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Summary

1. Many recent statistical applications involve inference under complex models, where it is compu-

tationally prohibitive to calculate likelihoods but possible to simulate data. Approximate Bayesian

computation (ABC) is devoted to these complex models because it bypasses the evaluation of the

likelihood function by comparing observed and simulated data.

2. We introduce the R package ‘abc’ that implements several ABC algorithms for performing

parameter estimation and model selection. In particular, the recently developed nonlinear heteros-

cedastic regressionmethods for ABC are implemented. The ‘abc’ package also includes a cross-vali-

dation tool for measuring the accuracy of ABC estimates and to calculate the misclassification

probabilities when performing model selection. The main functions are accompanied by appropri-

ate summary and plotting tools.

3. R is already widely used in bioinformatics and several fields of biology. The R package ‘abc’ will

make the ABC algorithms available to a large number of R users. ‘abc’ is a freely available R pack-

age under the GPL license, and it can be downloaded at http://cran.r-project.org/web/packages/

abc/index.html.
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Introduction

In recent years, approximate Bayesian computation (ABC)

has become a popular method for parameter inference and

model selection under complex models, where the evaluation

of the likelihood function is computationally prohibitive. ABC

bypasses exact likelihood calculations via the use of summary

statistics and simulations, which, in turn, allows the consider-

ation of highly complex models. The name ABC was first

coined by Beaumont et al. (2002) in population genetics, for

inference under coalescent models, but its origin goes back to

works by Tavaré et al. (1997); Pritchard et al. (1999). ABC is

now increasingly applied especially in ecology or systems

biology (for reviews of ABC methods and applications, see

Beaumont 2010; Bertorelle et al. 2010; Csilléry et al. 2010).

Software implementations of ABC dedicated to particular

problems have already been developed in these fields

(Anderson et al. 2005; Hickerson et al. 2007; Cornuet et al.

2008; Jobin & Mountain 2008; Tallmon et al. 2008; Lopes

et al. 2009; Thornton 2009; Bray et al. 2010; Cornuet et al.

2010; Liepe et al. 2010; Wegmann et al. 2010; Huang et al.

2011).

The integration of ABC in a software package poses several

challenges. First, data simulation, which is in the core of any

ABC analysis, is specific to the model in question. Thus, many

existing ABC software are specific to a particular class of mod-

els (Hickerson et al. 2007; Cornuet et al. 2008; Lopes et al.

2009) or even to the estimation of a particular parameter (Tall-

mon et al. 2008). Further, model comparison is an integral

part of any Bayesian analysis; thus, it is essential to provide

software, where users are able to fit different models to their

data. Second, an ABC analysis often follows a trial–error

approach, where users experiment with different models, ABC

algorithms or summary statistics. Therefore, it is important

that users can run different analyses using batch files, which

contain each analysis as a sequence of commands. Third, ABC

is subject to intensive research, and many new algorithms have

been published in the past few years (Beaumont et al. 2002,
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2009; Bortot et al. 2007; Sisson et al. 2007; Blum 2010). Thus,

an ABC software should be flexible enough to accommodate

the new developments of the field.

Here, we introduce a generalist R package ‘abc’, which aims

to address the above challenges (R Development Core Team

2011). The price to pay for the generality and flexibility is that

the simulation of data and the calculation of summary statis-

tics are left to the users. However, simulation software might

be called from an R session, which opens up the possibility for

a highly interactive ABC analysis. For coalescent models,

for instance, users can apply one of the many existing software

for simulating genetic data such as ‘ms’ (Hudson 2002) or

‘fastsimcoal’ (Excoffier & Foll 2011). The calculation of

summary statistics could be performed using either R or some

specific software such as ‘msABC’ (Pavlidis et al. 2010), which

runs ‘ms’ and calculates summary statistics from the output

files. ABC methods have also been developed to handle full

data (Sousa et al. 2009) – allele frequencies in population

genetics – but the ‘abc’ package is dedicated to summary statis-

tic approaches, which represent the bulk of the literature.

