̂) . (18)

Both definitions of D̄ and pD lead to distinct definitions of an information
criterion, DICi = D̄i+pD,i, i = 1, 2. DIC2 has the advantage of defining DIC
for ABC models more rigorously than DIC1, but it has the disadvantage of
being computationally more intensive.

Unlike model probabilities, D̄ and pD can be computed from any approx-
imation of the posterior distribution. Using linear or non-linear regression
adjusments, we can consider the transformed parameter posterior distribu-
tion, preg(θm|s0), instead of pε(θm|s0). To compute DIC, we then replace the
θi’s by their adjusted values θ∗i ’s, sampled from the modified posterior distri-
bution, and generate posterior predictive densities from these values. In the
sequel, DICi will refer to predictive distributions generated from adjusted
parameters.

To motivate the use of information criteria and illustrate some of the
issues presented in the introduction, we consider an example where samples
of size n = 20 are simulated from a Gaussian disribution of mean µ0 = 2
and standard deviation σ0 = 3 (then assumed to be unknown). The data
are summarized by their empirical mean, standard deviation, skewness and
kurtosis, and the sample size is known.

We observed s0 = (2.00, 3.11,−0.78, 0.14). For these data two models
are hypothesized. The sampling distribution of first model is a Gaussian
distribution where the parameter, θ = (µ, σ2), corresponds to the mean and
the variance. The prior distribution on µ is a Gaussian distribution of mean
2 and standard deviation 10. The prior distribution on σ is an inverse-
exponential distribution of rate 1. The sampling distribution of the second
model is a Laplace distribution of mean 3 and rate λ. The prior distribution
on λ is an exponential distribution of rate 1.

To perform ABC analyses, we simulated 10,000 samples from each model,
and pooled the 20,000 vectors of summary statistics into a single data set.
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Using an acceptance rate of 10%, we estimated model probabilities using
the R package abc (Csilléry et al 2011, R core team 2010). This package
computes the proportion of accepted simulations under both models, and
also implements the weighted logistic regression method of (Beaumont 2008).
The Bayes factor, defined as the ratio of marginal probabilities for two mod-
els m1 and m2 can be estimated as the ratio of counts in favor of m1 and
m2 (Pritchard et al 1999, Grelaud et al 2009). The proportion of accepted
simulations from model 2 (Laplace) was 0.83. Assuming a uniform prior
distribution on models 1 and 2 we obtained an approximation of the Bayes
factor equal to BF ≈ 5.02. The logistic regression estimate for the posterior
probability of model 2 was 0.85, and we obtained BF ≈ 5.75. According to
Jeffrey’s scale on Bayes factors (Jeffreys 1961), there would be substantial
evidence in favor of the Laplace model over the Gaussian model.

In a second stage, we performed regression adjustments to the approx-
imate posterior samples. The observed value of the kurtosis statistic was
outside the tails of the posterior predictive distribution under the Laplace
model. In contrast it was within the tails of the posterior predictive distri-
bution under the Gaussian model. Thus there is an apparent contradiction
between the computation of model probabilities and the predictions from
the posterior distribution. To better understand this contradiction, we drew
the exact posterior distribution of σ2 under the Gaussian model (an inverse-
Gamma(11, 1 + 9.5v20) distribution, where v20 is the empirical variance). Al-
though posterior density approximations are improved by the adjustment
method (Figure 1), the estimates of model probabilities did not account for
such improvements. Then we computed DICs for the Gaussian and Laplace
models. Under the Gaussian model, we obtained DIC1 = 4.5 and DIC2 = 3.2.
Under the Laplace model, we obtained DIC1 = 10.1 and DIC2 = 4.5. Once
the corrections were applied, DIC indicated that the Gaussian model was a
better choice than the Laplace model.

To investigate whether our analysis was robust, we replicated it 100 times
with values of s0 sampled from the same Gaussian distribution in each repli-
cate. The average value of the Bayes factor was around 3.45 (3.58 when using
the logistic regression method) in favor of the Laplace model which obtained
the highest posterior probability in 100% of the replicates. In contrast, the
Gaussian model was preferred in 100% of the replicates when DIC was used.
The mean value of the information criterion was around 4.1 (2.4 for DIC2)
under the Gaussian model, whereas is was around 12.4 (3.7 for DIC2) under
the Laplace model.
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Figure 1: Posterior distributions of parameter σ2 (Gaussian model). A)
The exact posterior distribution. B) The approximation obtained from the
rejection algorithm. C) The approximation obtained with the regression ad-
justement.

