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Abstract

Characterizing the spatial variation of allele frequencies in a population has a wide range of applications in population genetics. This
article introduces a new nonparametric method, which provides a two-dimensional representation of a structural parameter called the
genetical bandwidth, which describes genetic structure around arbitrary spatial locations in a study area. This parameter corresponds to
the shortest distance to areas of significant allele variation, and its computation is based on the Womble’s systemic function.
A simulation study and application to data sets taken from the literature give evidence that the method is particularly demonstrative
when the fine-scale structure is stronger than the large-scale structure, and that it is generally able to locate genetic boundaries or clines

precisely.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Wombling methods aim at detecting regions of abrupt
changes in maps of biological variables. They were
introduced by Womble (1951), and they were refined
afterwards by Barbujani et al. (1989) and Bocquet-Appel
and Bacro (1994). In the original approach, Womble
assumed the knowledge of surfaces derived from the
variables of interest (e.g. allele frequency surfaces) and
computed the gradient of these surfaces. The norms of the
gradients were then averaged to form a new surface called
the systemic map (or the systemic function). Zones of rapid
changes could therefore be identified as regions given high
values by the systemic function. These regions were called
boundaries.

However, the surfaces considered in the original
approach are rarely available in real data analysis. Instead
of surfaces, the variables of interest are usually measured at
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scarce geographical locations. Implementing Wombling
methods therefore requires the preliminary inference of
these surfaces from biological data collected from either
regular or irregular geographical sampling designs. Analy-
sis of regular experimental designs can be addressed from a
technique called lattice Wombling. In this approach, a
lattice tessellates the space into rectangular regions termed
pixels, and the variables of interest are assigned to the
center of the pixels. The rates of change can then be
computed either as the first derivatives among adjacent
pixels or the second partial derivatives (Laplacian)
(Jacquez et al., 2000; Fagan et al., 2003; Fortin and Dale,
2005) using kernel methods that operate in windows of m
pixels, where m is a fixed parameter. Regarding irregular
experimental designs, the data can be processed by a
different technique called triangulation Wombling, which
is based on triangular kernels (Fortin, 1994). Once the
systemic function has been estimated using one of these
methods, the next step is to discriminate between true
boundaries and spurious ones due to the inherent
variability of experimental designs. To achieve this,
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Barbujani et al. (1989) assessed the significance of the
boundaries by using a randomization procedure. Their
procedure detects whether the estimated values are higher
than the values expected under the absence of structure.
This approach was successfully applied to the analysis of
allele frequency data, and it was able to detect zones of
abrupt change within Human and Drosophila.

Nevertheless the need for statistical reconstruction from
scarce observations poses a difficult problem to the
implementation of Wombling methods in computer pro-
grams. Since lattice Wombling assigns observations to a
regular lattice, it may be subject to bias. Triangulation
Wombling estimates the systemic function from three data
only, and it is then prone to statistical error. This statistical
issue is closely related to the choice of the spatial scales at
which the estimation procedures (kernels) are implemen-
ted. For instance, the rates of change are strongly
dependent on the pixel size (Jacquez et al., 2000; Fagan
et al., 2003). The issue was recently addressed by a method
called hierarchical Wombling (Csillag and Kabos, 2002)
that computed maps at several scales by varying the pixel
size. But, in general, Wombling does not result in a unique
map because several pixel sizes may be used, and it may be
problematic to decide which pixel sizes are the most
appropriate to interpret the data.

This study addresses the above scaling problem from a
different perspective. The approach introduced here,
named the Genetical Bandwidth Mapping (GBM), is a
nonparametric technique that deals with allele frequency
surfaces. The GBM estimates the systemic function at
several scales in order to provide local characterization of
the genetic structure around any arbitrary spatial location
in a study area. The quantities displayed by the GBM are
not the systemic values themselves, but new local quantities
called the genetical bandwidths. The GBM overcomes the
issue of choosing among of multiple maps by computing
these local quantities, which may in turn be interpreted as
the shortest distances to areas of significant variation in
allele frequencies (Section 2). This study also evaluates the
capabilities of the GBM to detect and locate genetic
structures such as boundaries or clines using multilocus
genotypes and geographical coordinates (Sections 3 and 4).

