Lecture 2
 Markov chain Monte Carlo algorithms

olivier.francois@imag.fr

April 2011

Outline

- Markov chain Monte Carlo algorithms
- Metropolis-Hastings
- Multi-parametric models: Gibbs sampling

Model definition.

- Parameter $\theta=\left(\theta_{1}, \ldots, \theta_{J}\right), J \geq 1$.
- Data $y=\left(y_{1}, \ldots, y_{n}\right), n \geq 1$.
- A model is a joint distribution

$$
p(y, \theta)=p(y \mid \theta) p(\theta)
$$

- $p(\theta)$ is the prior distribution.
- $p(y \mid \theta)$ is the likelihood or sampling distribution.

Inference.

- Use the Bayes formula to compute the posterior distribution

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{p(y)}
$$

where

$$
p(y)=\int p(y \mid \theta) p(\theta) d \theta
$$

- Monte Carlo simulation methods can sample from (probability) distribution that are defined up to a constant

$$
p(\theta \mid y) \propto p(y \mid \theta) p(\theta)
$$

Markov chain Monte Carlo methods

- Principle: A target distribution π is the invariant distribution of some ergodic Markov chain with transition kernel $K(\theta, \varphi) d \varphi$

$$
\pi(\varphi)=\int K(\theta, \varphi) \pi(\theta) d \theta
$$

- Applying this to $\pi(\theta)=p(\theta \mid y)$ should avoid computing the marginal distribution $p(y)$

Metropolis-Hastings algorithm

- Define a proposal transition kernel $Q\left(\theta, \theta^{*}\right)$

1. Initialize $\theta^{0}, t=0$
2. Sample θ^{*} according to $Q\left(\theta^{t}, \theta^{*}\right)$
3. Compute

$$
r=\frac{\pi\left(\theta^{*}\right) Q\left(\theta^{*}, \theta^{t}\right)}{\pi\left(\theta^{t}\right) Q\left(\theta^{t}, \theta^{*}\right)}
$$

4. With probability $\min (1, r)$, do $\theta^{t+1} \leftarrow \theta^{*}$, otherwise $\theta^{t+1} \leftarrow \theta^{t}$
5. Increment t and go to 2

Why does it work?

- Let $\pi(\theta)=p(\theta \mid y)$
- The Markov transition kernel is

$$
K\left(\theta_{0}, \theta_{1}\right)=Q\left(\theta_{0}, \theta_{1}\right) \min \left(\frac{\pi\left(\theta_{1}\right) Q\left(\theta_{1}, \theta_{0}\right)}{\pi\left(\theta_{0}\right) Q\left(\theta_{0}, \theta_{1}\right)}, 1\right)
$$

- Time-reversibility

$$
\pi\left(\theta_{0}\right) K\left(\theta_{0}, \theta_{1}\right)=\pi\left(\theta_{1}\right) K\left(\theta_{1}, \theta_{0}\right)
$$

$\Longrightarrow \pi$ is an invariant distribution (Exercise).

Comments

- The MCMC algorithm simulates from an approximate posterior distribution
- Stationarity is reached after a burn-in period which determination has led to several methods in the literature.
- Its advantage is that it only requires computing the Metropolis-Hasting ratio r and avoids $p(y)$.

Beta-binomial model

- Proposal kernel $=$ Prior distribution
- Metropolis-Hastings ratio

$$
r=\left(\frac{\theta^{*}}{\theta^{t}}\right)^{y} \times\left(\frac{1-\theta^{*}}{1-\theta^{t}}\right)^{(n-y)}
$$

- Exercise: Implement the Markov chain in the R language.
R scripts
- MCMC algorithm (core):

```
theta.1 = runif(1)
ratio = (theta.1/theta.0)^ y *((1 - theta.1)/(1 -
theta.0))^ (n-y)
if (runif(1) < ratio) theta.0 = theta.1
```

- Exercise: Compute a 95% credible interval for θ and a histogram of the posterior predictive distribution given y.

Random walk proposal

- Proposal kernel $=$ Local search (depends on θ_{0})
- Example: $Q\left(\theta^{0},.\right)$ is the $\left.\operatorname{beta}\left(100 \theta^{0} /\left(1-\theta^{0}\right)\right), 100\right)$ distribution
- Expected move $=\theta_{0}$ (ie, slowly move to a neighborhood of θ_{0}).

Random walk proposal

- Proposal kernel $Q\left(\theta^{0},.\right)$ is the $\left.\operatorname{beta}\left(100 \theta^{0} /\left(1-\theta^{0}\right)\right), b\right)$ distribution ($b=100$)
theta. 1 <- rbeta(1, b*theta.0/(1-theta.0), b) ratio1 <- (theta. $1 /$ theta. 0) ^ $\mathrm{y} *($ ($1-$ theta.1)/(1 - theta.0))^ (n-y)
ratio2 <- dbeta(theta. $0, \mathrm{~b} *$ theta.1/(1-theta.1),
b)/dbeta(theta.1, b*theta.0/(1-theta.0), b) ratio <- ratio1*ratio2

Random walk proposal

- Effect of a burnin period (right figure): The chain did not converge after 150 steps.