R provides many advantages in the context of ABC: (i) R

already possesses the necessary tools to handle, analyse and

visualise large data sets, (ii) sequences of R commands can be

saved in a script file and (iii) R is a free and collaborative

project; thus, new algorithms can be easily integrated to the

package (e.g. via contributions from their authors).

Implementation

The main steps of an ABC analysis follow the general scheme

of any Bayesian analysis: formulating a model, fitting the

model to data (parameter estimation) and improving the

model by checking its fit (posterior predictive checks) and com-

paring it to other models (Gelman et al. 2003; Csilléry et al.

2010). ‘abc’ provides functions for the inference and model

comparison steps, and generic tools of R can be used formodel

checking.

To use the package, the following R objects should be pre-

pared: a vector of the observed summary statistics, a matrix of

the simulated summary statistics, where each row corresponds

to a simulation and each column corresponds to a summary

statistic, and finally, a matrix of the simulated parameter

values, where each row corresponds to a simulation and each

column corresponds to a parameter.

PARAMETER INFERENCE

For the sake of clarity, we recall the general scheme of param-

eter estimation with ABC. Suppose that we want to compute

the posterior probability distribution of a univariate or multi-

variate parameter, h. A parameter value hi is sampled from its

prior distribution to simulate a data set yi, for i ¼ 1,…,n

where n is the number of simulations. A set of summary statis-

tics S(yi) is computed from the simulated data and compared

to the summary statistics obtained from the actual data S(y0)

using a distance measure d. We consider the Euclidean

distance for d, and the ‘abc’ package standardises each

summary statistic with a robust estimate of the standard devi-

ation (the median absolute deviation). If d(S(yi),S(y0)) (i.e. the

distance between S(yi) and S(y0)) is less than a given thresh-

old, the parameter value hi is accepted. To set a threshold for

d, above which simulations are rejected, the user has to pro-

vide the tolerance rate, which is defined as the proportion of

accepted simulations. The accepted hi’s form a sample from

an approximation of the posterior distribution. The estima-

tion of the posterior distribution can be improved by the use

of regression techniques, which we detail in the following par-

agraph.

The function "abc" implements three ABC algorithms for

constructing the posterior distribution from the accepted hi’s: a
rejectionmethod and two regression-based correctionmethods

that use either local linear regression (Beaumont et al. 2002) or

neural networks (Blum & François 2010). When the rejection

method ("rejection") is selected, the accepted hi’s are con-
sidered as a sample from the posterior distribution (Pritchard

et al. 1999). The two regression methods ("loclinear" and

"neuralnet") implement an additional step to correct for

the imperfect match between the accepted, S(yi), and observed

summary statistics, S(y0), using the following regression equa-

tion in the vicinity of S(y0)

hi ¼ mðSðyiÞÞ þ �i; eqn 1

where m is the regression function and the �i’s are centred

random variables with equal variance. Simulations that

closely match S(y0) are given more weight by assigning to

each simulation (hi,S(yi)) the weight K[d(S(yi),S(y0))], and

the package implements different statistical kernels K. The

local linear model ("loclinear") assumes a linear func-

tion for m, while neural networks account for the non-

linearity of m and allow users to reduce the dimension of

the set of summary statistics. Once the regression is per-

formed, a weighted sample from the posterior distribution

is obtained by correcting the hi’s as follows:

h�i ¼ m̂ðSðy0ÞÞ þ �̂i; eqn 2

where m̂ð�Þ is the estimated conditional mean and the �̂is

are the empirical residuals of the regression (Beaumont

et al. 2002). Additionally, a correction for heteroscedastic-

ity is applied, by default, in "abc",

h�i ¼ m̂ðSðy0ÞÞ þ
r̂ðSðy0ÞÞ
r̂ðSðyiÞÞ

�̂i eqn 3

where r̂ð�Þ is the estimated conditional standard deviation

(Blum & François 2010).