2. Theory

This section presents a formal description of bandwidths
and describes the statistical principles underlying the
GBM. The mathematical details are deferred to Appendix.
We consider a biological population living in a two-
dimensional habitat, and we assume that » individuals have
been sampled from this population according to a uniform
experimental design (regular or random). In what follows,
each location (x;, ;) is associated with a genetic observa-
tion g; called the multilocus genotype that indicates the
presence of specific alleles at multiple DNA loci.

Typically the coordinates (x;, y;) represent either the
location of an individual labelled i at its instant of

observation, or the location of its habitat. The GBM
computes a critical parameter (the genetical bandwidth) at
each site of a grid that covers the study area. In the sequel,
a grid site is denoted by (x, y), and it may differ from the
sampled location (x;, ;).

2.1. Definition of bandwidths

In the GBM, the gradients of allele frequencies are
computed at each grid site (x, y). In this grid, the
neighborhood of a site is not defined precisely. Instead
each observation receives a weight that depends on the
distance to the current grid site. More specifically, the
individual 7 located at (x;, ;) is given the Gaussian weight
wi(h) = exp (—d*/2h?), where d; represents the squared
Euclidean distance between (x; y;) and (x, y). This
approach is standard in density estimation (Silvermann,
1986). The parameter / is crucial to our method. It is called
the bandwidth (or window size), and it controls the
exponential decay of the Gaussian weights.

2.2. The systemic function

In order to test for the absence of local genetic structure,
the GBM computes an estimate of the Womble’s systemic
function at each grid site. The systemic function S(x, y) can
be defined by the following formula:
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where Vfi(x, y) is the gradient of the allele frequency f; with
respect to x and y, and the sum runs over all possible alleles
j at all loci. The systemic function is representative of the
total slope of allele frequency surfaces and it integrates the
dependencies between the genetic and the spatial data. The
GBM deals with the fact that the derivatives at (x, y) are
unknown parameters by estimating them from the pre-
sence/absence of alleles at the sample locations. The
estimation technique used here relies on local polynomials
based on the Gaussian weights wi(h) (see Fan and Gijbels,
1996 and Appendix). This approach differs from standard
techniques significantly because the derivatives are tradi-
tionally estimated from difference equations (e.g. Barbuja-
ni et al., 1989). Depending on the value given to the
bandwidth £, the GBM builds an estimate S(x, y, /) of S(x, y)
at each (x, y). In nonparametric statistics, the choice of 4 is
usually motivated by the minimization of a statistical error.
Optimal choices nevertheless generate difficult mathema-
tical and practical problems. The GBM avoids this
particular issue by computing /4 in relation to critical
regions of tests for the absence of structure.

2.3. Testing for spatial genetic structure
Testing for genetic structure is at the heart of the GBM.

The tests for absence of structure are repeated at each site
(x, ) of the grid. Their objective is to determine whether
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the estimated systemic value S(x, y, h) reflects significant
local structure or not. In order to perform the tests, the
values S(x, y, h) are compared to the probability
distribution of the systemic function S(x, y) obtained
under the null hypothesis of absence of structure. Such a
probability distribution can be computed by using a
permutation procedure. The algorithm actually proceeds
with resampling from all possible genotypes, and it
reassigns the sampled genotypes to the individual loca-
tions. For each (x, y), replicates of systemic values are
computed as described in Section 2.2. A P-value is then
computed by forming the ratio of the number of replicates
greater than the estimated value S(x, y, h) to their total
number. For example, Fig. 1 represents individuals
genotyped at a single diallelic haploid locus geographically
sampled for a structured population. The figure suggests
that the test should be significant for large bandwidths
(h>h;) but nonsignificant for bandwidths lower than the
distance to the closest discontinuity in allele frequencies
(e.g. h<hy).

2.4. Genetical bandwidths

To compute the genetical bandwidths, the type I error of
the permutation test must be set to a fixed value o (typically
o = 0.05). The tests are repeated at each grid site for several
values of /. The genetical bandwidths are then defined as
the largest values of / for which the tests are nonsignificant,
i.e. the P-values are greater than «. To compute these
quantities, large bandwidths corresponding to the diameter
of the study area are first tested. The bandwidths are then
decreased by one unit unless the test becomes nonsignifi-
cant.

