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Abstract

This study describes a statistical model which assumes that mammal group patterns match with groups of genetic relatives. Given a

fixed sample size, recursive algorithms for the exact computation of the probability distribution of the number of groups are provided.

The recursive algorithms are then incorporated into a statistical likelihood framework which can be used to detect and quantify

departure from the null-model by estimating a clustering parameter. The test is then applied to ecological data from social herbivores and

carnivores. Our findings support the hypothesis that genetic relatedness is likely to predict group patterns when large mammals have few

or no predators.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Group formation is a widespread phenomenon through-
out the social mammals, and the problem of animal
grouping is one of the most fundamental ones in biology.
The nonuniform aggregation patterns of organisms have
both ecological and evolutionary significance, and the
tendency to aggregate is under strong evolutionary control
(Rubenstein, 1978). Individuals might derive various kinds
of benefit from living in groups. Many authors have
proposed the idea that social carnivores live in groups
because group hunting facilitates their acquisition of large
prey (Mech, 1981; Nudds, 1978; Pulliam and Caraco,
1978). Parallel to this argument, the most widely studied
advantage of large herbivore grouping is lowered predation
risk (Hamilton, 1971; Pulliam, 1973; Bertram, 1978; Inman
and Krebs, 1987). There might, however, exist several other
advantages to group living as animals may huddle together
e front matter r 2007 Elsevier Ltd. All rights reserved.
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to keep warm, learn from one another about good feeding
sites, or gain access to mates.
Mathematical models of group formation have often

restricted attention to relating observed grouping patterns
to the processes of aggregation (fusion) and splitting
(fission) (Gueron and Levin, 1995). Perhaps one of the
most representative among the animal aggregation models
is the one proposed in Bonabeau and Dagorn (1995) which
was inspired by a model of particle aggregation (Takayasu,
1989). Other examples of fusion/fission models were also
proposed by Bonabeau et al. (1999) and Niwa (2003).
These models rely on the basic assumption that groups are
randomly moving units in a spatial domain, and whenever
two groups meet, they aggregate. Each group may also
split in two subgroups with a given probability. Although
these models are very simple, they are flexible enough to
capture the power-law distributions of large animal group
size observed in many surveys (Bonabeau et al., 1999).
Separately a process called kin-selection was suggested by

Hamilton (1964) as a mechanism for the evolution of
altruistic behavior, and as one of the mechanisms that may
explain group formation in social animal species (Dawkins,
1989; Foster et al., 2006). Since identical copies of genes
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may be carried by relatives, a gene that favors altruism may
become successful provided that the reproductive benefit
gained by the recipient of the altruistic act compares
favorably to the reproductive cost to the individual
performing the act. In such a comparison, the reproductive
benefit gained by the recipient is weighted by the genetic
relatedness of the two animals, defined as the percentage of
genes that they share by common descent. This theory
suggests that genetic relatedness contributes to group
formation and cohesion as a major actor.

Related model-based approaches to animal grouping
usually include game-theoretic aspects, which, loosely
speaking, put cooperation and competition into balance
to determine group size. For example, aggregation may be
explained from the recruiters and joiners point of view
(Hamilton, 2000). In such models group size may be
determined by optimizing fitness functions which express
the advantages and flaws for individuals to aggregate.
Animals may join the group as long as it improves their
access to resource; they leave otherwise. Models in this
category, however, contain many parameters, and are not
primarily intended to perform statistical testing. While
some models may include genetic relatedness (e.g.,
Giraldeau and Caraco, 1993), the full set of parameters
may hardly be inferred from the ecological data, and this
limitation prevents their use in data analyses.

Ecological studies of animal group size usually report
direct observations of a few summary statistics like species
census (or sample) size n, the number of groups Nn in the
sample and the average group size n=Nn. A challenging
objective is to use these data to formulate general
hypotheses about the way by which evolution shapes
group patterns. Formulating and testing such hypotheses
require a quantitative theory which may include within-
group genetic relatedness as a basic principle.