The function "abc" returns an object of class "abc" that

can be printed, summarised and plotted using the S3 methods

of the R generic functions, "print", "summary", "hist"

and "plot". The function "print" returns a description of

the object. The function "summary" calculates summaries of

the posterior distributions, such as the mode, mean, median

and credible intervals, taking into account the posterior

weights, when appropriate. The "hist" function displays the

histogram of the weighted posterior sample. The "plot"

function generates various plots that allow the evaluation of
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the quality of estimation when one of the regression methods

is used. The following plots are generated: a density plot of

the prior distribution, a density plot of the posterior distribu-

tion estimated with and without regression-based correction,

a scatter plot of the Euclidean distances as a function of the

parameter values and a normal Q–Q plot of the residuals

from the regression. When the heteroscedastic regression

model is used, a normal Q–Q plot of the standardised residu-

als is displayed (see Fig. 1 panel a).

Finally, we note that alternative algorithms exist that sample

from an updated distribution that is closer in shape to the pos-

terior than to the prior (Marjoram et al. 2003; Beaumont et al.

2009; Wegmann et al. 2010). However, we do not implement

these methods in the ‘abc’ package because they require the

repeated use of the simulation software.

POSTERIOR PREDICTIVE CHECKS

We strongly recommend that users perform posterior predic-

tive checks after fitting their model to the data. There is no spe-

cific function in the package ‘abc’ for posterior predictive

checks; nevertheless, the task can be easily carried out using R

(a) Parameter inference and regression diagnostics
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(b) Cross-validation

(c) Model misclassification

Fig. 1. Typical graphical outputs of the R ‘abc’ package (model selection and estimation of the effective population size Ne from population

genetic data). (a) Parameter inference and regression diagnostics: plots show (clock-wise) the prior distribution, the distances between observed

and simulated summary statistics as a function of the parameter values (where red points indicate the accepted values), normal Q–Q plot of the

residuals of the regression, and the posterior distribution obtained with and without the regression correctionmethod (and the prior distribution,

for reference). (b) Cross-validation for parameter estimation: plot shows the estimated values as a function of true parameter values. Different

colours correspond to different values of the tolerance rate. (c) Model misclassification: a graphical illustration of the confusion matrix for three

models. The colours from dark to light grey correspond to models bott, const, exp, accordingly. If the simulations were perfectly classified,

each bar would have a single colour of its own correspondingmodel. The followingR code can be used to re-generate these plots.

> library(abc)
> data(human)
> cv.modsel <- cv4postpr(models, stat.3pops.sim, nval¼50, tol¼.01, method¼"mnlogistic")
> plot(cv.modsel)
> stat.italy.sim <- subset(stat.3pops.sim, subset¼models¼¼"bott")
> cv.res.reg <- cv4abc(data.frame(Na¼par.italy.sim[,"Ne"]), stat.italy.sim,
+ nval¼200, tols¼c(.005,.001), method¼"loclinear")

> plot(cv.res.reg, caption¼"Ne")
> res <- abc(target¼stat.voight["italian",], param¼data.frame(Na¼par.italy.sim[, "Ne"]),
+ sumstat¼stat.italy.sim, tol¼0.005, transf¼c("log"), method¼"neuralnet")

> plot(res, param¼par.italy.sim[, "Ne"])

R package: abc 3
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and the simulation software. A fully executable example using

R and ‘ms’ can be found in the package’s vignette. Briefly, to

perform model checking, one can obtain replicates from the

posterior distribution of the parameters using the function

abc. Then, one can simulate the summary statistics a posteriori

using the simulation software. In ABC, posterior predictive

checks might use the summary statistics twice: once for sam-

pling from the posterior distribution and once for comparing

the marginal posterior predictive distributions to the observed

values of the summary statistics. To avoid this circularity, we

might consider using different summary statistics for posterior

predictive checks than for parameter estimation, for example

using the expected deviance function.

CROSS-VAL IDATION

The function "cv4abc" performs a leave-one-out cross-vali-

dation to evaluate the accuracy of parameter estimates and the

robustness of the estimates to the tolerance rate. To perform

cross-validation, the ith simulation is randomly selected as a

validation simulation, its summary statistic(s) S(yi) are used as

pseudo-observed summary statistics, and its parameters are

estimated via "abc" using all simulations except the ith simula-

tion. Ideally, the process is repeated n times,where n is the num-

ber of simulations (so-called n-fold cross-validation).However,

performing an n-fold cross-validation might take up too much

time, so the cross-validation is often performed for a subset of

typically 100 randomly selected simulations. The "summary"

S3method of "cv4abc" computes the prediction error as

Epred ¼
P

ið~hi � hiÞ2

VarðhiÞ
; eqn 4

where hi is the true parameter value of the ith simulated

data set and ~hi is the estimated parameter value (the pos-

terior median). The "plot" function displays the esti-

mated parameter values as a function of the true values

(see Fig. 1 panel b).