Landscape barrier

(e.g. montain range) \

Fig. 1. The permutation test illustrated. The figure represents individuals
(dots) genotyped at a two-allele locus (A = black dots, a = white dots),
and includes geographical structure. The thick black line indicates the
presence of a physical barrier (e.g. a mountain range), and the cross
corresponds to a site (x, y) in the grid. When the permutation test is
applied to individuals at distance /2, black and white dots may be mixed up
with high probability. The null hypothesis of absence of structure may
then be rejected. In contrast, the test may be nonsignificant when the
permutation test is applied to individuals at distance /.

2.5. Interpretation of the GBM output

The GBM output is stored as a two-dimensional matrix,
which can be interpreted as a map. Such a matrix contains
the genetical bandwidths computed at each point of the
grid covering the study area. These parameters correspond
to the shortest distances to the zones of significant
variation in allele frequencies. Graphical representations
of the GBM therefore provide bases for interpretation of
the genetic structure of the population. In this paragraph,
we give short guidelines to the interpretation of such
outputs by analyzing two typical responses. For sake of
clarity, we discuss one-dimensional organization, i.e.
populations which consist of continuously distributed
individuals along a line. The one-dimensional hypothesis
is actually more amenable to analysis, and this enables
reasonable guesses of typical shapes of response in two
dimensions (cross-sections in two-dimensional maps). In
one dimension, two types of response can be expected. We
call these responses the W-shaped and the V-shaped curves
(Fig. 2). The W-shaped response may be the signal of a
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Fig. 2. (a) W-shaped response corresponding to a cline in allele frequency
at a locus with two alleles. (b) V-shaped response corresponding to
physical barrier to gene flow.
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cline in allele frequency, while the V-shaped response is
expected when differentiated populations are isolated by a
nonhabitat or unsampled area. The W-shaped response is
illustrated in Fig. 2a, where the spatial distribution of
individuals genotyped at a haploid biallelic locus (a/A) is
displayed. Within areas of low frequency of allele A, the
genetical bandwidth decreases as the distance to the zone of
sharp variation decreases. The same phenomenon occurs
within areas of high frequency. Within the transition zone,
the genetical bandwidths may undergo erratical variation
due to variability in geographical sampling, and the fact
that the allele frequencies are close to 50%. Fig. 2b gives an
illustration of the V-shaped response. Two populations are
separated by an empty area, e.g. a physical barrier to gene
flow. In this case, the genetical bandwidths vary linearly
with the distance to the farthest population.

2.6. Software

A documented computer software called GENBMAP
implements the GBM in C+ + and provides a graphical
interface for visualizing its outputs. The computer program
has been designed for running under the win32 operating
system, and it is available from the authors’ web
pages (http://www-timc.imag.fr/Olivier.Francois or http://
www-leca.ujf-grenoble.fr/logiciels.htm).

3. Simulation study

This section illustrates the behavior of the GBM when
confronted to typical spatial structures obtained from
numerical simulations. Two cases were simulated: (1) clines
along a specific direction (longitude) and (2) barriers to
gene flow in the two-island model. The choice of such
simple scenarios was motivated by the fact that these
scenarios clearly enable the measure of the mutual
influences of both spatial and genetic effects on the GBM
output. Analysis of the behavior of GBM on more complex
scenarios is deferred to the next section, where real data
sets are considered.

3.1. Experimental design and simulation tools

Random generation of spatial locations and genetic data
were performed using the statistical software R 2.3.1
(R Development Core Team, 2006). Simulations were
replicated more than 10 times in each case. Sample sizes
were increased from 200 to 1000 and 5000 individuals.
Maps were computed using 300 x 300 regular grids (90,000
sites). The type I errors in permutation tests were equal to
o =0.05 and « = 0.1. Refining the mesh grid had a direct
impact on the running time, which increased linearly with
the number of sites in the grid. The number of permuta-
tions was fixed to 200, and then increased to 500 and 1000
without major influence on the output of the tests. With
200 permutations, the computing time for one single map
approximated half an hour on a 2 GHz processor laptop

computer. Additional genetic data were generated from the
two- and three-island models using EASYPOP (Balloux,
2001) with similar results (not reported). The GBM is a
purely descriptive method, and its statistical behavior over
many simulated replicates is particularly difficult to
summarize. The graphical results presented in this section
were chosen as representative of the majority of the
simulated cases.

