
 

Molecular Ecology Notes (2006) 

 

6

 

, 980–983 doi: 10.1111/j.1471-8286.2006.01527.x

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd

 

Blackwell Publishing Ltd

 

PROGRAM NOTE

 

fastruct

 

: model-based clustering made faster

 

CHIBIAO CHEN,* FLORENCE FORBES* and OLIVIER FRANÇOIS†
*

 

INRIA Equipe MISTIS, 655 Avenue de l’Europe, 38334 St Ismier France, 

 

†

 

TIMC-TIMB, Dept Math Biology, Faculty of Medicine, 
F38706 La Tronche, France 

 

Abstract

Bayesian model-based clustering programs have gained increased popularity in studies of
population structure since the publication of the software 

 

structure

 

. These programs are
generally acknowledged as performing well, but their running-time may be prohibitive.

 

fastruct

 

 is a non-Bayesian implementation of the classical model with no-admixture
uncorrelated allele frequencies. This new program relies on the expectation–maximization
principle, and produces assignment rivalling other model-based clustering programs. In
addition, it can be manyfold faster than Bayesian implementations. The software consists
of a command-line engine, which is suitable for batch analysis of data, and a graphical
interface, which is convenient for exploring data.

 

Keywords

 

: assignment, clustering, EM algorithm, graphical user interface, population genetic
structure 

 

Received 20 May 2006; revision accepted 10 July 2006

 

In recent years, assignment methods combined with
Bayesian clustering have been the subject of increasing
interest to biologists studying population genetic structure,
mainly because these approaches do not assume predefined
subpopulations. These methods attempt to group samples
into clusters of random mating individuals so that the
Hardy–Weinberg (HW) and linkage disequilibria are
minimized across the data set. They also provide a sound
basis to analyse and interpret multilocus genotype data
(Pritchard 

 

et al

 

. 2000; Dawson & Belkhir 2001; Corander

 

et al

 

. 2003). Nevertheless, although these methods are
robust and generally perform well to various sources of
data, they share the drawback of being implemented through
Markov chain Monte Carlo (MCMC) algorithms. MCMC
implementations require setting many parameters, and
generate slow-converging computer programs with no
known reliable stopping rules. Usually, Bayesian methods
are contrasted to distance-based clustering methods.
Distance-based methods are simpler and often very fast,
but they are heuristic, and generally lack the theoretical
supports that make model-based methods so powerful.
These less-elaborated methods are often considered
more suited to exploratory analysis than to fine statistical
inference.

In this note, we propose a new algorithm (

 

fastruct

 

) that
cumulates two benefits: it is model-based and it is fast. This
goal is achieved by solving the inference problem proposed
by Pritchard 

 

et al

 

. (2000) using the expectation-maximization
(EM) algorithm (Dempster 

 

et al

 

. 1977) instead of MCMC.
The EM algorithm is coupled with a robust phylogenetic
method — neighbour-joining (Saitou & Nei 1987) — to generate
fast solutions. As do 

 

structure

 

 and 

 

baps

 

, 

 

fastruct

 

 allows
individuals to be of mixed ancestry, and proportionally
assigns an individual genotype to several populations of
origin. These programs provide similar final results due to
the fact that they are based on a common model.

 

fastruct

 

 has been implemented using the C++ pro-
gramming language. It contains a command-line engine
and a graphical user interface (GUI) shell. The command-line
engine is mainly designed for expert users who demand
simplicity and flexibility and users who need to batch-analyse
a large amount of data. It accepts data files in the 

 

structure

 

format, and produces output results in both textual and
graphical formats. The textual format stores the estimated
assignment probabilities and allele frequencies in a plain
ASCII file. There are two types of graphical outputs. The
first shows the log-likelihood history of a run, which can be
used for convergence diagnosis; the second displays the
estimated assignment probabilities in a bar chart as does
the 

 

distruct

 

 program (Rosenberg 2004). The command-line
engine can be used to generate artificial genotype data as

 

Correspondence: Chibiao Chen, Fax: (+ 33) 04 76 61 52 52; E-mail:
chen.chibiao@gmail.com



 

P R O G R A M  N O T E

 

981

 

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd

 

well; it features a simulation module of the Dirichlet allele
frequencies. When invoked without any options, the
command-line engine shows its typical usage with some
explanatory notes. Mandatory options are choice of simu-
lation or analysis, input data, number of individuals in the
sample, ploidy, number of loci, number of clusters, and
number of iterations of the EM algorithm. Other options
can be found in the reference manual of the program.