Population genetic models

For each simulated data set and each model considered afterwards, we per-
formed 10,000 simulations under specified prior distributions (100,000 for the
human data). We ran ABC analyses using an acceptance rate of 10% (1% for
the human data). To compute DIC1 we additionally created n =1,000 repli-
cates from the posterior predictive distribution. For DIC2, we used m = 200
and n = 200 replicates.

Demographic models. We generated coalescent simulations under selec-
tively neutral models of micro-evolution for 3 distinct demographic scenarios:
a sudden decline in population size (bottleneck without recovery), a constant
population size, an exponentially growing population size. In these data, fifty
diploid individuals were genotyped at 20 non recombining loci. The data were
simulated as DNA sequences under an infinitely many-sites model using the
computer program ms (Hudson 2002).

For each of the three models, we simulated one hundred replicates of the
data with fixed parameter values. In ms, the parameters are expressed in
units of the current population size, N0. In our simulations, the normalized
mutation rate was equal to θ = 2N0µ = 3. In the bottleneck model, the
population size shrunk to a fraction x = 1/4 of its ancestral value, and
this event occurred t = 0.2N0 generations in the past. In the expanding
population model, the expansion rate was set to α = 2.

The prior distribution on the mutation rate, θ, was uniformly distributed
over (0, 15) for all models. In the bottleneck model, the date of the bottleneck
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Bottleneck Constant size Expansion

Bottleneck? 13.66 (7.72) 12.83 (7.99) 18.36 (9.82)
10.08 (8.80) 10.59 (6.08) 17.04 (9.71)

Constant size 40.06 (10.93) 2.83 (0.18) 3.15 (0.30)
30.24 (14.71) 2.71 (0.17) 2.95 (0.39)

Expansion 17.48 (4.59) 3.65 (0.64) 3.36 (0.23)
11.40 (4.12) 3.58 (0.69) 2.87 (0.17)

Table 1: Comparisons of demographic models using DIC1 and DIC2. The
rows correspond to the models used for simulating the data, and the columns
correspond to the models under which inference was performed. The values
represent the mean and standard deviation of DICs computed over 100 inde-
pendent replicates for each model. ?: Values under the bottleneck model were
computed with the median of the posterior deviance instead of their mean,
because the median is less sensitive to large deviations.

event (in unit of N0) was uniformly distributed over (0, 1), and log10 x was
uniformly distributed over (0, 1.5). In the expansion model log10 α was also
uniformly distributed over (0, 1.5). ABC analyses were performed using the
following summary statistics: the Tajima’s estimator π, computed as the
mean number of differences between pairs of sequences, Tajima’s D (Tajima
1989), and Fay and Wu’s H statistic (Fay and Wu 2000). The three summary
statistics were averaged over the 20 loci.

We applied ABC analyses and deviance information criteria to population
genetic data simulated under a bottleneck, a constant population size and an
expansion model (100 data sets for each demographic model). Table 1 reports
congruent results for DIC1 and DIC2, and Figure 2 reports the outcome of
model selection for the three models.

Although DIC1 is generally greater than DIC2, the two measures pro-
duced highly correlated results (Figure 3). In these examples, both criteria
agreed in their evaluation of models. When the data were simulated un-
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Figure 2: Demographic scenarios. Model choice using the deviance informa-
tion criterion, DIC2, when a specific scenario is assumed. See the text for the
definition of models. The frequencies were computed over 100 independent
replicates from each model. The same results were obtained with DIC1.

der the bottleneck model, reported estimates were obtained with the median
of the posterior deviance instead of their mean (The mean provided highly
variable results). The preferred model was the bottleneck model in 61/100
replicates. When the data were simulated under the constant population
size model, the preferred model was the constant size model in 81/100 repli-
cates. When the data were simulated under the expanding population size
model, the preferred model was the expanding population model in 89/100
replicates. Overall, models that did not generate the data were selected in
a small but non-neglectible number of replicates (23%). For data simulated
under the bottleneck model, the lower performances can be explained by the
relatively recent date of bottleneck event and by the choice of diffuse prior
distributions. Both factors contribute to the difficulty of distinguishing be-
tween a bottleneck and a constant size model. In addition there is great
variability in the simulated summary statistics, and this can explain why the
bottleneck and constant population size models were difficult to tease apart.