3.2. Simulation of clines

Simulated data included 12 unlinked diallelic loci (alleles
were coded 0 and 1). At each locus, the frequencies of 1’s
varied along the horizontal direction (x coordinate), and their
dependence on x was logistic fix) = 1/(1+exp(—(x—a)/b))
where a and b were specific constants set to a = 2500, 3000,
3500 and b = 200, 500 (each of the six combinations was
produced twice, see Fig. 3a). Spatial coordinates were
obtained as mixtures of two independent isotropic Gaus-
sian distributions centered at x; = 1000 and x, = 3000.
The y coordinate was set to y = 1800 and the standard
deviation was SD = 1000. These simulations were relevant
to clinal variation of allele frequencies along one specific
direction (e.g. longitude).

Fig. 3b displays a central horizontal cross-section
(y =900) of the GBM. The cross-section exhibits a
W-shaped response locating the beginning of the sharp
variation around x = 1500 and its end around x = 4000.
The central area of the map corresponds to a wide region
where allele frequencies varied significantly. In these
experiments, increasing the type I error produced wider
minimal areas with weak incidence on the result inter-
pretation. A sensitivity analysis was actually performed for
this parameter (not reported). Although the minima
appeared to be wider, their shape and their location were
unchanged when o was increased to 10% and 15%. As for
many statistical tests, fixing the type I error to o = 5% may
be considered as a generally reasonable strategy.

3.3. Simulation of two-island models and sensitivity analysis

A spatial variant of Wright’s island model was used in
order to assess the sensitivity of the GBM to the
simultaneous variation of genetic differentiation and the
density of the spatial data. Individuals were sampled from
two subpopulations of equal effective sizes N,. Alleles were
simulated according to the infinite allele model with
constant mutation rate 0 = 4u N. =1 at each locus (u is
the mutation rate per generation). Migration rates
M =4m N, were varied from 1 to 10 loci (m is the
migration rate per generation). F-statistics (Fgr) were
computed using Weir and Cockerham estimates (Weir
and Cockerham, 1984). In order to assess effects due to the
number of loci and the sample size, we used L =5, 20,
and 50 loci and n =20, 50, and 100 individuals. Spatial
coordinates were simulated as the geographical mixture of
two independent Gaussian distributions. Each subpopulation
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Fig. 3. (a) Allele frequencies used in the simulation of clinal variation. (b)
One-dimensional cross-section of the GBM corresponding to the response
of a cline in simulated data. Genetical bandwidths ranged from 200 (min)
to 1200 (max).

(or island) density had its own spatial range, and the two
islands could intersect. The ratio r of the within-group
variance to the between-group variance was used to
measure the degree at which the two islands spatially
overlapped. This classical discriminant analysis parameter
was interpreted as a measure of spatial differentiation. For
fixed within-group variances, bringing islands closer had
the effect of increasing r while moving islands away from
each other had the reverse effect (see Fig. 4a). For r
between 0 and 4, the two islands did not generally share an
intersecting area and they even remained far apart for the
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Fig. 4. Simulations of the two-island model with limited gene flow. (a)
Relative locations of the two islands along the r-axis. (b) Critical Fsr
values below which population subdivision cannot be detected (as a
function of r). The sample size is set to n = 100 individuals. The numbers
of loci are set to L = 5 (triangles), L = 20 (squares), and L = 50 (circles).
(c) Critical Fst values below which population subdivision cannot be
detected (as a function of r). The number of loci is set to L = 20. The
sample sizes are n = 20 (circles), n = 50 (triangles), and n = 100 (squares).

lowest values. For r between 4 and 8, the regions
intersected significantly.

Simulations of this model with various values of r and
various levels of Fgr’s were used to investigate which
parameter values were critical to the detection of popula-
tion structure (Fig. 4b and c). At the critical values, the
GBM provided flat responses, and the minima were hardly
detectable. We considered that the map was flat when the
ratio of the maximum of the GBM to its minimum value
minus one was less than 5%. These ratios were obtained
from 10 simulated replicates. Fig. 4b represented critical
Fsr values as a function of r. For r in the range (0,4),
structure was detected for Fgy’s less than a value around
0.04. In this range, the method was relatively insensitive to
the number of loci. For higher levels of spatial mixture
(r around 6), the values below which population subdivision
remained undetected increased, but the performances
clearly rose with the number of loci. With 20 loci,
population structure was detected for Fst values less than
0.05-0.06. Fig. 4c showed that the GBM was sensitive to
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geographical sampling, and the method was frequently
confounded when the sample sizes were small. For n = 20,
population structure was correctly identified for large Fgr
(>0.15). For n = 100, the GBM was remarkably efficient
at detecting structure even when the two subpopulations
intersected strongly.