Yet a similar quantitative theory has been developed in
population genetics, where a stochastic process known as
‘the coalescent’ has played a central role since the 1980s
(Nordborg, 2003). In its basic form, the coalescent is an
approximation of the genealogy of a very simple evolu-
tionary dynamical model—the Wright–Fisher model—
which assumes random mating and selective neutrality.
Statistical tests of selection typically attempt to reject this
null-model based on the value of a particular summary
statistic computed from genetic data (Tajima, 1989).

This study parallels the traditional coalescent approach
to population genetics in order to devise a statistical model
of mammal group patterns which incorporates genetic
relatedness as the major factor explaining these patterns.
Examples that motivate the theory include large carnivores
(wolves and lions) and social herbivores (buffalos, gazelles,
elephants). Wolves are pack-living animals with a complex
social organization in which packs are primarily family
groups (Mech, 1981). African lions live in prides in which
females are usually related to one another and are group
members for life (Schaller, 1972). As well feral cattle are
organized in societies that reflect social structure with
many levels of organization (Lazo, 1994). At the high level,
animals may form stable social subgroups within a herd.
These ‘‘subherds’’ are often collections of matrilineal
groups (Reinhardt and Reinhardt, 1981; Lazo, 1994).
Social organization of wild African elephants is another

remarkable example of matrilineal structure. Recently,
Archie et al. (2006) have documented how genetic
relatedness, and in particular mtDNA relatedness, predicts
the organization of social groups in wild African elephants.
In brief, social groups in African elephants consist of
genetic units. Female elephants are matrilocal and remain
in their native group. Such a striking example of matrilocal
organization advocates for the development of models of
group patterns that are based on genetic relatedness. Our
objective consists of introducing such a model and
especially comparing the prediction of this model to the
data available for social mammals.
In this study, we describe a statistical model for group

patterns based on a coalescent genealogy, and we introduce
a new parameter which measures the degree of extra
clustering in mammal populations compared to the
predictions of a neutral model. Our model is based on
the minimal assumption that mammals live in group of
relatives, and we call this model random or neutral

aggregation. Deviations from the model will indicate that
selective pressures like benefit from group hunting or
avoidance of predators may interplay with genetic related-
ness to shape group patterns.
The probability distribution of the number of groups in a

sample is then described, and used to devise new statistical
tests of random aggregation. This approach is illustrated
using published social mammal data extracted from the
recent sociobiology and ecology literature.
2. Models

Statistical models of group formation usually rely on
fission and fusion of randomly moving animals. Here we
introduce a random model of group patterns relying on the
sole assumption that genetic relatedness is higher within
groups than between groups. The model may be viewed as
a deliberate simplification of the actual process of animal
grouping, built on the principle that departure from
minimal assumptions is always easier to interpret than
departure from complex null hypotheses (see Discussion).
Because genetic relatedness can be computed on the basis
of a neutral gene tree, the basic model is referred to as the
neutral model. In order to capture and measure the degree
at which a group pattern may deviate from the neutral
model, we also introduce a model incorporating extra

clustering which allows us to estimate a natural clustering
parameter. At this stage, there is an important distinction
that must be made between fission/fusion models which try
to explain the clustering process itself, and the neutral
model which focus on the resulting group patterns,
ignoring the processes by which they evolve.
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2.1. The neutral model

Consider n individuals sampled from an arbitrary
population. The following assumptions are the building
blocks of the neutral model.
(a)
Fig.

The

the s

clust

grou
Groups have size greater or equal than two, i.e., every
sampled individual must be grouped with at least
another individual in the sample.
(b)
 Groups result from a random clustering process which
reflects the random genealogical relationships within
the sample, and in which each individual is attached to
its closest relatives.
Point (a) states that communities have size greater or
equal than two which is a natural assumption. Every
sampled individual must be grouped with at least another
individual in the sample when the sample is large enough.
In species with strong matriarchal organization, it may
happen that males are solitary. For such species, only the
female grouping structure may well be captured by the
model.