The GUI shell can help newbies to familiarize themselves
with the software, and it is generally a convenient way to use
the program. It provides facilities for creating and managing
projects. A project is a coherent unit which groups the
input data, the algorithmic parameter settings, and the
output results altogether. By interacting with the GUI shell,
users can check their data, specify the parameter settings,
run the EM algorithm, and visualize the results without
mastering the usage of the command-line engine.

To validate the EM algorithm, we performed several anal-
yses using simulated and real data. The most interesting
results came from a simulation study using the data sets
created by Latch 

 

et al

 

. (2006) who kindly provided the data.
These data were originally designed to compare the relative
performance of Bayesian clustering programs. Each data
set contained 500 individuals genotyped at 10 loci. Each data
set was sampled from the five-island model and differen-
tiated at one of 10 

 

F

 

ST

 

 levels (

 

F

 

ST

 

 = 0.01–0.10). Five replicates
at each level of 

 

F

 

ST

 

 were generated. Latch 

 

et al

 

. (2006)
reported that 

 

structure

 

 and 

 

baps

 

 performed very well at
low levels of population differentiation, and were able to
identify subpopulations at 

 

F

 

ST

 

 around 0.03. The individual
assignment data for 

 

fastruct

 

 are reported in Table 1
(

 

F

 

ST

 

 = 0.02–0.05). At 

 

F

 

ST

 

 = 0.01, 

 

fastruct

 

 failed to detect
structure. For data sets with 

 

F

 

ST

 

 = 0.06–0.10, 

 

fastruct

 

 pro-
duced perfect assignment to the five subpopulations.
Comparing results in Table 1 with those reported in (Latch

 

et al

 

. 2006), one can conclude that 

 

fastruct

 

 provided similar
or better assignment than 

 

structure

 

 and 

 

baps

 

 for these
particular data sets. One run took about 16 s on a laptop PC
with a 1.73 GHz CPU and 512 MB of RAM (1000 iterations).
Using a faster computer, Latch 

 

et al

 

. (2006) allocated about
3 h for each 

 

structure

 

 run (30 s for each 

 

baps

 

 run).

We therefore conducted some additional experiments to
see how the increase of the number of loci and the number
of individuals influence the processing time. In our exper-
iments, we started with 10 loci, and gradually increased
this number to 500 by a step of 10. Similarly, the number of
individuals was increased from 100 to 5000 by a step of 100.
We assumed three subpopulations, and we ran the program
for 1000 iterations, which warranted the convergence of each
run. When considering processing time as a function of the
number of loci, we fixed the number of individuals to 100.
Similarly, when considering processing time as a function
of number of individuals, we fixed the number of loci to 10.
The processing time measured in seconds increased linearly
as approximately 0.15 

 

×

 

 number of loci, and it remained
less than 60 s for 400 loci. The processing time increased
nonlinearly with the number of individuals, but it remained
less than 90 s for 2500 individuals in the sample.

To give a short example of real data analysis, we applied
the program to a subset of American populations extracted
from the CEPH human diversity panel data (Rosenberg

 

et al

 

. 2002). This subset of data contained 108 individuals
genotyped at 377 autosomal microsatellite loci. The samples
were from five populations: Karitiana, Surui, Colombian,
Maya, and Pima which were almost correctly retrieved by

 

structure

 

 in (Rosenberg 

 

et al

 

. 2002). Running 

 

fastruct

 

for 1000 iterations took about 88 s, and led to assignment
results that exhibited less than 3% differences with those
obtained from 

 

structure

 