4. Application to real data

This section summarizes the analysis of two well-studied
data sets. The first one can be considered as a case of
evidence of clinal selection at the Adh F/S locus in
Drosophila melanogaster (Berry and Kreitman, 1993). The
second one is the Human Genome Diversity Panel from the
Centre d’Etude du Polymorphisme Human (HGDP-
CEPH), which contains the genotypes of 1056 individuals
at 377 autosomal microsatellite loci. This data set was used
by Rosenberg et al. (2002) to infer the genetic structure of
the modern human population. Here these data sets may be
viewed as completing the simulation study described in
Section 3. Although simulating cline and cluster models
was useful for evaluating the sensitivity of the GBM to
several parameters, the simulations did not reflect the
complexity of realistic situations. The two data sets studied
in this section provide insights on how the method works
on more complex scenarios.

4.1. Adh locus

Clinal selection at the Adh F/S locus in D. melanogaster
was studied by Berry and Kreitman (1993) using 113
haplotypes from 44 polymorphic markers in 1533 indivi-
duals from 25 population sites from the East Cost of North
America. The original data contained latitudinal informa-
tion for the 25 population samples. To create individual
locations, the spatial coordinates were simulated by adding
a small amount of variability to each site coordinates.
These sites were pertubated by adding SD = 0.5°N to the
latitudes, and longitudes were simulated within an artificial
range of (—1, +1)°E. In addition, we used a subsample of
1303 individuals so that the 14 most represented haplotypes
were selected (85% of the full data set at the end of Berry
and Kreitman’s article). Clearly the above described
procedures did not favor bias toward the appearance of
clines.

The two-dimensional plot displays a band pattern, which
reflected the absence of sensitivity to longitude resampling.
Most latitudinal cross-sections exhibited similar band
patterns (not shown). The curve in Fig. 5 corresponds to
a single section of the map. This curve exhibits a W-shaped
response locating the beginning of the zone of sharp
variation around the latitude 32.4°N and the end of this
zone around the Ilatitude 41.1°N. These results gave
evidence that the cline was correctly retrieved and that it
separated two homogeneous zones in the South and the
North of the study area.
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Fig. 5. GBM response to the latitudinal cline in frequencies of the Adh
locus in the North American D. melanogaster populations (latitudinal
section).

4.2. CEPH human genome data set

The genetic structure of modern human populations was
recently investigated without the use of predefined
“groups” by Rosenberg et al. (2002) and Cann et al.
(2002). Inference of genetic ancestry was performed by
applying a model-based clustering algorithm implemented
in the computer program STRUCTURE (Pritchard et al.,
2000) that computes individual cluster membership coeffi-
cients. Rosenberg et al. (2002) identified six main genetic
clusters, five of which corresponded to major geographic
regions. The secondary clusters often matched with one of
the 52 sample populations.

Here, the GBM was applied to the Eurasia/Asia subset
of the original data set. These data contained 451
individuals originating from 25 populations. The study
area ranged from south-western Pakistan (latitude 24°N,
longitude 66°E) to north-eastern Russia (latitude 64°N,
longitude 130°E). Geographical coordinates and spatial
ranges of population samples were available from the
CEPH web site (http://www.cephb.fr/HGDP-CEPH-Panel/).
Because the individual coordinates were not known
exactly, Gaussian data simulated within the range specified
from the CEPH web site were used instead. This was done
by adding small amounts of variability to the geographical
coordinates. Several densities of spatial coordinates were
investigated. The map was computed using a regular grid
of resolution 100 x 100, 200 permutations, and the type I
error set was to o = 0.05. The result is displayed in Fig. 6.