The groups obtained by the above process derive from
an underlying tree which may be thought of as a genealogy
of the sample. The sample genealogy is approximated by a
fully dichotomic tree motivated by the need to avoid more
complex pedigrees. To connect the model with a definition
of relatedness, it may be convenient to view the hidden tree
as a gene tree. The tree has internal branches that link its
internal nodes, and external branches that start from the
1. Recursive computations of the number of groups,Nn for n ¼ 12.

letters at the tips stand for the community labels. (A) Neutral model:

ample has four groups denoted a–d. (B) Extra clustering: two extra-

ering events occur and are symbolized by circles. The sample has three

ps denoted a–c.
tips and end at an internal node. The definition of genetic
groups consists in moving backward along each external
branch until an ancestor is met. The tip that corresponds to
this external branch is then aggregated to all the
descendants of the first ancestor encountered (see Fig. 1).
Although the aggregation process does not account for
sexual reproduction, we can restrict the model to mtDNA
which is inherited maternally, and we may think of
relatedness as being measured from an mtDNA tree in a
natural way. In the African elephant example, Archie et al.
(2006) have investigated to which extent genetic relatedness
predicts the pattern of fusion–fission events. Their analysis
brought several lines of evidence that genetic relatedness
and the level of association between individuals are
strongly correlated. First, all individuals that are part of
core social groups share the same mtDNA haplotype.
Second, a Mantel test clearly established that the average
pairwise level of genetic relatedness within a group is a
good predictor of animal association within that group.

2.2. Extra clustering

In order to account for the fact that genetic relatedness
may not be the sole factor that contributes to shape group
patterns, we consider an extension of the basic model that
tolerates extra clustering without modifying the underlying
tree model. In the extra-clustering model, groups may
sometimes arise from the random coalescence of clusters
created from the neutral process. We assume that the extra-
clustering events occur during the construction process at
rate p, called the clustering rate (See Fig. 1). More
specifically, at each internal node of the binary tree all
subgroups may be aggregated with probability p; otherwise
the neutral rules are applied with probability q ¼ 1� p.
Groups in social mammals sometimes consist of two or
several subgroups often organized in a hierarchical way. In
the wild African elephant example, Archie et al. (2006)
noticed that the merging of core social groups to form
larger groups occurs predominantly between individuals
sharing the same mtDNA haplotype. The extra-clustering
model incorporates this kind of properties which are partly
missing in the neutral model. The parameter p quantifies
the amount of clustering present in the data which cannot
be explained by genetic relatedness. Large p’s may indicate
that external forces like predator avoidance or increased
access to mates are involved in group formation. When
estimated from the data, the parameter p can provide an
intuitive and useful measure of how much the data deviate
from the neutral model.

3. The number of groups

The simplicity of the neutral and extra-clustering
aggregation models allows exact theoretical predictions
about the number of groups in a sample of mammals.
Describing the probability distribution of this summary
statistic under both models provides a mean to assess the
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significance of genetic relatedness as the main factor
explaining group patterns.

3.1. A distributional recursion

The derivation of a probability distribution for the
number of groups in a sample of size n strongly relies on a
recursive definition of this statistic. Such a definition
uses mathematical properties of coalescent genealogies
(Kingman, 1982). Starting with n tips, these genealogies
have the particular property that the size Ln of the ‘‘left’’
sister clade at the basal split of the tree has a uniform
distribution over the set f1; . . . ; n� 1g (Aldous, 2001)

ProbðLn ¼ ‘Þ ¼
1

n� 1
; ‘ ¼ 1; . . . ; n� 1, (1)

and this property also holds within each subtree.
Regarding the number of groups Nn, we have

N2 ¼ N3 ¼ 1. We can split the tree at the root so that
two sister clades of sizes Ln and Rn ¼ n� Ln are obtained,
and then let In ¼ minðLn;RnÞ be the minimum of Ln and
Rn. The number of groups can be involved in a set of
recursive distributional equations as follows:

Nn ¼
1 if In ¼ 1;

NLn
þN�Rn

otherwise;

(
(2)

where N�n denotes an independent copy of Nn. In this
definition, the replicates of Ln are recursively sampled from
the uniform distribution over f1; . . . ; n� 1g. The above set
of equations also provides an efficient simulation algorithm
for the number of groups of Nn that avoids generating the
trees themselves.