To gain insight on model choice, we examined the results obtained for a
particular replicate in further details. The replicate was obtained from the
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Figure 3: Correlation between DIC1 and DIC2. A) Inference under a popu-
lation expansion model for data simulated under a constant population size
model. B) Inference under a constant population size model for data simu-
lated under an expanding population model.

bottleneck model, where the effective mutation rate, the time of the bottle-
neck event and the severity of the bottleneck 1/x were set to the values (3,
.2, 4). The observed summary statistics were equal to π = 8.58, D = 1.32
and H = 9.42. Under the bottleneck model, the point estimates of the ef-
fective mutation rate (posterior mean = 2.90, .95 CI = [1.34, 4.36]), the
time of the bottleneck event (posterior mean = 0.35, .95 CI = [0.04, 0.62])
and the severity of the bottleneck (posterior mean = 5.01, .95 CI = [2.18,
47.81]) were close to the values used in the simulation. DIC2 was equal to
14.13 (median estimate), whereas it was equal to 17.83 under the constant
population size model. In this case the DIC slightly favored the model that
generated the data. Under the bottleneck model, the observed values of the
summary statistics were indeed within the tails of the posterior predictive
distributions whereas they were outside the tails in the constant size popu-
lation model (Figure 4). We also investigated why in some case DIC failed
to select the model from which the data were simulated. For one bottleneck
data set, the observed summary statistics were equal to π = 6.77, D = 0.56
and logH = 1.71. DIC2 was equal to 10.11 (median estimate) under the bot-
tleneck model, whereas it was equal to 6.08 under the constant population
size model. Under both models, the observed values of the summary statis-
tics were within the tails of the posterior predictive distributions, but the
posterior distributions had larger tails under the bottleneck model than un-
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der the constant size model, and DIC favored the most parcimonious model
(constant population size). This shows that in some cases the data do not
contain enough information to discriminate between models, and highlights
the difficulty of making model inference under coalescent models.

Isolation with migration. Next we generated coalescent simulations un-
der 3 distinct models of population structure: divergence of two subpop-
ulations, divergence with unidirectional gene flow from subpopulation 1 to
subpopulation 2, and divergence with migration between two subpopulations.
Fifty diploid individuals in each population were genotyped at 100 non re-
combining loci. For each of the three models, we simulated one hundred
replicates of the data with fixed parameter values. For these models, the
parameters are expressed in units of the current subpopulation size, N0. In
our simulations, the normalized mutation rate was equal to θ = 2N0µ = 4.
In each model, the two subpopulations had equal population size (both were
equal to N0). For the divergence model, the split occurred 0.7N0 generations
ago. In the divergence with migration model, the normalized migration rates
were equal to m1N0 = 40 and m2N0 = 30, whereas in the unidirectional gene
flow model, we took m1N0 = 40 and m2N0 = 0.

When running ABC inferences, subpopulations sizes were parameterized
as ν1N0 and ν2N0 respectively, and we used uniform prior distributions on
(0, 3) both for ν1 and ν2. In all models, the divergence time was uniformly
distributed over (0, N0). Normalized migration rates were uniformly dis-
tributed over (0, 100). In addition to the three summary statistics π, D and
H used in demographic models, we also computed an FST statistic for each
data set according to Hudson’s estimator (Hudson et al 1992). The summary
statistics were averaged over the 100 loci.