The outputs were consistent with recent results regarding
the inference of the genetic structure of human populations
obtained with Bayesian methods (Rosenberg et al., 2002;
Bamshad et al., 2003; Ramachandran et al., 2004; Frangois
et al., 2006). Evidence for the separation Eurasia/East Asia
was provided by the transversal separation (T). The (L)
and (U) signals may be interpreted as genetic barriers to
gene flow (a double barrier). The upper signal (U) may be
interpreted as the separation between Xibo and Uygur of


http://www.cephb.fr/HGDP-CEPH-Panel/

338 A. Cercueil et al. | Theoretical Population Biology 71 (2007) 332-341

L
60 —
)
50
I
o L
3 40
= *
L
30 ]
..
20
T I
60 80 100 120

longitude

Fig. 6. Map produced by the GBM method for the Eurasian and Asian
modern human populations (HGDP-CEPH data set). U, T, and V are
signals of the genetic differentiation between Eurasian and Asian
populations. L may be explained by the genetic isolate Kalash, and Y is
consistent with the separation of populations with languages of altaic
origin.

north-western China and the populations from southern
Pakistan who speak Indo-European languages. The (V)
line appears to be the continuation of (U). Grouped as a
single signal (UV) might also indicate the separation
between Pakistani and East-Asian samples. The lower
separation (L) matched with the presence of the Kalash
population, which was clearly identified as a genetic isolate
by Rosenberg et al. (2002), and Fig. 6 indicates that the
Pakistan area featured higher genetic heterogeneity than
the Asia area (lower values of the GBM). As concerned the
Asia samples, an heterogeneous area was observed in
north-eastern China (Y). The shape of this structure may
also indicate a separation between Yakut-Japanese sam-
ples, which are populations with altaic language and the
rest of the East-Asian samples. The principal features
reported in this paragraph were common to all computed
maps regardless the spatial densities from which individual
coordinates were resampled (not reported).

5. Discussion

The GBM was introduced as a new visual tool for
investigating spatial variation of allele frequencies. The
information was displayed through a two-dimensional
graphical representation of a local structural parameter.
This parameter could be interpreted as the shortest
distance to areas of significant changes as well as the
radius of the largest zone for which the genetic structure
can be thought of as being spatially homogeneous.

The definition of genetic bandwidths fit in the framework
of Wombling methods because the systemic map provided

a natural measure of spatial homogeneity. GBM and
Wombling were nevertheless fundamentally distinct. The
main difference resided in the fact that Wombling
estimated the systemic function by using a fixed local
parameter (e.g. a window size). Due to the high sensitivity
to this parameter, systemic maps might hardly be estimated
unambiguously, because each value of the local parameter
might lead to a new map. Deciding which value minimizes
the statistical error is a generally difficult issue. In contrast,
the GBM avoided these issues by adopting a reverse
perspective, focusing on bandwidths rather than on the
systemic map itself. The bandwidths were estimated on the
basis of local homogeneity tests using all values of the local
parameter. The GBM therefore produced a unique map.

The GBM proved successful at identifying genetic
discontinuities and sharp clinal variation. Genetic disconti-
nuities or boundaries induced V-shaped responses, while
clinal variation was likely to yield W-shaped responses.
Application to real data provided additional evidence that
the GBM was able to identify clinal variation in allele
frequencies (Drosophila Adh locus). In addition, the maps
obtained from the HGDP data set were in accordance with
our current knowledge of the genetic structure of Eurasian
and Asian populations.

Variation of allele frequencies in human populations
may occur at multiple scales. For example, the genetic
discontinuities existing at the transition between Eurasia
and East Asia may result from large-scale variation, while
the Kalash cluster emerges within Pakistan at a finer scale.
From the very definition of genetical bandwidths, the
GBM operates at local scales primarly and may then be
appropriate for detecting recent differentiation followed by
restricted range expansion. Genetic discontinuities within a
high-density area may actually result in relatively low
values of the GBM (e.g. within Pakistan). At the same
time, these arecas may form several geographical clusters
separated by larger distances and potentially more ancient.
In this situation, large-scale variation can still be detected
by the GBM, but it may be given higher relative values
than the primary responses leading to secondary structures
(see Fig. 7).