Sets of recursive distributional equations such as those
described in Eq. (2) appear in theoretical computer science,
and are natural in the analysis of divide-and-conquer
algorithms (Rösler, 2001; Hwang and Neininger, 2002;
Blum and Franc-ois, 2005a). Using results obtained by
Blum and Franc-ois (2005b, p. 649), we can check that the
‘‘outdegree’’ of an arbitrary tip (i.e., the number of its
closest relatives) in the neutral process has a power-law
distribution with exponent a ¼ 3.

Turning to the model with extra clustering, the equations
for Nn change as follows. We now have Nn ¼ 1 if In ¼ 1,
and otherwise,

Nn ¼
1 with probability p;

NLn
þN�Rn

with probability q ¼ 1� p:

(

Group patterns and the recursive computations of Nn are
illustrated in Fig. 1 where examples with n ¼ 12 tips are
displayed in the neutral and extra-clustering models.

3.2. Statistical tests and P-values

In order to perform statistical tests, we need to compute the
probability distribution of the number of groups under the
neutral and extra-clustering models. P-values can be directly
deduced from this distribution when Nn is used as a test
statistic. Determining this distribution exactly is also useful in
order to devise a more powerful likelihood-ratio (LR) test.
The recursive equations allow us to describe the

probability distribution of Nn by solving a triangular
system. To see this, we let pnðxÞ ¼ ProbðNn ¼ xÞ denote the
probability distribution of Nn for all integer xX1. In the
neutral model, we have pnð1Þ ¼ 2=ðn� 1Þ, and

pnðxÞ ¼
1

n� 1

Xn�2
‘¼2

Xx�1
y¼1

p‘ðyÞpn�‘ðx� yÞ,

1pxpbn=2c. ð3Þ

Examples of this distribution for n ¼ 200 individuals are
displayed in Fig. SM2.
Given x groups in the sample, the one-sided P-value can

be computed as P ¼ ProbðNnpxÞ. We further refer to the
computation of this P-value as the Nn-test. Extra clustering
at rate p modifies the recursions for Nn and the probability
distribution of this statistic. Again we denote pnðxÞ ¼

ProbðNn ¼ xÞ for all xX1. Then the new distribution pn

can be calculated using triangular induction as follows:

pnð1Þ ¼ pþ
2q

n� 1
(4)

and

pnðxÞ ¼
q

n� 1

Xn�2
‘¼2

Xx�1
y¼1

p‘ðyÞpn�‘ðx� yÞ,

2pxpbn=2c. ð5Þ

We checked that these equations can provide numerical results
up to sample sizes greater than nX1000 in short running times.
Because we find reasonable to discard samples for which

we observe a unique group configuration (Nn ¼ 1, no
obvious grouping), the P-values may also be computed by
using the conditional distribution given that at least two
groups are observed (NnX2). For the neutral model
(p ¼ 0) and the extra-clustering model, the conditional
distribution can be obtained as

p1nðxÞ ¼
pnðxÞ

1� pnð1Þ
¼

n� 1

qðn� 3Þ
pnðxÞ

if 2pxpbn=2c, and 0 otherwise.

3.3. Clustering rates and the LR test

Given that x groups are observed in a sample of n

individuals, the recursive equations enable us to compute a
likelihood function

LðpÞ ¼ ProbðN ¼ x; pÞ ¼ pnðxÞ

and a maximum-likelihood estimate p̂ of the clustering rate
p can be obtained. In practice these estimates can be
computed by using basic grid search. Rejecting the unique
group configuration leads to a distinct estimate

p̂ ¼ arg max
0ppp1

n� 1

qðn� 3Þ
LðpÞ.
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For example a sample of n ¼ 200 individuals with x ¼ 10
groups has maximum-likelihood estimate equal to
p̂ ¼ 0:30, and this estimates becomes p̂ ¼ 0:32 after
removing the unique group configuration. The bias and
the variance of p̂ are displayed in Fig. SM3. The main
contribution to the statistical error of p̂ comes from the
peak in the distribution at p̂ ¼ 1 which also corresponds to
the peak at x ¼ 1 in pn. Removing the peak at x ¼ 1 (i.e.,
conditioning) improves the efficiency of the estimator
significantly.