We applied ABC analyses to 300 data sets simulated under the above
models of population structure and gene flow between two subpopulations.
Table 2 reports congruent results for DIC1 and DIC2, and Figure 5 describes
the results of model selection for the three models of population structure.
As for the simulations of demographic scenarios, DIC1 and DIC2 produced
highly correlated results, and agreed in their evaluation of models. When
the data were simulated under the divergence model, the preferred model
was the divergence model in 98/100 replicates. When the data were simu-
lated under a model with unidirectional migration, the preferred model was
the model with asymetric migration in 92/100 replicates. When the data
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Figure 4: Posterior predictive distributions of π, Tajima’s D and the log-
arithm of Fay and Wu’s H. The observed summary statistics were simu-
lated under a bottleneck model, and were equal to π = 9.77, D = 1.40 and
H = 9.98. Inferences were performed under a bottleneck model and a con-
stant population size model. The vertical bars correspond to the observed
summary statistics.

were simulated under the migration model, DIC favored either a divergence
model (49/100 replicates) or a model with asymetric migration (51/100), but
it never chose the model model that generated the data. As previously, DICs
favored explanatory models that required the smallest number of parame-
ters. A typical example of posterior predictive checks for data simulated
under the bi-directional migration model is displayed in Figure 6. For the 3
models, the observed summary statistics were between the tails of their pos-
terior predictive distributions. The summary statistics used in this example
were not informative enough to distinguish between gene flow and divergence

(Nielsen and Wakeley 2001, Hey and Machado 2003). The fact that DIC did
not select the model that generated the data should not be considered as an
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Isolation Asymetric Migration Migration

Isolation 2.97 (.15) 3.37 (.25) 4.67 (.71)
2.67 (.12) 3.18 (.39) 4.15 (.81)

Asymetric 3.13 (.25) 2.79 (.19) 4.10 (.31)
Migration 2.84 (.23) 2.65 (.20) 3.41 (.33)

Migration 3.02 (.12) 3.02 (.20) 3.82 (.25)
2.73 (.11) 2.85 (.19) 3.25 (.20)

Table 2: Comparaison of isolation with migration models. The rows corre-
spond to the models used for simulating the data, and the columns correspond
to the models under which inference was performed. The values represent the
mean and standard deviation of DIC1 and DIC2 computed over 100 indepen-
dent replicates for each model.

error. The correct interpretation is that the three models were equally good
at reproducing the observed summary statistics, and DIC values confirmed
that we could not make any strong decision in this case.

Human data analysis

In this section, we used the deviance information criterion to question the
replacement of Neanderthals by modern human using modern human DNA.

Genetic data based on resequencing from noncoding regions were utilized
to discriminate between models of divergence incorporating various levels
of admixture between the two human groups (Laval et al 2010). We used
sequence variation surveyed in DNA samples from 213 healthy donors. The
panel included 118 sub-Saharan African individuals, 47 European individuals,
and 48 East-Asian individuals. Following Laval et al (2010), we re-analyzed
20 autosomal regions (27 kb per individual, mean sequence length per region

of 1.33 kb) that met criteria of selective neutrality. The regions were selected
to be independent from each other, residing at least 200 kb apart from any
known or predicted gene or spliced expressed sequence tag, and not to in
linkage disequilibrium with any known or predicted gene.
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To run an ABC analysis, we used a coalescent-based algorithm imple-
mented in SIMCOAL 2 (Laval et al 2004), we generated synthetic data that
consisted of 20 independent DNA sequences of 1.4 kb each. The mutation and
the recombination rates of each region were drawn from gamma distributions
(Table 3). The evolutionary scenarios assumed an early diffusion of archaic
hominids out of Africa ∼1.25 and ∼2.25 million years ago and an African
exodus of modern humans between ∼40,000-100,000 years ago (Fagundes et
al 2007). By tuning the replacement rate, δ, we considered various levels of
introgression of archaic genetic material into the modern human gene pool.