The GBM seemed particularly relevant to the study of
populations in which the fine-scale population structure is
stronger than in the long range (Kayser et al., 2005;
Marjanovic et al., 2005; Klopfstein et al., 2006). The color
coding representation used by the graphical interface
(GENBMAP) may however be partly responsible for the
fact that large-scale structure may confound the program
when local structure is present because the program uses
few colors, and users of GENBMAP may be aware that the
secondary minima (or ridges) may reflect the imprints of
large-scale structures more significantly than the primary
mimima do. Nevertheless secondary structures associated
with large-scale variation in the human data could be
unambiguously identified from Fig. 6 showing that the
program can also perform well when the large-scale
structure is stronger. A piece of advice to give to users of
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secondary minima

>

<

Primary minima

Fig. 7. Primary minima in the GBM may indicate local variation of allele
frequencies (they correspond to white areas in GENBMAP outputs).
Secondary minima may indicate the existence of structure at larger scales
and may be less apparent.

GENBMAP is to perform separate runs at local scales in
order to detect the presence of local variation. A separate
analysis of the eight Pakistan samples (not reported)
actually supported the hypothesis that the response
observed in Fig. 6 might be a consequence of the multi-
scale variation present in the data. The separate analysis
concluded that low values of the GBM surrounded the
Kalash locations.

A frequently reported issue in the recent literature is that
computer programs seeking population structure may be
confounded by irregular spatial sampling (Serre and
Pdibo, 2004; Rosenberg et al., 2005). Perhaps the most
widely used among these computer programs is the
Bayesian clustering algorithm STRUCTURE (Pritchard
et al., 2000), which probabilistically assigns individuals to
K populations of origin. Because STRUCTURE puts a
strong prior on the existence of clusters, it may be prone to
errors when geographical sampling is uneven along clines.
Recently Frangois et al. (2006) dealt with the cline/cluster
dilemma from a Bayesian perspective, and used hidden
Markov random fields in order to attenuate the effect of
uneven sampling in continuous populations. Although the
GBM does not provide a direct solution to this very
difficult issue, it yielded a reasonable answer when the
problem happened in real data (Drosophila). Although
geographical sampling was actually irregular in the
Drosophila data, the GBM response was indeed relevant
to clinal variation. This may be explained as both large-
scale and local spurious structures contributed to the
observed W-shaped response.

What does the GBM bring compared to the already
existing methods? The answer requires a short review of
methods used in spatial genetics. Spatial population
genetics often relies on theoretical models and statistical
methods for inference from genetic data in subdivided
populations. Mainly, these methods are concerned with the
estimation of migration or dispersal rates based on neutral
models of evolution (Wright, 1943; Malécot, 1968;

Rousset, 2004) that have originally demonstrated how
F-statistics depends on spatial dispersal under simplified
assumptions. These approaches assume predefined popula-
tions and they do not use spatial information explicitly.
Another stream of theoretical works has traditionally been
built on nonparametric spatial statistics. These works fall
into three categories (see Manel et al., 2003): (1) matrix
methods and the Mantel test (Mantel, 1967), (2) spatial
autocorrelation statistics (Moran, 1950; Sokal and Oden,
1978), and (3) methods related to identification of
boundaries (Monmonier, 1973). A criticism addressed to
Mantel and autocorrelation methods is that they may
indeed reveal the presence of specific structures, but they
fail to identify their shape or their location precisely
(Barbujani, 2000). In constrast, the Monmonier’s algo-
rithm (Monmonier, 1973) and the Wombling method
include the analysis of local features. However, the
Monmonier’s algorithm requires fixing a number of
intrinsic parameters, as the number of genetic boundaries,
which are generally unknown.

Clustering methods like those based on principal
component analysis or phylogenetic reconstruction are
also popular in spatial genetics and phylogeography, but
they may sometimes be difficult to interpret. In contrast,
model-based clustering algorithms like the one implemen-
ted in the Bayesian computer program STRUCTURE have
revealed powerful at detecting cryptic population structure.
Although these clustering algorithms do not exploit spatial
information explicitly, the identified clusters can be
mapped on a landscape representation (e.g. Manel et al.,
2004), and this generally provides satisfactory results.

In regard of all the previous approaches, GBM can be
classified as nonparametric (as opposed to model-based)
and uses spatial information explicitly. Like autocorrela-
tion methods, it deals with genetic data and geographical
coordinates simultaneously. But the main difference is that
GBM enables locating the spatial genetic structures.
Compared to methods that use the Monmonier’s algo-
rithm, GBM avoids using predefined number of popula-
tions and does not assume a particular measure of genetic
distances. The results of GBM are not directly comparable
to Bayesian clustering algorithms because the GBM does
not assign any individual to a population of origin. With
this respect, the GBM may deal with the cline/cluster
dilemma more equitably than Bayesian clustering algo-
rithms do. In addition, GBM is not subject to the
convergence diagnosis issue often reported for MCMC
programs.