To test the null-hypothesis H0 : p ¼ 0 against H1 : p40
and obtain a test with optimal power, the LR test is a
standard approach. The LR test is based on the following
test statistic:

sðxÞ ¼
Lð0Þ

Lðp̂Þ

which can be calculated using Eqs. (3) and (5). Using this
statistic, we are now able to compute a second P-value
called the LR test P-value. In practical applications, this
P-value was obtained using 10,000 Monte-Carlo replicates
of Nn obtained thanks to Eq. (2).

Table SM1 reports the powers of the Nn test and of the
LR test of the neutral model (p ¼ 0) against the extra-
clustering model at various levels of the clustering rate
p ¼ p1. The highest powers were achieved for the LR test.
Removing the unique group configuration also yielded
increased power (data not reported), and all computed
P-values removed the unique group configuration. Reason-
able powers (greater than 75%) were obtained for sample
sizes larger than 100 and p1 larger than 0:2. The Nn test
generally lacks power (below 15%).
4. Data analysis

To illustrate our approach, we analyzed data collected
from a number of previously published ecological studies.
The data used here contained census sizes and observed
numbers of groups in either herbivore or carnivore
social species. The data sets were selected on the basis of
large census sizes (nX50). For each sample, the departure
from the neutral model was tested using the two methods
introduced in the previous section: the Nn test and
the LR test. The alternative hypothesis was H1 : p40.
Although the Nn test generally lacked power, we found
useful to report the corresponding P-values because
they had a simple interpretation as the probability of
obtaining less groups than observed. Maximum-likelihood
clustering rates were estimated according to the method
described in the previous section. In order to reduce
statistical errors and increase the power of the tests, all
estimates and P-values were computed from the condi-
tional distribution removing the unique group configura-
tion. Fig. 2 displays the number of groups Nn as a function
of the sample size n for the different populations of
herbivores and carnivores.
4.1. Social carnivores

Wolf packs: Gray wolves (Canis lupus) are pack-living
animals with a complex social organization. Packs are
primarily family groups. Packs include up to 30 indivi-
duals, but smaller sizes (between 8 and 12) are more
common. A review of wolf social behavior and ecology
can be found in Mech (1981). We used data from three
sources: The Wolf project of Yellowstone national
park which annually publishes accurate data on wolf
pack sizes (Smith et al., 2002), and studies of wolf
population recovery after quasi-extinction in Scandinavia
(Wabakken et al., 2001) and in Alaska (Ballard et al.,
1987). When available, the total sample size was given as
the number of sampled adults (in wolves the number
of pups per packs is usually small). In 2002, n ¼ 90
adult wolves were sampled in Yellowstone, living in 14
packs. Using the neutral model, we obtained that
ProbðN90p14Þ ¼ 0:18. The LR P-value was equal to
0.15. The clustering rate p̂ was equal to 0:11. Table 1
report similar results for the year 2004. In Alaska, n ¼ 151
wolves were sampled, living in 30 packs (number of pups
not known). We obtained that ProbðN151p30Þ ¼ 0:34.
The LR test P-value was equal to 0:34 as well. The
clustering rate was estimated at p̂ ¼ 0:02. In Scandinavia 76
wolves were sampled, living in 12 packs (number of pups
not known). From the neutral model, we obtained
ProbðN76p12Þ ¼ 0:21 and the LR P-value was 0.16. The
clustering rate was estimated at p̂ ¼ 0:12. The P-values
might underestimate the true values because the pups were
included in the sample.