Nineteen models differing in their prior distributions on δ were considered. In
these models, each prior distribution was uniform over an interval of length
0.1, from 0 < δ < 0.1 to 0.9 < δ < 1. Each interval was deduced from the
previous one by a translation of h = 0.05. Our objective was to discriminate
among models with low, medium or high levels of admixture.
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Parameter mean min max prior

DNA parameters
Mutation rate µ 2.5×10−8 1.3×10−8 5.05×10−8 G

Recombination rate ρ 10−8 0.1× 10−8 1.5× 10−8 G
Demographic parameters

Any population size N. 10000 500 40000 U
Time of exodus from Africa TE 1.88×106 1.25×106 2.5×106 U
Time of European-Asian split TE−EA 25010 12520 37500 U

Migration rate m 2× 10−4 10−6 4×10−3 ND

Table 3: Description of the prior distributions of simulated parameters. U
and G denote Uniformly and Gamma distributed distributions, ND (for not
drawn). Times are expressed in number of years (generation times of 25
years). The modern migration rates, m, is the proportion of migrants after
the Out-of-Africa exodus. The mutation rate, µ, is expressed in per genera-
tion per base, and the recombination rate, ρ, is expressed in per generation
per pair of adjacent bases.

Under equilibrium assumptions, the human effective population size has
been estimated at ∼10,000 individuals on the basis of human-chimpanzee
divergence and intra-specific linkage disequilibrium levels (Harpending et al
1998). To give population size a degree of freedom and to match with a con-
sensus estimate of human populations, we defined a gamma prior distribution
with a mean of 10,000 individuals and a .95 confidence interval of 3,000 to
21,000 individuals (Table 3). In all models we considered a constant size for
the African, Asian and European modern populations (Laval et al 2010).

For each genomic region, we specifically computed global and pairwise
FST, based on haplotype frequencies, the number of haplotypes, K, the num-
ber of polymorphisms, S, the nucleotide diversity, π, and Tajimas D, the
expected heterozygosity. We also computed the variance between regions for
π and D. The summary statistics were calculated by merging all population
samples (except for population differentiation indices) in order to minimize
the effects of recent demographic events related to the continental popula-

tions.
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Figure 7: Replacement of Neanderthals by modern humans. Expected De-
viance, D̄1, and DIC1 for models with different prior distributions on the
replacement rate, δ. The prior distributions are uniform over intervals of
length 0.1. Each interval is deduced by translation of h = 0.05 from the
previous one.

Considering 19 models with distinct prior distributions for the replace-
ment rate of Neanderthals by modern humans, we found a decreasing trend
both in the expected deviance D̄1 and in DIC1. For high values of the re-
placement rate, δ, D̄1 and DIC1 were close to each other (Figure 7). These
indices favored models exhibiting high values of the parameter δ and low lev-
els of genetic introgression of the human genetic pool by Neanderthal genes
(Green et al 2010).

Conclusion

Model selection using ABC algorithms is notoriously difficult (Csilléry et al
2010b), and it has been the topic of an intense debate in evolutionary genetics
(Templeton 2009, Beaumont et al 2010, Robert et al 2011). As we have
shown in this study, some approximations of model probabilities computed
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by counting replicates from each model falling at a distance smaller than a
given value, ε, to the observed data can potentially lead to systematic errors
in ABC, especially when ε is not small. Using small acceptance rates implies,
however, that gigantic numbers of simulations are performed, especially when
more than ten summary statistics are used.

Our purpose here was not to argue that any model choice previously per-
formed in ABC studies on the basis of approximate model probabilities is
unreliable. Indeed, inconsistencies in model predictions may still be detected
by using standard posterior predictive model checking procedures. In addi-
tion we do not argue that regression adjustments are problematic, and the
results obtained under our simulation models should motivate users to apply
these corrections systematically.

Regression adjustments can correct the posterior values obtained from
the rejection algorithm, but they have no effect on posterior model probabil-
ities. To overcome this potential issue, we argue that model selection should
be done for the statistical distributions that correspond to the transformed
model, and we propose an approach based on the evaluation of posterior pre-
dictive quantities. Our solution is based on the formulation of an approximate
deviance, and bypasses the estimation of posterior model probabilities. Our
simulation study showed that the concepts of approximate deviance provide
reasonable answers to the model choice issue in the population genetic ex-
amples tested, which are representative of this field (Beaumont 2010, Nielsen
and Wakeley 2001). Finally we emphasize that since the computation of DIC
is based on posterior predictive distributions, this approach applies to any
type of ABC algorithm.
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Marjoram P. and S. Tavaré (2006). Modern computational approaches for
analysing molecular genetic variation data. Nat Rev Genet 7: 759-770.