Wombling has generated a great amount of applied and
theoretical works since its introduction by Womble in 1951
(Womble, 1951; Barbujani et al., 1989; Bocquet-Appel and
Bacro, 1994; Fortin et al., 2000; Jacquez et al., 2000; Fagan
et al., 2003). So far, these works have focused on estimating
systemic maps using various statistical procedures. This
article adopted a distinct approach. Based on Wombling, it
introduced a new structural parameter (the genetical
bandwidth) and gave a natural interpretation to this
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parameter. The common idea underlying studies of
geographical diversity is that one can proceed from the
observed pattern to the underlying evolutionary process
(Barbujani, 2000). The first step is to assess the observed
pattern of genetic variation. GBM has proved to be a
powerful tool to address this question and to provide
graphical insights on population structure when no prior
information is available.
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Appendix. Mathematical details of the GBM

The estimates of derivatives needed for computing the
systemic function were obtained according to a nonpara-
metric method using local polynomials (Fan and Gijbels,
1996). Let us explain the method briefly. For sake of
simplicity, assume the observation of a single locus, and let
(z;) denote the Bernoulli variables that indicate the presence
or absence of a specific allele at each site. Here the
subscript i refers to the individual location, and z; =1
means that an organism located at the site i carries the
studied allele.

We denote by (x;, y;) the spatial coordinates of the
individual i and by (x, y) the coordinates of an arbitrary
grid site. In the local polynomial method, a function w
weights observations according to their distance to the grid
sites. The weight function usually consists of a nonnegative
decreasing function of the Euclidean distance d; between
the observation (x;, y;) and the grid site (x, y). In
nonparametric statistics, Gaussian weights are a standard
choice:

g(d) = exp(—d*2),

The bandwidth (denoted as /) is a scale parameter that
enables the control of weight decay. This parameter
influences the quality of estimation, and it is subject to
the bias/variance dilemma. More specifically the observa-
tion i receives the weight

wi(h) = g(d;/h).

When the bandwidth is small, the decay can be fast
compared to the scale of spatial data, and only the
observations close to the grid site will be taken into
account. In contrast, large bandwidths may lead to an
underestimation of local structures.

The local polynomial method attempts to fit a poly-
nomial function P(x, y) to the (unknown) frequency of the
studied allele at every grid site (x, y). The fitted polynomial
takes the following form:

d>0.

P(x,p) =g+ B X+ B,y + 1/2p X 47, xp +1/27,, 07,

and it solves the minimum square problem associated with
the error function

g (1)

EP) =) wilh)||P(xi — x,3,— ) — zi
i=1

where 7 is the sample size, and 0 corresponds to the six-
dimensional set of parameter defining P. The solution of
the minimization problem (1) is given by the following
matrix product:

0=("XWX)" ' (xw2z), )

where Z = '(z,...2,), Wis a n-dimensional diagonal matrix
such that w;; = w(d;/h), and

I xi1—x y -y (Xl*x)2 (x1=x) x O -» (J’l*y)z

1 oxy=x y,=y (=% (=% x ,—» @,—»’

Note that computing the estimated parameter 0 requires a
number of operations of order O(n), which is generally fast
on modern computers. The derivatives can be estimated as

oP
a(xsy) = ﬁx = ﬁx(x:y: h)

and

oP
a(x»y) = ﬁy = ﬁy(x’y:h)'
An estimate of the gradient norm can then be given by

112
IVfII" = B2+ B3

Note that Eq. (2) can be rewritten as
0= BZ,

where B = (XWX)~'(XW).

The estimates are thus obtained by making the product
of the two matrices B and Z. The matrix B depends on the
spatial data only, whereas the genetic data are contained in
Z. This remark is crucial for the implementation of the
permutation tests. During the permutation test, the alleles
are resampled without replacement, and the matrix B does
not need to be recalculated. The derivatives are therefore
reestimated from the application of a single matrix
product. The reduced algorithmic cost of this method
supports the choice of the linear regression method (instead
of a logistic regression method for example).
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