Lion prides: African lions (Panthera leo) live in prides
that typically consist of two males, 4–10 females and their
offspring. The adult females are usually related to one
another and are group members for life. A review of
Serengeti lion behavior and ecology can be found in
Schaller (1972). We used recent data from three sources:
Selous Game reserve Tanzania (Spong et al., 2002),
Serengeti Tanzania (Packer et al., 2005), and Kafue Park
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Table 1

Data on group structure for social animals: (A) Social herbivores; (B)

Social carnivores

Sample Number of Rate Nn test LR test

size herds p̂ P P

(A)

Springboks (browsers) 149 6 0.40 0.009 0.008

Springboks (graze) 1064 40 0.24 0.001 0.000

Fallow deers 349 22 0.23 0.007 0.005

Grant’s gazelles 221 6 0.44 0.004 0.003

Wild camels 227 27 0.14 0.043 0.042

Kangaroos 348 41 0.12 0.028 0.023

African savannah

elephants

304 45 0.08 0.071 0.063

Sample Number of Rate Nn test LR test

size packs/prides p̂ P P

(B)

Yellowstone Wolves 2002 90 14 0.11 0.18 0.15

Yellowstone Wolves 2004 112 16 0.12 0.13 0.12

Alaska Wolves 151 30 0.02 0.34 0.34

Scandinavian wolf 76 12 0.11 0.21 0.16

Zambia Kafue lions 95 14 0.12 0.15 0.13

Selous Game lions 51 13 0.00 0.73 1.00

Serengeti lions 100 16 0.10 0.19 0.16

The one-sided P-value of the Nn test and the estimated clustering rate p̂

were computed using the conditional distribution of the number of groups

Nn given NnX2. The one-sided P-values of the LR test were computed

using the likelihood ratio statistic sðxÞ and 10,000 Monte-Carlo replicates

from the neutral model.
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Zambia (Carlson et al., 2004). A study of social and genetic
structure of Selous Game reserve lions (Spong et al.,
2002) reported the presence of 14 prides, with an average
number of 5.6 adults (range 2–9) and two males in each
pride. These data were turned into an estimate of 51
females in the sample. A recent survey of Serengeti lions
reported the presence of about 100 lionesses in the
park (Packer et al., 2005). Based on an average of six
females per pride, a number of 16–17 prides in Serengeti
was consistent with the current data. At least 95 adult lions
resided in the northern sector of Kafue National Park,
either living in one of 14 prides or roaming as solitary
males (Carlson et al., 2004). Among the adult lions,
there were 31 males and 64 females (a sex ratio of 1:2).
Nine of the 14 prides did not have a sexually mature male
residing with them. Pride sizes ranged from 2 to 14 adult
animals (mean ¼ 6:4 animals per pride). Of the 17 sexually
mature males that were identified, six of them were
associated with prides of females while 11 lived either
alone or in all-male dyads. Table 1 report results for the
three lion samples. As for wolves, the lion samples
exhibited high P-values, and low estimates of the clustering
rates were obtained (p̂ ¼ 0:12; 0:00; 0:1, respectively). Esti-
mates of clustering rates for Zambia might be biased
upward because we included males in the sample. Actual
values of female counts would exhibit larger P-values,
lower clustering rates, and an even stronger agreement with
the neutral model.
4.2. Social herbivores

Springbok, Fallow deer, Grant gazelle and Kangaroo: In a
study of springbok viligance in the Etosha National Park in
Namibia, Burger et al., 1999 measured the time that
the animals devoted to vigilance. They reported that this
time differed for browsers and grazers. They also reported
the number of groups observed in each species. They
observed 149 browsing springboks (Antidorcas marsupialis)
in six groups, and 1064 grazing springboks in 40 groups.
Gerard and Loisel (1995) studied the variation of
group size with habitat openness in large herbivores. They
reported 349 Fallow deers (Dama dama) in 22 groups, 221
Grant gazelles (Gazella granti) in six groups and 348
kangarooes (Macropus giganteus) in 41 groups. Under the
neutral model, these configurations were highly improbable
with the probabilities computed as ProbðN149p6Þ ¼ 0:01
(browsers) and ProbðN1064p40Þ ¼ 0:001 (grazers). The
clustering rates were estimated at p̂ ¼ 0:4 for browsers
and p̂ ¼ 0:24 for grazers. The LR test rejected the
neutral model (P ¼ 0:008 for browsers, and P ¼ 0:000 for
grazers). All the data led to a strong reject of the
neutral model. We obtained that ProbðN349p22Þ ¼ 0:007
(Fallow deer), ProbðN221p6Þ ¼ 0:004 (Grant gazelle) and
ProbðN348p41Þ ¼ 0:028 (Kangaroo). The clustering rates
were p̂ ¼ 0:23 (Fallow deer), p̂ ¼ 0:44 (Grant gazelle), p̂ ¼