Nielsen R. and J. Wakeley (2001). Distinguishing migration from isolation:
A Markov chain Monte Carlo approach. Genetics 158: 885-896.

23

Francois and Laval: Deviance Information Criteria for ABC

Brought to you by | North Carolina State University (NCSU) Libraries
Authenticated

Download Date | 5/17/15 12:10 AM



Patin E., G. Laval, L.B. Barreiro, A. Salas, O. Semino et al (2009) Inferring
the demographic history of African farmers and Pygmy huntergatherers
using a multilocus resequencing data set. PLoS Genet 5: e1000448.

Pritchard J.K., M.T. Seielstad , A. Perez-Lezaun, M.W. Feldman (1999).
Population growth of human Y chromosomes: a study of Y chromosome
microsatellites. Mol Biol Evol 16: 1791-1798.

R Development Core Team (2010). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria.

Ratmann O., C. Andrieu, C. Wiuf and S. Richardson (2009). Model criticism
based on likelihood-free inference. Proc Natl Acad Sci USA 106: 10576-
10581.

Ripley B.D. (2004). Selecting amongst large classes of models. In Meth-
ods and Models in Statistics: In Honour of Professor John Nelder, FRS
(Adams, N., Crowder, M, Hand, D.J. and Stephens, D., eds), pp. 155-170
Imperial College Press.

Robert C.P., J-M. Cornuet, J-M. Marin and N.S. Pillai (2011). Lack of
confidence in approximate Bayesian computational (ABC) model choice.
arXiv:1102.4432.

Sisson S.A., Y. Fan and M.M. Tanaka (2007). Sequential Monte Carlo with-
out likelihoods. Proc Natl Acad Sci USA 104: 1760-1765.

Spiegelhalter D.J., N.G. Best, B.P. Carlin, A. van der Linde (2002). Bayesian
measures of model complexity and fit. J R Stat Soc Ser B 64: 583-639.
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Edited by Cantoni O, Tavaré S, Zeitouni O, eds) Springer-Verlag, Berlin.

Tajima F. (1989). Statistical method for testing the neutral mutation hy-
pothesis by DNA polymorphism. Genetics 123: 585-595.

24

Statistical Applications in Genetics and Molecular Biology, Vol. 10 [2011], Iss. 1, Art. 33

DOI: 10.2202/1544-6115.1678

Brought to you by | North Carolina State University (NCSU) Libraries
Authenticated

Download Date | 5/17/15 12:10 AM



Templeton A.R. (2009). Statistical hypothesis testing in intraspecific phylo-
geography: NCPA versus ABC. Mol Ecol 18: 319-331.

Thornton K.R. and P. Andolfatto (2006). Approximate Bayesian inference
reveals evidence for a recent, severe, bottleneck in a Netherlands popula-
tion of Drosophila melanogaster. Genetics 172: 1607-1619.

Thornton K.R. (2009). Automating approximate Bayesian computation by
local linear regression. BMC Genet 10:35.

Toni T., D. Welch, N. Strelkowa, A. Ipsen A and M.P. Stumpf (2009).
Approximate Bayesian computation scheme for parameter inference and
model selection in dynamical systems. J R Soc Interface 6: 187-202.

Toni T. and M.P. Stumpf (2010). Simulation-based model selection for
dynamical systems in systems and population biology. Bioinformatics
26:104-110.

Wegmann D., C. Leuenberger and L. Excoffier (2009). Efficient approximate
Bayesian computation coupled with Markov Chain Monte Carlo without
likelihood. Genetics 182: 1207-1218.

Wilkinson R. (2008). Approximate Bayesian computation (ABC) gives exact
results under the assumption of model error. arXiv:0811.3355v1 [stat.CO].

25

Francois and Laval: Deviance Information Criteria for ABC

Brought to you by | North Carolina State University (NCSU) Libraries
Authenticated

Download Date | 5/17/15 12:10 AM


	Statistical Applications in Genetics and Molecular Biology
	Deviance Information Criteria for Model Selection in Approximate Bayesian Computation
	Deviance Information Criteria for Model Selection in Approximate Bayesian Computation
	Abstract