.
In summary, 

 

fastruct

 

 produces results that compete
with those obtained from 

 

structure

 

 and 

 

baps

 

 but this can
be done manyfold faster. However the claim here is not
that 

 

fastruct

 

 generally provides better results than other
programs do. For instance, the run with maximal likelihood
chosen from 10 

 

structure

 

 runs may outperform 

 

fastruct

 

in a standard analysis (likelihoods are directly comparable).
However, there are many reasons we believe that 

 

fastruct

 

will be useful. First, at a preliminary stage before running

 

structure

 

, it can provide a reference likelihood value that
can be compared with those obtained from 

 

structure

 

 in
further analyses. Second, data sets are becoming increas-
ingly large due to the explosion of genomic projects. Such
data sets may be used to identify subsets of loci with specific
signatures. For example Bayesian clustering methods can
help investigate the subsets of loci that cluster the sample
in different ways that does the full data set. This provides
a mean to identify subsets of outlier loci (Beaumont &
Nichols 1996) that are potentially subject to natural selection,
particular migration patterns, or other departures from the
HW and linkage equilibria. Due to exploding combinatorics,
this could not be achieved by MCMC. On the one hand, the
genomic revolution feeds Bayesian algorithms with more
and more data. On the other hand, it puts an additional load
on MCMC programs, and limits their applicability. The
view presented here is that MCMC methods will probably

Table 1 Individual assignment data for fastruct, averages
obtained from simulated data sets at FST = 0.02–0.05 (data from
Latch et al. (2006))

FST

Average proportion of 
genome belonging to 
correct subpopulation

Average % 
misassigned

0.02 0.6484 32.96
0.03 0.9001 8.68
0.04 0.9662 3.00
0.05 0.9903 0.96



 

982

 

P R O G R A M  N O T E

 

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd

 

reach a limit that further material computer improvements
would not overcome, and faster methods will then become
useful in preliminary analyses.

The program, sample project files, and user’s manual for
Microsoft Windows OS are available free of charge at http://
www-timc.imag.fr/Olivier.Francois/.

 

Acknowledgements

 

This work was supported by grants from INRIA and IMAG-ALPB.
We are grateful to Emily K. Latch for providing us with the bench-
mark data. We thank Kevin Livingstone for helpful comments.

 

References

 

Beaumont MA, Nichols RA (1996) Evaluating loci for use in the
genetic analysis of population structure. 

 

Proceedings of the Royal
Society of London

 

. 

 

Series B, Biological Sciences

 

, 

 

263

 

, 1619–1626.
Corander J, Walmann P, Sillanpaa MJ (2003) Bayesian analysis of

genetic differentiation between populations. 

 

Genetics

 

, 

 

163

 

, 367–
374.

Dawson KJ, Belkhir K (2001) A Bayesian approach to the identification
of panmictic populations and the assignment of individuals.

 

Genetical Research

 

, 

 

78

 

, 59–77.
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood

from incomplete data via the EM algorithm. 

 

Journal of the Royal
Statistical Society

 

, 

 

39

 

, 1–38.
Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE Jr (2006) Rela-

tive performance of Bayesian clustering software for inferring
population substructure and individual assignment at low levels
of population differentiation. 

 

Conservation Genetics

 

, 

 

7

 

, 295–302.
McLachlan GJ, Peel D (2000) 

 

Finite Mixture Models

 

. John Wiley &
Sons. New York.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population
structure using multilocus genotype data. 

 

Genetics

 

, 

 

155

 

, 945–959.
Rosenberg NA (2004) 

 

distruct

 

: a program for the graphical display
of population structure. 

 

Molecular Ecology Notes

 

, 

 

4

 

, 137–138.
Rosenberg NA, Pritchard JK, Weber JL 

 

et al.

 

 (2002) Genetic struc-
ture of human populations. 

 

Science

 

, 

 

298

 

, 2381–2385.
Saitou N, Nei M (1987) The neighbor-joining method: a new

method for reconstructing phylogenetic trees. 

 

Molecular Biology
and Evolution

 

, 

 

4

 

, 406–425.
Ward JH (1963) Hierarchical grouping to optimize an objective

function. 