0:14 (Kangaroo). The LR test P-values were equal to 0.005,
0.003 and 0.023, respectively.

Wild camels: In an aerial survey of known and suspected
wild camels (Camelus bactrianus) habitat, Reading et al.
(1999) estimated group density and population size of large
ungulates in the south-western Gobi Desert in Mongolia.
They observed 277 Wild camels in 27 groups. Like the
other large herbivores, the clustering rate was rather high
(p̂ ¼ 0:12) and the LR test as well as the Nn test rejected the
neutral model (P ¼ 0:042).

African savannah elephants: In contrast to many social
animals which live in stable groups, African elephants
(Loxondonta africana) live in groups that vary according
to fusion and fission events. However, core social groups
that are composed of well defined individuals can be
determined. These groups may temporarily split into
smaller units or merge into bigger units over the
course of days. Elephants living in and around Amboseli
National Park in Kenya are individually known and
have been studied since 1972 by the Amboseli Elephant
Research Project (AERP). As count data, we considered
the 304 adult female elephants that have been listed
in the Supplementary Material given by Archie et al.
(2006). The adult female elephants live in 45 core
groups. The mean number of individuals in each
group is 6.75 and the standard deviation is 3.92. Both the
LR and the Nn test give small P-values (respectively, 0.06
and 0.07) that are nonetheless bigger than 0.05 indicating
that the neutral model cannot be rejected based on
these summary statistics. The clustering rate was estimated
at p̂ ¼ 0:08.
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5. Discussion

This study introduced new statistical models of mammal
group patterns that are based on genetic relatedness. The
great advantage of these models is their simplicity, their
parsimony and the fact that statistical theory can be carried
out in order to assess deviations from a neutral model.

Before giving interpretations of results, an important
point to recall is that the neutral model does not serve as an
explanation for the group formation process itself, but
rather aims at assessing the power of genetic relatedness to
solely explain the observed group patterns. Genetic
relatedness is usually computed from kinship coefficients
and genealogical relationships. We used the coalescent to
model a genealogy of genes and thus to describe genetic
relationships. Then it enabled us to define groups for which
genetic relatedness is stronger within than between. Here a
straightforward parallel can be drawn with population
genetics theory where simplified and unrealistic random
mating models like the Hardy–Weinberg or the Wright–
Fisher models are used in tests of selective neutrality (Hartl
and Clark, 1997). Testing departures from these models
using test statistics such as the Tajima D are nevertheless
informative, as they yield clues about the past demographic
or genetic events which occurred in a population (Tajima,
1989; Hein et al., 2005).

Population genetics approaches generally use summary
statistics, and describe the probability distribution of these
statistics based on genealogical tree models. Philosophi-
cally our approach is then close to population genetics,
since the coalescent trees also serve as a null-model for
testing the assumption that genetic relatedness explains
group patterns without resorting to other evolutionary
pressures, like benefit from group hunting or lowered
predation risk.