Multi-dimensional parameters: A basic algorithm

- $\theta=\left(\theta_{1}, \theta_{2}\right)$

1. Simulate θ_{1} from the marginal distribution $p\left(\theta_{1}\right)$
2. Given θ_{1}, simulate θ_{2} from the conditional distribution $p\left(\theta_{2} \mid \theta_{1}\right)$.

Example: Posterior distribution of $\theta=\left(m, \sigma^{2}\right)$

1. $\sigma^{2} \mid y \sim(n-1) \operatorname{var}(y) / \chi_{n-1}^{2}$
2. $m \mid \sigma^{2}, y \sim N\left(\operatorname{mean}(y), \sigma^{2} / n\right)$
\# Simulated data
$\mathrm{n}=20$; $\mathrm{y}=\operatorname{rnorm}(\mathrm{n})$
sigma. $2=(\mathrm{n}-1) * \operatorname{var}(\mathrm{y}) / \mathrm{rchisq}(10000, \mathrm{n}-1)$
$\mathrm{m}=\operatorname{rnorm}(10000$, mean(y), sd $=\operatorname{sqrt}($ sigma.2/n))

Posterior distribution $\left(m, \sigma^{2}\right)$

The Gibbs sampler

- $\theta^{t}=\left(\theta_{1}^{t}, \theta_{2}^{t}\right)$
- Repeat the following cycle (or sweep)

GS1. Given θ_{2}^{t}, simulate θ_{1}^{t+1} from the conditional distribution $p\left(\theta_{1} \mid \theta_{2}^{t}\right)$.
GS2. Given θ_{1}^{t+1}, simulate θ_{2}^{t+1} from the conditional distribution $p\left(\theta_{2} \mid \theta_{1}^{t+1}\right)$.

Example: Posterior distribution of $\theta=\left(m, \sigma^{2}\right)$

GS1. $\sigma^{2} \mid m, y \sim n s_{n}^{2} / \chi_{n}^{2}$
GS2. $m \mid \sigma^{2}, y \sim N\left(\right.$ mean $\left.(y), \sigma^{2} / n\right)$

$$
\begin{aligned}
& \operatorname{sigma} .2=\operatorname{sum}\left((y-m)^{2}\right) / \operatorname{rchisq}(1, n) \\
& m=\operatorname{rnorm}(1, \operatorname{mean}(y), \operatorname{sd}=\operatorname{sqrt}(\operatorname{sigma} .2 / n))
\end{aligned}
$$

Posterior distribution $\left(m, \sigma^{2}\right)$

Convergence of the Gibbs sampler

- Markov kernel K

$$
K\left(\theta^{t}, \theta^{t+1}\right)=p\left(\theta_{2}^{t+1} \mid \theta_{1}^{t}, y\right) p\left(\theta_{1}^{t+1} \mid \theta_{2}^{t+1}, y\right)
$$

- The posterior distribution is a stationary distribution (Exercise)

$$
p\left(\theta^{t+1} \mid y\right)=\int p\left(\theta^{t} \mid y\right) K\left(\theta^{t}, \theta^{t+1}\right) d \theta^{t}
$$

- Warning: Not always ergodic!

Yet another example

- Simulate from a two dimensional Gaussian distribution of mean $=(0,0)$ and covariance matrix

$$
\Lambda=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

```
rho = . }7
theta1 = rnorm(200)
theta2 = rnorm(200, rho*theta1, sd = sqrt(1 -
rho^ 2))
```

Two-dimensional Gaussian distribution

Gibbs sampler

- Gibbs sampling sweeps

```
theta1 <- rnorm(1, rho*theta2, sd = sqrt(1 -
rho^ 2))
theta2 <- rnorm(1, rho*theta1, sd = sqrt(1 -
rho^ 2))
```


Two-dimensional Gaussian distribution

Take-home messages

- The Metropolis-Hastings and Gibbs sampler algorithms are useful because they avoid the computation of the marginal distribution $\mathrm{p}(y)$
- But the convergence of the algorithm can be hard to ascertain in some cases.

Ex1. Compute the 95\% credible interval for θ and the posterior predictive distribution given y from the MCMC algorithm for the beta-binomial model
Ex2. Compute the Metropolis-Hastings Markov chain transition kernel and prove that $\pi=p(\theta \mid y)$ is invariant for the corresponding Markov chain
Ex3. Implement the Metropolis-Hastings algorithm with a non-uniform proposal. Evaluate the convergence rate of the above algorithm experimentally.
Ex4. Implement the Gibbs sampler for $\left(m, \sigma^{2}\right)$ and for the two dimensional Gaussian distribution. Evaluate the convergence rate of the above algorithm for distinct values of ρ experimentally.

Bibliography and resources

- Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian Data Analysis 2nd ed. Chapman \& Hall, New-York.
- E. Paradis (2005) R pour les débutants. Univ. Montpellier II.
- R website: http://cran.r-project.org/