 

Journal of the American Statistical Association

 

, 

 

58

 

, 236–244.



 

P R O G R A M  N O T E

 

983

 

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd

 

Appendix

 

Here we give a brief summary of the model and describe
the EM equations. Suppose that 

 

N

 

 diploid individuals are
genotyped at 

 

L

 

 loci. The data (genotypes) are written as
, for 

 

i =

 

 1, … , 

 

N,

 

 and 

 

�

 

 =

 

 1, … , 

 

L.

 

 The aim of
clustering algorithms is to assign each individual 

 

i

 

 to one
of 

 

K

 

 populations. We denote 

 

z

 

i

 

 a variable that indicates the
origin of individual 

 

i. z

 

 plays the role of the missing data
in the EM scenario. We denote the unknown allele
frequencies as 

 

p

 

k

 

�

 

j

 

, k =

 

 1, … , 

 

K, j =

 

 1, … , 

 

J

 

�

 

,

 

 where 

 

J

 

�

 

 is the
number of distinct alleles observed at locus 

 

�

 

. Given the
origin of each individual, the genotypes are assumed to be
generated by drawing alleles independently from the
appropriate population frequencies,

(eqn 1)

We denote 

 

π

 

k

 

 = P(

 

z

 

i

 

 = 

 

k

 

). The entire set of parameters
can be described as 

 

ψ

 

 = (

 

π

 

k

 

, p

 

k

 

�

 

j

 

). To assign individual 

 

i

 

 to
a cluster, we compute the posterior assignment probab

 

-

 

ilities 

 

τ

 

ik

 

 = P(

 

z

 

i

 

 

 

= k

 

|

 

x

 

i

 

). Hereafter, we write 

 

ψ

 

(

 

q

 

)

 

 for an esti-
mate of 

 

ψ

 

 at iteration 

 

q of the EM algorithm. We will also
consider  as a binary vector of size J� with  (j) = 1
and all the remaining components being 0 if  = j. The

 can be described as

(eqn 2)

Then the update formulae for the parameters can be derived using
the standard method of the EM algorithm

(eqn 3)

and

(eqn 4)

When applying the EM algorithm to data, we need to
provide values for . There are mainly two types of
initialization methods: random initialization methods and
clustering-based initialization methods (McLachlan & Peel
2000). The random initialization methods assign individuals
into clusters randomly, while the clustering-based initial-
ization methods assign individuals into clusters according
to some distance criteria. Our initialization method is based
on the hierarchical clustering method of Ward (1963). The
Ward method is equivalent to the neighbour-joining phylo-
genetic reconstruction algorithm. To escape from this
initial clustering, the membership of a small portion (25%)
of individuals is randomly changed. This second step of
initialization is necessary to prevent settling down on a bad
local maximum. Then the EM algorithm gets an opportunity
to explore the parameter space and it may converge to a better
maximum. Generally, the clustering-based initialization
method provides a better final result for the EM algorithm
than random initialization does, and it also contributes to
the convergence speed.

x x xi i  ( , )( ) ( )= l l
, ,1 2

P x z k p p p pi i k x
a

L

k ji a( |   , )         ( ).( , ),= = =
==

∏∏ l
l

l
l1

2

1

x i a
l
( , ) x i a

l
( , )

x i a
l
( , )

τik
q( )

τ
π

π
ik
q k j

q x j

k
q

j

JL

k j
q

j

JL

k

K x j

k
q

p

p

i a
a

i a
a

( )
( ) ( ) ( )

( )
( )

( )

  
   

   

 .

( , )

( , )
=

∑
×

∑
×

=

=

==

===

∏∏

∏∏∑

ll

ll

ll

l
l

1
2

1
2

11

111

π
τ

k
q ik

q
i

N

N
( )

( )

  ,+ ==
∑1 1

p
x j

k j
q ik

q
i

N i a
a

ik
q

i

Nl

l( )
( ) ( , )

( )
  

( )

  
 .+ = =

=

=
×

∑ ∑
∑

1 1 1

2

1
2

τ

τ

τik
( )0