In social carnivore examples, the neutral model was
generally not rejected at the 5% level, and the clustering
rates remained at low values (p̂o0:12) (see Figs. 2, 3 and
Table 1). A perhaps remarkable fact is that the elephant
group pattern also displayed a similar agreement with the
neutral model, classifying the elephants together with the
carnivores in Fig. 2. The case of wild camels and kangaroos
is also instructive. Although the test is significant at the 5%
level, the clustering rates are similar to those of carnivores
and elephants and the P-values are significantly larger than
those obtained for the other herbivores. The agreement of
carnivore and elephant data (and, to a lesser extent, wild
camels and kangaroos) supports the hypothesis that
hunting in groups carries only weak explanatory power
compared to a theory that predicts that mammals group
with their relatives. These observations are consistent with
summaries which have argued that communal hunting
actually has little power to explain group patterns in felids
(Packer et al., 1990) and across social carnivores in general
(Caro, 1994).

Social herbivores like gazelles, springboks, or deers live
in large herds which convert into large clustering rates
p̂ � 0:23–0.44. In these examples, the poor agreement with
the neutral model predictions was an expected result
because the typical group sizes are by far larger than the
carnivore group sizes. When compared to the carnivore
results, the departure from the null-model suggests that
genetic relatedness may explain herbivores group patterns
only partially, and that external evolutionary forces are
probably involved. Back to the data with low clustering
rates, one can observe that wild camels habitat corresponds
to steppic areas with no known predators. The same
phenomenon occurs in Australia for kangaroos and in
Africa for large carnivores and elephants. Keeping in mind
that we have used a restricted sample of available
ecological surveys, one can observe that high clustering
rates correlate well with a factor like predator avoidance.
Indeed, the results displayed in Figs. 2 and 3 support the
hypothesis that genetic relatedness is likely to predict group
patterns when mammals have few or no predators. Of
course, further confirmation of this hypothesis would be
worthwhile. This would require a thorough scan of the
biological literature to increase the number of observations
of group patterns in social species. For example, dolphins
are frequently reported to live in pods of 5–7 adults
(average size adjusted for bias in the detectability of large
vs small pods in aerial surveys), and this value is consistent
with the average value predicted by the neutral model
(n=E½Nn� � 5). In contrast, many fishes live in very large
schools which are usually believe to confer protection
against larger predators. Further works would also be
needed to combine fission/fusion models and genetic
relatedness to better explain variations of group size with
time, breeding seasons or migration epochs (Archie et al.,
2006).
Predictions from the null-model can also be confirmed

when more data than the mere number of groups are
available. The elephant study in Archie et al. (2006)
actually provides additional data on the group pattern,
which enables us to study the distribution of the number of
elephants in each group. The group distribution of the 304
elephants surveyed in Archie et al. (2006) agrees with a
power-law distribution of exponent a ¼ 1:57 estimated for
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groups of size larger than 5 (log–log linear regression, R-
squared ¼ 0:82, P ¼ 0:0002). We performed Monte-Carlo
simulations of group size distribution for 304 individuals
under the neutral model (10,000 replicates). The simulated
replicates provided an excellent fit to power-law distribu-
tions (R-squared greater than 0.8), and for each replicate
we computed an exponent for the power law. The lower
and upper quartiles of the distribution of estimated
exponents were equal to q‘ ¼ 1:01 and qu ¼ 1:90, which
shows that a ¼ 1:57 lies within the interval predicted by the
neutral model.

Network theory has recently become increasingly im-
portant in ecology and evolution (Proulx et al., 2005). In
particular social networks have emerged as a paradigm of
the complexity of human or animal interactions (Wasser-
man and Faust, 1994; Frank, 1998; Scott, 2000). Ruling the
basic principles of network formation is an highly difficult
task, and there is a large tradition for extracting commu-
nity structure by cluster analysis which is generally
represented by a binary tree structure. Communities are
usually inferred by cutting the tree at an appropriate
height. A novelty of the present study is that networks and
their associated trees are considered as unobserved or
hidden data, and no attempts are made to reconstruct
them. Instead, the networks are viewed as random objects
which enable us to validate biological assumptions about
the observed patterns in a statistical way. A premise of this
study is that network and coalescent approaches can
fruitfully be integrated in specific statistical approaches
which reveal themselves useful for analyzing the available
masses of ecological data.
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