MODEL SELECTION

The function "postpr" implements model selection to

approximate the posterior probability of a model M as

Pr(M|S(y0)). Three different methods are implemented. With

the rejection method ("rejection"), the approximate pos-

terior probability of a given model is proportional to the pro-

portion of accepted simulations under this model. The two

other methods are based on multinomial logistic regression

("mnlogistic") or neural networks ("neuralnet"). In

these two approaches, the model indicator is treated as the

response variable of a polychotomous regression, where the

summary statistics are the independent variables (Beaumont

2008). Using neural networks can be efficient when highly

dimensional statistics are used. Any of these methods are valid

when the different models to be compared are, a priori, equally

likely, and the same number of simulations are performed

under eachmodel. The"summary" S3method for "postpr"

displays the approximate posterior model probabilities, and

calculates the ratios of model probabilities, the approximate

Bayes factor, for all possible pairs of models (François et al.

2008).

A further function, "expected.deviance", is imple-

mented to guide the model selection procedure. The function

computes an approximate expected deviance from the poster-

ior predictive distribution. Thus, to use the function, users have

to re-use the simulation tool and to simulate data from the pos-

terior parameter values. The method is particularly advanta-

geous when it is used with one of the regression methods.

Further details on the method can be found in François &

Laval (2011), and fully worked out examples are provided in

the package’s manual pages.

COMPUTING MISCLASSIF ICATION ERRORS

A cross-validation tool is available for model selection as well

via the function "cv4postpr". The objective is to evaluate

whether model selection with ABC is able to distinguish

between the proposed models by making use of the existing

simulations. The summary statistics from one of the simula-

tions are considered as pseudo-observed summary statistics

and classified using all the remaining simulations. Then, if the

summary statistics contain sufficient information to discrimi-

nate among models, one expects that a large posterior proba-

bility should be assigned to the model that generated the

pseudo-observed summary statistics. Two versions of the

cross-validation are implemented. The first version is a ‘hard’

model classification. We consider a given simulation as the

pseudo-observed data and assign it to the model for which

"postpr" gives the highest posterior model probability.

This procedure is repeated for a given number of simulations

for each model. The results are summarised in a so-called

confusion matrix (Hastie et al. 2009). Each row of the confu-

sion matrix represents the number of simulations under a

given model, while each column represents the number of

simulations assigned by "postpr". If all simulations had

been correctly classified, only the diagonal elements of the

matrix would be non-zero. The second version is called ‘soft’

classification. Here, we do not assign a simulation to the

model with the highest posterior probability but average the

posterior probabilities over many simulations for a given

model. This procedure is again summarised as a matrix,

which is similar to the confusion matrix. However, the ele-

ments of the matrix do not give model counts, but the aver-

age posterior probabilities across simulations for a given

model. The matrices can be visualised with a bar plot using

the "plot" S3 method for "cv4postpr" (see Fig. 1c).

Conclusions

Weprovide anRpackage ‘abc’ to performmodel selection and

parameter estimation via ABC. Integrating ‘abc’ within the R

statistical environment offers high-quality graphics and data

visualisation tools. The R package implements recently devel-

opednon-linearmethods forABCand is going to evolve as new

algorithms and methods accumulate. We further direct our
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users to the package’s vignette that contains a detailed worked-

through example of an ABC analysis for inferring ancestral

humanpopulation size basedonDNAsequencedata.

Acknowledgements

We thankMark Beaumont for kindly providing an R script that we used in the

implementation of the functions abc and postpr. While working on this pack-

age, KC was funded by a post-doctoral fellowship from the Université Joseph
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